示例#1
0
void IsisMain() {
  // We will be processing by brick
  ProcessByBrick p;
  
  Isis::Cube *amatrixCube=NULL; 
  Isis::Cube *bmatrixCube=NULL; 

  // Setup the user input for the input/output files and the option
  UserInterface &ui = Application::GetUserInterface();

  // Setup the input HiRise cube
  Isis::Cube *icube = p.SetInputCube("FROM");

  if (icube->Bands() != 1) {
    std::string msg = "Only single-band HiRise cubes can be calibrated";
    throw Isis::iException::Message(Isis::iException::Io,msg,_FILEINFO_);
  }

  //Get pertinent label information to determine which band of matrix cube to use
  HiLab hilab(icube);

  int ccd = hilab.getCcd();

  int channel = hilab.getChannel();

  if (channel != 0  && channel != 1) {
    std::string msg = "Only unstitched cubes can be calibrated";
    throw Isis::iException::Message(Isis::iException::Io,msg,_FILEINFO_);
  }
  int band = 1 + ccd*2 + channel;

  string option = ui.GetString("OPTION");

  // Set attributes (input band number) for the matrix cube(s);
  CubeAttributeInput att("+" + iString(band));

  // Determine the file specification to the matrix file(s) if defaulted
  // and open 
  
  if (ui.WasEntered ("MATRIX") ) {
    if (option == "GAIN") {
      string matrixFile = ui.GetFilename("MATRIX");
      amatrixCube = p.SetInputCube(matrixFile, att);
    }
    else if (option == "OFFSET") {
      string matrixFile = ui.GetFilename("MATRIX");
      bmatrixCube = p.SetInputCube(matrixFile, att);
    }
    else { //(option == "BOTH")
      std::string 
        msg = "The BOTH option cannot be used if a MATRIX is entered";
      throw Isis::iException::Message(Isis::iException::Io,msg,_FILEINFO_);
    }
  }
  else {
    int tdi = hilab.getTdi();
    int bin = hilab.getBin();

    if (option == "OFFSET" || option == "BOTH") {
      std::string bmatrixFile = "$mro/calibration";
      bmatrixFile += "/B_matrix_tdi";
      bmatrixFile += iString(tdi) + "_bin" + iString(bin);
      bmatrixCube = p.SetInputCube(bmatrixFile, att);
    }
    if (option == "GAIN" || option == "BOTH") {
       std::string amatrixFile = "$mro/calibration";
       amatrixFile += "/A_matrix_tdi";
       amatrixFile += iString(tdi) + "_bin" + iString(bin);
       amatrixCube = p.SetInputCube(amatrixFile, att);
    }
  }

  // Open the output file and set processing parameters
  Cube *ocube = p.SetOutputCube ("TO");
  p.SetWrap (true);
  p.SetBrickSize ( icube->Samples(), 1, 1);

  // Add the radiometry group if it is not there yet.  Otherwise
  // read the current value of the keyword CalibrationParameters.
  // Then delete the keyword and rewrite it after appending the
  // new value to it.  Do it this way to avoid multiple Calibration
  // Parameter keywords.
  PvlGroup calgrp;
  PvlKeyword calKey;

  if (ocube->HasGroup("Radiometry")) {
    calgrp = ocube->GetGroup ("Radiometry");

    if (calgrp.HasKeyword("CalibrationParameters")) {
      calKey = calgrp.FindKeyword("CalibrationParameters");
      calgrp.DeleteKeyword( "CalibrationParameters" );
    }
    else {
      calKey.SetName ("CalibrationParameters");
    }
  }
  else {
    calgrp.SetName("Radiometry");
    calKey.SetName ("CalibrationParameters");
  }

  string keyValue = option;
  if (option == "GAIN") {
    keyValue += ":" + amatrixCube->Filename();
  }
  else if (option == "OFFSET") {
    keyValue += ":" + bmatrixCube->Filename();
  }
  else { // "BOTH"
    keyValue += ":"+bmatrixCube->Filename()+":"+amatrixCube->Filename();
  }

  calKey += keyValue;
  calgrp += calKey;
  ocube->PutGroup(calgrp);

