void LLVOPartGroup::updateSpatialExtents(LLVector4a& newMin, LLVector4a& newMax)
{		
	const LLVector3& pos_agent = getPositionAgent();
	newMin.load3( (pos_agent - mScale).mV);
	newMax.load3( (pos_agent + mScale).mV);
	LLVector4a pos;
	pos.load3(pos_agent.mV);
	mDrawable->setPositionGroup(pos);
}
void LLVOSurfacePatch::updateSpatialExtents(LLVector4a& newMin, LLVector4a &newMax)
{
	LLVector3 posAgent = getPositionAgent();
	LLVector3 scale = getScale();
	scale.mV[VZ] = llmax(scale.mV[VZ], 1.f);
	newMin.load3( (posAgent-scale*0.5f).mV); // Changing to 2.f makes the culling a -little- better, but still wrong
	newMax.load3( (posAgent+scale*0.5f).mV);
	LLVector4a pos;
	pos.setAdd(newMin,newMax);
	pos.mul(0.5f);
	mDrawable->setPositionGroup(pos);
}
示例#3
0
void LLVOTree::updateSpatialExtents(LLVector4a& newMin, LLVector4a& newMax)
{
	F32 radius = getScale().length()*0.05f;
	LLVector3 center = getRenderPosition();

	F32 sz = mBillboardScale*mBillboardRatio*radius*0.5f; 
	LLVector3 size(sz,sz,sz);

	center += LLVector3(0, 0, size.mV[2]) * getRotation();
	
	newMin.load3((center-size).mV);
	newMax.load3((center+size).mV);
	LLVector4a pos;
	pos.load3(center.mV);
	mDrawable->setPositionGroup(pos);
}
示例#4
0
const LLVector3	LLDrawable::getPositionAgent() const
{
	if (getVOVolume())
	{
		if (isActive())
		{
			if (!isRoot())
			{
				LLVector4a pos;
				pos.load3(mVObjp->getPosition().mV);
				getRenderMatrix().affineTransform(pos,pos);
				return LLVector3(pos.getF32ptr());
			}
			else
			{
				return LLVector3(getRenderMatrix().getRow<3>().getF32ptr());
			}
		}
		else
		{
			return mVObjp->getPositionAgent();
		}
	}
	else
	{
		return getWorldPosition();
	}
}
示例#5
0
void LLVOWater::updateSpatialExtents(LLVector4a &newMin, LLVector4a& newMax)
{
	LLVector4a pos;
	pos.load3(getPositionAgent().mV);
	LLVector4a scale;
	scale.load3(getScale().mV);
	scale.mul(0.5f);

	newMin.setSub(pos, scale);
	newMax.setAdd(pos, scale);
	
	pos.setAdd(newMin,newMax);
	pos.mul(0.5f);

	mDrawable->setPositionGroup(pos);
}
U8* get_box_fan_indices_ptr(LLCamera* camera, const LLVector4a& center)
{
	LLVector4a origin;
	origin.load3(camera->getOrigin().mV);

	S32 cypher = center.greaterThan(origin).getGatheredBits() & 0x7;
	
	return (U8*) (sOcclusionIndices+cypher*8);
}
U32 get_box_fan_indices(LLCamera* camera, const LLVector4a& center)
{
	LLVector4a origin;
	origin.load3(camera->getOrigin().mV);

	S32 cypher = center.greaterThan(origin).getGatheredBits() & 0x7;
	
	return cypher*8;
}
示例#8
0
BOOL LLFace::calcPixelArea(F32& cos_angle_to_view_dir, F32& radius)
{
	//VECTORIZE THIS
	//get area of circle around face
	LLVector4a center;
	center.load3(getPositionAgent().mV);
	LLVector4a size;
	size.setSub(mExtents[1], mExtents[0]);
	size.mul(0.5f);

	LLViewerCamera* camera = LLViewerCamera::getInstance();