  // Start the processing based on the option
  if (option == "GAIN") {
    p.StartProcess(mult);
  }
  else if (option == "OFFSET") {
    p.StartProcess(sub);
  }
  else { //(option == "BOTH") 
    p.StartProcess(multSub);
  }

  // Cleanup
  p.EndProcess();
}
示例#2
0
void IsisMain(){

  const std::string hical_program = "hicalbeta";
  const std::string hical_version = "3.5";
  const std::string hical_revision = "$Revision: 1.14 $";
  const std::string hical_runtime = Application::DateTime();

  UserInterface &ui = Application::GetUserInterface();

  string procStep("prepping phase");
  try {
//  The output from the last processing is the input into subsequent processing
    ProcessByLine p;

    Cube *hifrom = p.SetInputCube("FROM");
    int nsamps = hifrom->Samples();
    int nlines = hifrom->Lines();

//  Initialize the configuration file
    string conf(ui.GetAsString("CONF"));
    HiCalConf hiconf(*(hifrom->Label()), conf);
    DbProfile hiprof = hiconf.getMatrixProfile();

// Check for label propagation and set the output cube
    Cube *ocube = p.SetOutputCube("TO");
    if ( !IsTrueValue(hiprof,"PropagateTables", "TRUE") ) {
      RemoveHiBlobs(*(ocube->Label()));
    }

//  Set specified profile if entered by user
    if (ui.WasEntered("PROFILE")) {
      hiconf.selectProfile(ui.GetAsString("PROFILE"));
    }


//  Add OPATH parameter to profiles
    if (ui.WasEntered("OPATH")) {
      hiconf.add("OPATH",ui.GetAsString("OPATH"));
    }
    else {
      //  Set default to output directory
      hiconf.add("OPATH", Filename(ocube->Filename()).Path());
    }

//  Do I/F output DN conversions
    string units = ui.GetString("UNITS");

    //  Allocate the calibration list
    calVars = new MatrixList;

//  Set up access to HiRISE ancillary data (tables, blobs) here.  Note it they
//  are gone, this will error out. See PropagateTables in conf file.
    HiCalData caldata(*hifrom);

////////////////////////////////////////////////////////////////////////////
//  FixGaps (Z_f) Get buffer pixels and compute coefficients for equation
//     y = a[0] + a[1]*x + a[2] * exp(a[3] * x)
//        where y is the average of the buffer pixel region,
//          and x is the time at each line in electrons/sec/pixel
    procStep = "Zf module";
    hiconf.selectProfile("Zf");
    hiprof = hiconf.getMatrixProfile();
    HiHistory ZfHist;
    ZfHist.add("Profile["+ hiprof.Name()+"]");
    if ( !SkipModule(hiprof) ) {
      DriftBuffer driftB(caldata, hiconf);
      calVars->add("Zf", driftB.ref());
      ZfHist = driftB.History();
      if ( hiprof.exists("DumpModuleFile") ) {
        driftB.Dump(hiconf.getMatrixSource("DumpModuleFile",hiprof));
      }
    }
    else {
      //  NOT RECOMMENDED!  This is required for the next step!
      //  SURELY must be skipped with Z_d step as well!
      calVars->add("Zf", HiVector(nlines, 0.0));
      ZfHist.add("Debug::SkipModule invoked!");
    }

/////////////////////////////////////////////////////////////////////
// DriftCorrect (Z_d)
//  Now compute the equation of fit
// 
    procStep = "Zd module";
    HiHistory ZdHist;
    hiconf.selectProfile("Zd");
    hiprof = hiconf.getMatrixProfile();
    ZdHist.add("Profile["+ hiprof.Name()+"]");
    if (!SkipModule(hiconf.getMatrixProfile("Zd")) ) { 
      DriftCorrect driftC(hiconf);
      calVars->add("Zd", driftC.Normalize(driftC.Solve(calVars->get("Zf"))));
      ZdHist = driftC.History();
      if ( hiprof.exists("DumpModuleFile") ) {
        driftC.Dump(hiconf.getMatrixSource("DumpModuleFile",hiprof));
      }
    }
    else {
      calVars->add("Zd", HiVector(nlines, 0.0));
      ZdHist.add("Debug::SkipModule invoked!");
    }


 ////////////////////////////////////////////////////////////////////
 //  ZeroCorrect (Z_z)  Get reverse clock 
    procStep = "Zz module";
    hiconf.selectProfile("Zz"); 
    hiprof = hiconf.getMatrixProfile();
    HiHistory ZzHist;
    ZzHist.add("Profile["+ hiprof.Name()+"]");
    if ( !SkipModule(hiprof) ) {
      OffsetCorrect zoff(caldata, hiconf);
      calVars->add("Zz", zoff.ref());
      ZzHist = zoff.History();
      if ( hiprof.exists("DumpModuleFile") ) {
        zoff.Dump(hiconf.getMatrixSource("DumpModuleFile",hiprof));
      }
    }
    else {
      calVars->add("Zz", HiVector(nsamps, 0.0));
      ZzHist.add("Debug::SkipModule invoked!");
    }

/////////////////////////////////////////////////////////////////
// DarkSubtract (Z_b) Remove dark current
// 
    procStep = "Zb module";
    hiconf.selectProfile("Zb");
    hiprof =  hiconf.getMatrixProfile();
    HiHistory ZbHist;
    ZbHist.add("Profile["+ hiprof.Name()+"]");
    if ( !SkipModule(hiprof) ) {
      DarkSubtractComp dark(hiconf);
      calVars->add("Zb", dark.ref());
      ZbHist = dark.History();
      if ( hiprof.exists("DumpModuleFile") ) {
        dark.Dump(hiconf.getMatrixSource("DumpModuleFile",hiprof));
      }
    }
    else {
      calVars->add("Zb", HiVector(nsamps, 0.0));
      ZbHist.add("Debug::SkipModule invoked!");
    }

////////////////////////////////////////////////////////////////////
// GainVLineCorrect (Z_g) Correct for gain-based drift
// 
    procStep = "Zg module";
    hiconf.selectProfile("Zg");
    hiprof = hiconf.getMatrixProfile();
    HiHistory ZgHist;
    ZgHist.add("Profile["+ hiprof.Name()+"]");
    if ( !SkipModule(hiprof) ) {
      GainVLineComp gainV(hiconf);
      calVars->add("Zg", gainV.ref());
      ZgHist = gainV.History();
      if ( hiprof.exists("DumpModuleFile") ) {
        gainV.Dump(hiconf.getMatrixSource("DumpModuleFile",hiprof));
      }
    }
    else {
      calVars->add("Zg", HiVector(nlines, 1.0));
      ZgHist.add("Debug::SkipModule invoked!");
    }


////////////////////////////////////////////////////////////////////
//  GainCorrect (Z_gg)  Correct for gain with the G matrix 
    procStep = "Zgg module";
    hiconf.selectProfile("Zgg"); 
    hiprof =  hiconf.getMatrixProfile();
    HiHistory ZggHist;
    ZggHist.add("Profile["+ hiprof.Name()+"]");
    if ( !SkipModule(hiprof) ) {
      double bin = ToDouble(hiprof("Summing"));
      double tdi = ToDouble(hiprof("Tdi"));
      double factor = 128.0 / tdi / (bin*bin);
      HiVector zgg =  hiconf.getMatrix("G", hiprof);
      for ( int i = 0 ; i < zgg.dim() ; i++ ) { zgg[i] *= factor; }
      calVars->add("Zgg", zgg);;
      ZggHist.add("LoadMatrix(G[" + hiconf.getMatrixSource("G",hiprof) +
                  "],Band[" + ToString(hiconf.getMatrixBand(hiprof)) + 
                  "],Factor[" + ToString(factor) + "])"); 
      if ( hiprof.exists("DumpModuleFile") ) { 
        Component zg("GMatrix", ZggHist);
        zg.Process(zgg);
        zg.Dump(hiconf.getMatrixSource("DumpModuleFile",hiprof));
      }
    }
    else {
      calVars->add("Zgg", HiVector(nsamps, 1.0));
      ZggHist.add("Debug::SkipModule invoked!");
    }