	F32 size_squared = size.dot3(size).getF32();
	LLVector4a lookAt;
	LLVector4a t;
	t.load3(camera->getOrigin().mV);
	lookAt.setSub(center, t);
	F32 dist = lookAt.getLength3().getF32();
	dist = llmax(dist-size.getLength3().getF32(), 0.f);
	lookAt.normalize3fast() ;	

	//get area of circle around node
	F32 app_angle = atanf((F32) sqrt(size_squared) / dist);
	radius = app_angle*LLDrawable::sCurPixelAngle;
	mPixelArea = radius*radius * 3.14159f;
	LLVector4a x_axis;
	x_axis.load3(camera->getXAxis().mV);
	cos_angle_to_view_dir = lookAt.dot3(x_axis).getF32();

	if(dist < mBoundingSphereRadius) //camera is very close
	{
		cos_angle_to_view_dir = 1.0f;
		mImportanceToCamera = 1.0f;
	}
	else
	{
		mImportanceToCamera = LLFace::calcImportanceToCamera(cos_angle_to_view_dir, dist);
	}

	return true;
}
示例#9
0
LLCamera LLSpatialBridge::transformCamera(LLCamera& camera)
{
	LLCamera ret = camera;
	LLXformMatrix* mat = mDrawable->getXform();
	const LLVector4a& center = mat->getWorldMatrix().getRow<3>();

	LLQuaternion2 invRot;
	invRot.setConjugate( LLQuaternion2(mat->getRotation()) );

	LLVector4a delta;
	delta.load3(ret.getOrigin().mV);
	delta.sub(center);

	LLVector4a lookAt;
	lookAt.load3(ret.getAtAxis().mV);
	LLVector4a up_axis;

	up_axis.load3(ret.getUpAxis().mV);
	LLVector4a left_axis;
	left_axis.load3(ret.getLeftAxis().mV);

	delta.setRotated(invRot, delta);
	lookAt.setRotated(invRot, lookAt);
	up_axis.setRotated(invRot, up_axis);
	left_axis.setRotated(invRot, left_axis);

	if (!delta.isFinite3())
	{
		delta.clear();
	}

	ret.setOrigin(LLVector3(delta.getF32ptr()));
	ret.setAxes(LLVector3(lookAt.getF32ptr()), LLVector3(left_axis.getF32ptr()), LLVector3(up_axis.getF32ptr()));
		
	return ret;
}
LLPolyMorphData *clone_morph_param_direction(const LLPolyMorphData *src_data,
					     const LLVector3 &direction,
					     const std::string &name)
{
        LLPolyMorphData* cloned_morph_data = new LLPolyMorphData(*src_data);
        cloned_morph_data->mName = name;
		LLVector4a dir;
		dir.load3(direction.mV);

        for (U32 v=0; v < cloned_morph_data->mNumIndices; v++)
        {
                cloned_morph_data->mCoords[v] = dir;
                cloned_morph_data->mNormals[v].clear();
                cloned_morph_data->mBinormals[v].clear();
        }
        return cloned_morph_data;
}
S32 AABBSphereIntersectR2(const LLVector4a& min, const LLVector4a& max, const LLVector3 &origin, const F32 &r)
{
	F32 d = 0.f;
	F32 t;
	
	LLVector4a origina;
	origina.load3(origin.mV);

	LLVector4a v;
	v.setSub(min, origina);
	
	if (v.dot3(v) < r)
	{
		v.setSub(max, origina);
		if (v.dot3(v) < r)
		{
			return 2;
		}
	}


	for (U32 i = 0; i < 3; i++)
	{
		if (origin.mV[i] < min[i])
		{
			t = min[i] - origin.mV[i];
			d += t*t;
		}
		else if (origin.mV[i] > max[i])
		{
			t = origin.mV[i] - max[i];
			d += t*t;
		}

		if (d > r)
		{
			return 0;
		}
	}

	return 1;
}
void LLVOPartGroup::updateSpatialExtents(LLVector4a& newMin, LLVector4a& newMax)
{		
	const LLVector3& pos_agent = getPositionAgent();