////////////////////////////////////////////////////////////////////
//  FlatField (Z_a)  Flat field correction with A matrix
    procStep = "Za module";
    hiconf.selectProfile("Za"); 
    hiprof =  hiconf.getMatrixProfile();
    HiHistory ZaHist;
    ZaHist.add("Profile["+ hiprof.Name()+"]");
    if ( !SkipModule(hiprof) ) {
      FlatFieldComp flat(hiconf);
      calVars->add("Za", flat.ref());
      ZaHist = flat.History();
      if ( hiprof.exists("DumpModuleFile") ) {
        flat.Dump(hiconf.getMatrixSource("DumpModuleFile",hiprof));
      }
    }
    else {
      calVars->add("Za", HiVector(nsamps, 1.0));
      ZaHist.add("Debug::SkipModule invoked!");
    }

////////////////////////////////////////////////////////////////////
//  FlatField (Z_t)  Temperature-dependant gain correction
    procStep = "Zt module";
    hiconf.selectProfile("Zt"); 
    hiprof =  hiconf.getMatrixProfile();
    HiHistory ZtHist;
    ZtHist.add("Profile["+ hiprof.Name()+"]");
    if ( !SkipModule(hiprof) ) {
      TempGainCorrect tcorr(hiconf);
      calVars->add("Zt", tcorr.ref());
      ZtHist = tcorr.History();
      if ( hiprof.exists("DumpModuleFile") ) {
        tcorr.Dump(hiconf.getMatrixSource("DumpModuleFile",hiprof));
      }
    }
    else {
      calVars->add("Zt", HiVector(nsamps, 1.0));
      ZtHist.add("Debug::SkipModule invoked!");
    }


////////////////////////////////////////////////////////////////////
//  I/FCorrect (Z_iof) Conversion to I/F
// 
    procStep = "Ziof module";
    hiconf.selectProfile("Ziof");
    hiprof = hiconf.getMatrixProfile();
    HiHistory ZiofHist;
    ZiofHist.add("Profile["+ hiprof.Name()+"]");
    if ( !SkipModule(hiprof) ) {
      double sed = ToDouble(hiprof("ScanExposureDuration"));  // units = us
      if ( IsEqual(units, "IOF") ) {
        //  Add solar I/F correction parameters
        double au = hiconf.sunDistanceAU();
        ZiofHist.add("SunDist[" + ToString(au) + " (AU)]");
        double suncorr =  1.5 / au;
        suncorr *= suncorr;

        double zbin  = ToDouble(hiprof("ZiofBinFactor"));
        ZiofHist.add("ZiofBinFactor[" + ToString(zbin) + "]");

        double zgain = ToDouble(hiprof("FilterGainCorrection"));
        ZiofHist.add("FilterGainCorrection[" + ToString(zgain) + "]");
        ZiofHist.add("ScanExposureDuration[" + ToString(sed) + "]");
        double ziof = (zbin * zgain) * (sed * 1.0e-6)  * suncorr; 

        calVars->add("Ziof", HiVector(1, ziof));
        ZiofHist.add("I/F_Factor[" + ToString(ziof) + "]");
        ZiofHist.add("Units[I/F Reflectance]");
      }
      else if (  IsEqual(units, "DN/US") ) {
        // Ziof is a divisor in calibration equation
        double ziof = sed;
        calVars->add("Ziof", HiVector(1, ziof));
        ZiofHist.add("ScanExposureDuration[" + ToString(sed) + "]");
        ZiofHist.add("DN/US_Factor[" + ToString(ziof) + "]");
        ZiofHist.add("Units[DNs/microsecond]");
      }
      else {
        // Units are already in DN
        double ziof = 1.0;
        calVars->add("Ziof", HiVector(1, ziof));
        ZiofHist.add("DN_Factor[" + ToString(ziof) + "]");
        ZiofHist.add("Units[DN]");
      }
    }
    else {
      calVars->add("Ziof", HiVector(1,1.0));
      ZiofHist.add("Debug::SkipModule invoked!");
      ZiofHist.add("Units[Unknown]");
    }

    //  Reset the profile selection to default
    hiconf.selectProfile();

//----------------------------------------------------------------------
// 
/////////////////////////////////////////////////////////////////////////
//  Call the processing function
    procStep = "calibration phase";
    p.StartProcess(calibrate);

    // Get the default profile for logging purposes
    hiprof = hiconf.getMatrixProfile();
    const std::string conf_file = hiconf.filepath(conf);

    // Quitely dumps parameter history to alternative format file.  This
    // is completely controlled by the configuration file
    if ( hiprof.exists("DumpHistoryFile") ) {
      procStep = "logging/reporting phase";
      Filename hdump(hiconf.getMatrixSource("DumpHistoryFile",hiprof));
      string hdumpFile = hdump.Expanded();
      ofstream ofile(hdumpFile.c_str(), ios::out);
      if (!ofile) {
        string mess = "Unable to open/create history dump file " + 
                      hdump.Expanded();
        iException::Message(iException::User, mess, _FILEINFO_).Report();
      }
      else {
        ofile << "Program:  " << hical_program << endl;
        ofile << "RunTime:  " << hical_runtime << endl;
        ofile << "Version:  " << hical_version << endl;
        ofile << "Revision: " << hical_revision << endl << endl;

        ofile << "FROM:     " << hifrom->Filename() << endl;
        ofile << "TO:       " << ocube->Filename()  << endl;
        ofile << "CONF:     " << conf_file  << endl << endl;

        ofile << "/* " << hical_program << " application equation */" << endl
              << "/* hdn = (idn - Zd(Zf) - Zz - Zb) */"
              << endl << "/* odn = hdn / Zg * Zgg * Za * Zt / Ziof */" 
              << endl << endl;

        ofile << "****** PARAMETER GENERATION HISTORY *******" << endl;
        ofile << "\nZf   = " << ZfHist << endl;
        ofile << "\nZd   = " << ZdHist << endl;
        ofile << "\nZz   = " << ZzHist << endl;
        ofile << "\nZb   = " << ZbHist << endl;
        ofile << "\nZg   = " << ZgHist << endl;
        ofile << "\nZgg  = " << ZggHist << endl;
        ofile << "\nZa   = " << ZaHist << endl;
        ofile << "\nZt   = " << ZtHist << endl;
        ofile << "\nZiof = " << ZiofHist << endl;

        ofile.close();
      }
    }

//  Ensure the RadiometricCalibration group is out there
    const std::string rcalGroup("RadiometricCalibration");
    if (!ocube->HasGroup(rcalGroup)) {
      PvlGroup temp(rcalGroup);
      ocube->PutGroup(temp);
    }

    PvlGroup &rcal = ocube->GetGroup(rcalGroup);
    rcal += PvlKeyword("Program", hical_program);
    rcal += PvlKeyword("RunTime", hical_runtime);
    rcal += PvlKeyword("Version",hical_version);
    rcal += PvlKeyword("Revision",hical_revision);

    PvlKeyword key("Conf", conf_file);
    key.AddCommentWrapped("/* " + hical_program + " application equation */");
    key.AddComment("/* hdn = (idn - Zd(Zf) - Zz - Zb) */");
    key.AddComment("/* odn = hdn / Zg * Zgg * Za * Zt / Ziof */");
    rcal += key;

    //  Record parameter generation history.  Controllable in configuration
    //  file.  Note this is optional because of a BUG!! in the ISIS label
    //  writer as this application was initially developed
    if ( IsEqual(ConfKey(hiprof,"LogParameterHistory",string("TRUE")),"TRUE")) { 
      rcal += ZfHist.makekey("Zf");
      rcal += ZdHist.makekey("Zd");
      rcal += ZzHist.makekey("Zz");
      rcal += ZbHist.makekey("Zb");
      rcal += ZgHist.makekey("Zg");
      rcal += ZggHist.makekey("Zgg");
      rcal += ZaHist.makekey("Za");
      rcal += ZiofHist.makekey("Ziof");
    }

    p.EndProcess();
  } 
  catch (iException &ie) {
    delete calVars;
    calVars = 0;
    string mess = "Failed in " + procStep;
    ie.Message(iException::User, mess.c_str(), _FILEINFO_);
    throw;
  }
  
// Clean up parameters
  delete calVars;
  calVars = 0;
}
示例#3
0
// Main program
void IsisMain(){
  
  // Create an object for exporting Isis data
  ProcessExport p;
  // Open the input cube
  Cube *icube = p.SetInputCube("FROM");
 
  // Conform to the Big-Endian format for FITS
  if(IsLsb()) p.SetOutputEndian(Isis::Msb);

  // Generate the name of the fits file and open it
  UserInterface &ui = Application::GetUserInterface();
    
  // specify the bits per pixel
  string bitpix;
  if (ui.GetString ("BITTYPE") == "8BIT") bitpix = "8";
  else if (ui.GetString ("BITTYPE") == "16BIT") bitpix = "16";
  else if (ui.GetString ("BITTYPE") == "32BIT") bitpix = "-32";
  else {
    string msg = "Pixel type of [" + ui.GetString("BITTYPE") + "] is unsupported"; 
    throw iException::Message(iException::User, msg, _FILEINFO_);
  }

  //  Determine bit size and calculate number of bytes to write
  //  for each line.
  if (bitpix == "8") p.SetOutputType(Isis::UnsignedByte);
  if (bitpix == "16") p.SetOutputType(Isis::SignedWord);
  if (bitpix == "-32") p.SetOutputType(Isis::Real);
  
  // determine core base and multiplier, set up the stretch
  PvlGroup pix = icube->Label()->FindObject("IsisCube").FindObject("Core").FindGroup("Pixels");
  double scale = pix["Multiplier"][0].ToDouble();
  double base = pix["Base"][0].ToDouble();

  if (ui.GetString("STRETCH") != "NONE" && bitpix != "-32") {
    if (ui.GetString("STRETCH") == "LINEAR") {
      p.SetInputRange();
    }
    else if (ui.GetString("STRETCH") == "MANUAL") {
       p.SetInputRange(ui.GetDouble("MINIMUM"), ui.GetDouble("MAXIMUM"));
    }
    
    // create a proper scale so pixels look like 32bit data.
    scale = ((p.GetInputMaximum() - p.GetInputMinimum()) *
            (p.GetOutputMaximum() - p.GetOutputMinimum()));

    // round off after 14 decimals to avoid system architecture differences
    scale = ((floor(scale * 1e14)) / 1e14);

    // create a proper zero point so pixels look like 32bit data.
    base = -1.0 * (scale * p.GetOutputMinimum()) + p.GetInputMinimum();
    // round off after 14 decimals to avoid system architecture differences
    base = ((floor(base * 1e14)) / 1e14);
  }

  
  //////////////////////////////////////////
  // Write the minimal fits header	  //
  //////////////////////////////////////////
  string header;
  
  // specify that this file conforms to simple fits standard
  header += FitsKeyword("SIMPLE", true, "T");  
  
  
  // specify the bits per pixel
  header += FitsKeyword("BITPIX", true, bitpix);
  
  // specify the number of data axes (2: samples by lines)
  int axes = 2;
  if (icube->Bands() > 1) {
    axes = 3;
  }
  
  header += FitsKeyword("NAXIS", true, iString(axes));
  
  // specify the limit on data axis 1 (number of samples)
  header += FitsKeyword("NAXIS1", true, iString(icube->Samples()));

  // specify the limit on data axis 2 (number of lines)
  header += FitsKeyword("NAXIS2", true, iString(icube->Lines()));
 
  if (axes == 3){
    header += FitsKeyword("NAXIS3", true, iString(icube->Bands()));
  }

  header += FitsKeyword("BZERO", true,  base);

  header += FitsKeyword("BSCALE", true, scale);
  
  // Sky and All cases  
  if (ui.GetString("INFO") == "SKY" || ui.GetString("INFO") == "ALL") {  
    iString msg = "cube has not been skymapped";
    PvlGroup map;

    if (icube->HasGroup("mapping")) {
      map = icube->GetGroup("mapping");   
      msg = (string)map["targetname"];
    }
    // If we have sky we want it
    if (msg == "Sky") {
      double midRa = 0, midDec = 0;
  
      midRa = ((double)map["MaximumLongitude"] +
               (double)map["MinimumLongitude"])/2;
  
      midDec = ((double)map["MaximumLatitude"] +
                (double)map["MinimumLatitude"])/2;
  
      header += FitsKeyword("OBJCTRA", true, iString(midRa));
  
      // Specify the Declination
      header += FitsKeyword("OBJCTDEC", true, iString(midDec));
  
    }

    if (ui.GetString("INFO") == "ALL") {
      header += WritePvl("INSTRUME","Instrument","InstrumentId", icube, true);  
      header += WritePvl("OBSERVER","Instrument","SpacecraftName", icube, true);
      header += WritePvl("OBJECT  ","Instrument","TargetName", icube, true);
      // StartTime is sometimes middle of the exposure and somtimes beginning, 
      // so StopTime can't be calculated off of exposure reliably.
      header += WritePvl("DATE-OBS","Instrument","StartTime", icube, true);
      // Some cameras don't have StopTime
      if (icube->HasGroup("Instrument")) {
        PvlGroup inst = icube->GetGroup("Instrument");
        if (inst.HasKeyword("StopTime")) {
          header += WritePvl("TIME_END","Instrument","StopTime", icube, true);
        }
        if (inst.HasKeyword("ExposureDuration")) {
          header += WritePvl("EXPTIME","Instrument","ExposureDuration", icube, false);
        }
      }
    }  
    // If we were set on SKY and Sky doesn't exist
    else if (msg != "Sky") {  
      throw iException::Message(iException::User,msg,_FILEINFO_);
    }
  }
  
  // signal the end of the header
  header += FitsKeyword("END", false, "");

  // fill the rest of the fits header with space so to conform with the fits header
  // size of 2880 bytes
  for (int i = header.length() % 2880 ; i < 2880 ; i++) header += " ";

  // open the cube for writing
  string to = ui.GetFilename("TO","fits");
  ofstream fout;  
  fout.open (to.c_str (), ios::out|ios::binary);
  if (!fout.is_open ()) {
    string msg = "Cannot open fits output file";
    throw iException::Message(iException::Programmer,msg,_FILEINFO_);
  }
 
  fout.seekp(0);
  fout.write(header.c_str(),header.length());
  // write the raw cube data
  p.StartProcess (fout);

  // Finish off data area to a number n % 2880 == 0 is true
  // 2880 is the size of the data blocks
  int count = 2880 - (fout.tellp() % 2880);
  for (int i = 0; i < count; i++) {
    // Write nul characters as needed. ascii 0, hex 00...
    fout.write("\0", 1);  
  }
  fout.close();  
  p.EndProcess();
}
示例#4
0
void IsisMain () 
{
	UserInterface &ui = Application::GetUserInterface();
    Filename inFile = ui.GetFilename("FROM");

	// Set the processing object
	ProcessExportMiniRFLroPds cProcess;

	// Setup the input cube
	Cube *cInCube = cProcess.SetInputCube("FROM");	
	Pvl * cInLabel =  cInCube->Label();

	// Get the output label file
	Filename outFile(ui.GetFilename("TO", "lbl"));
	string outFilename(outFile.Expanded());

	cProcess.SetDetached  (true, outFilename);	

	cProcess.SetExportType ( ProcessExportPds::Fixed );

	//Set the resolution to  Kilometers  
	cProcess.SetPdsResolution( ProcessExportPds::Kilometer );	
	
	// 32bit
	cProcess.SetOutputType(Isis::Real);
    cProcess.SetOutputNull(Isis::NULL4);
    cProcess.SetOutputLrs(Isis::LOW_REPR_SAT4);
    cProcess.SetOutputLis(Isis::LOW_INSTR_SAT4);
    cProcess.SetOutputHrs(Isis::HIGH_REPR_SAT4);
    cProcess.SetOutputHis(Isis::HIGH_INSTR_SAT4);
	cProcess.SetOutputRange(-DBL_MAX, DBL_MAX);

	cProcess.SetOutputEndian(Isis::Msb);

	// Turn off Keywords
	cProcess.ForceScalingFactor(false);
    cProcess.ForceSampleBitMask(false);
    cProcess.ForceCoreNull     (false);
    cProcess.ForceCoreLrs      (false);
    cProcess.ForceCoreLis      (false);
    cProcess.ForceCoreHrs      (false);
    cProcess.ForceCoreHis      (false);	

	// Standard label Translation
	Pvl &pdsLabel = cProcess.StandardPdsLabel( ProcessExportPds::Image); 	

	// bLevel => Level 2 = True, Level 3 = False
	bool bLevel2 = cInCube->HasGroup("Instrument");

	// Translate the keywords from the original EDR PDS label that go in 
    // this RDR PDS label for Level2 images only
	if (bLevel2) {
		OriginalLabel cOriginalBlob;
		cInCube->Read(cOriginalBlob);
		Pvl cOrigLabel;
		PvlObject cOrigLabelObj = cOriginalBlob.ReturnLabels();
		cOrigLabelObj.SetName("OriginalLabelObject");
		cOrigLabel.AddObject(cOrigLabelObj);
	   
		// Translates the ISIS labels along with the original EDR labels
		cOrigLabel.AddObject( *(cInCube->Label()) );
		PvlTranslationManager cCubeLabel2(cOrigLabel, "$lro/translations/mrfExportOrigLabel.trn");
		cCubeLabel2.Auto(pdsLabel);	

		
		if (cInLabel->FindObject("IsisCube").FindGroup("Instrument").HasKeyword("MissionName")) {
			PvlKeyword & cKeyMissionName = cInLabel->FindObject("IsisCube").FindGroup("Instrument").FindKeyword("MissionName");			
			size_t sFound = cKeyMissionName[0].find("CHANDRAYAAN");
			if (sFound != string::npos ) {
				cCubeLabel2 = PvlTranslationManager(cOrigLabel, "$lro/translations/mrfExportOrigLabelCH1.trn");
				cCubeLabel2.Auto(pdsLabel);
			}
			else {
				cCubeLabel2 = PvlTranslationManager(cOrigLabel, "$lro/translations/mrfExportOrigLabelLRO.trn");
				cCubeLabel2.Auto(pdsLabel);
			}
		}
	}
	else { //Level3 - add Band_Name keyword 
		PvlGroup & cBandBinGrp = cInCube->GetGroup("BandBin");
		PvlKeyword cKeyBandBin = PvlKeyword("BAND_NAME");
		PvlKeyword cKeyInBandBin;
		if (cBandBinGrp.HasKeyword("OriginalBand")){
			cKeyInBandBin = cBandBinGrp.FindKeyword("OriginalBand");					
		}
		else if (cBandBinGrp.HasKeyword("FilterName")){
			cKeyInBandBin = cBandBinGrp.FindKeyword("FilterName");					
		}
		for (int i=0; i<cKeyInBandBin.Size(); i++) {
			cKeyBandBin += cKeyInBandBin[i];
		}
		PvlObject &cImageObject( pdsLabel.FindObject("IMAGE") );
		cImageObject += cKeyBandBin;
	}
	
	// Get the Sources Product ID if entered for Level2 only as per example
	if (ui.WasEntered("SRC") && bLevel2) {
		std::string sSrcFile = ui.GetFilename("SRC");
		std::string sSrcType = ui.GetString("TYPE");
		GetSourceProductID(sSrcFile, sSrcType, pdsLabel);
	}	
  
	// Get the User defined Labels
	if (ui.WasEntered("USERLBL")) {
		std::string sUserLbl = ui.GetFilename("USERLBL");
		GetUserLabel(sUserLbl, pdsLabel, bLevel2);
	}
	
	// Calculate CheckSum
	Statistics * cStats =  cInCube->Statistics();
	iCheckSum = (unsigned int )cStats->Sum();
		
	FixLabel(pdsLabel, bLevel2);	
	
	// Add an output format template to	the PDS PVL
	// Distinguish betweeen Level 2 and 3 images by calling the camera()
	// function as only non mosaic images(Level2) have a camera	
	if (bLevel2) {
		pdsLabel.SetFormatTemplate ("$lro/translations/mrfPdsLevel2.pft");
	} else {		
		pdsLabel.SetFormatTemplate ("$lro/translations/mrfPdsLevel3.pft");
	}

	size_t iFound = outFilename.find(".lbl");
	outFilename.replace(iFound, 4, ".img");
	ofstream oCube(outFilename.c_str());
	cProcess.OutputDetatchedLabel(); 		
	//cProcess.OutputLabel(oCube);		
	cProcess.StartProcess(oCube);		
	oCube.close();
	cProcess.EndProcess();	
}