	LLVector4a scale;
	LLVector4a p;

	p.load3(pos_agent.mV);

	scale.splat(mScale.mV[0]+mViewerPartGroupp->getBoxSide()*0.5f);

	newMin.setSub(p, scale);
	newMax.setAdd(p,scale);

	llassert(newMin.isFinite3());
	llassert(newMax.isFinite3());

	llassert(p.isFinite3());
	mDrawable->setPositionGroup(p);
}
BOOL LLOcclusionCullingGroup::earlyFail(LLCamera* camera, const LLVector4a* bounds)
{
	if (camera->getOrigin().isExactlyZero())
	{
		return FALSE;
	}

	static LLCachedControl<F32> vel("SHOcclusionFudge",SG_OCCLUSION_FUDGE);
	LLVector4a fudge(vel*2.f);

	const LLVector4a& c = bounds[0];
	static LLVector4a r;
	r.setAdd(bounds[1], fudge);

	/*if (r.magVecSquared() > 1024.0*1024.0)
	{
		return TRUE;
	}*/

	LLVector4a e;
	e.load3(camera->getOrigin().mV);
	
	LLVector4a min;
	min.setSub(c,r);
	LLVector4a max;
	max.setAdd(c,r);
	
	S32 lt = e.lessThan(min).getGatheredBits() & 0x7;
	if (lt)
	{
		return FALSE;
	}

	S32 gt = e.greaterThan(max).getGatheredBits() & 0x7;
	if (gt)
	{
		return FALSE;
	}

	return TRUE;
}
bool LLViewerOctreeCull::checkProjectionArea(const LLVector4a& center, const LLVector4a& size, const LLVector3& shift, F32 pixel_threshold, F32 near_radius)
{	
	LLVector3 local_orig = mCamera->getOrigin() - shift;
	LLVector4a origin;
	origin.load3(local_orig.mV);

	LLVector4a lookAt;
	lookAt.setSub(center, origin);
	F32 distance = lookAt.getLength3().getF32();
	if(distance <= near_radius)
	{
		return true; //always load close-by objects
	}

	// treat object as if it were near_radius meters closer than it actually was.
	// this allows us to get some temporal coherence on visibility...objects that can be reached quickly will tend to be visible
	distance -= near_radius;

	F32 squared_rad = size.dot3(size).getF32();
	return squared_rad / distance > pixel_threshold;
}
示例#15
0
void LLVOCacheEntry::setBoundingInfo(const LLVector3& pos, const LLVector3& scale)
{
	LLVector4a center, newMin, newMax;
	center.load3(pos.mV);
	LLVector4a size;
	size.load3(scale.mV);
	newMin.setSub(center, size);
	newMax.setAdd(center, size);
	
	setPositionGroup(center);
	setSpatialExtents(newMin, newMax);

	if(getNumOfChildren() > 0) //has children
	{
		updateParentBoundingInfo();
	}
	else
	{
		setBinRadius(llmin(size.getLength3().getF32() * 4.f, 256.f));
	}
}
示例#16
0
BOOL LLFace::getGeometryVolume(const LLVolume& volume,
							   const S32 &f,
								const LLMatrix4& mat_vert_in, const LLMatrix3& mat_norm_in,
								const U16 &index_offset,
								bool force_rebuild)
{
	llassert(verify());
	const LLVolumeFace &vf = volume.getVolumeFace(f);
	S32 num_vertices = (S32)vf.mNumVertices;
	S32 num_indices = (S32) vf.mNumIndices;
	
	if (mVertexBuffer.notNull())
	{
		if (num_indices + (S32) mIndicesIndex > mVertexBuffer->getNumIndices())
		{
			llwarns	<< "Index buffer overflow!" << llendl;
			llwarns << "Indices Count: " << mIndicesCount
					<< " VF Num Indices: " << num_indices
					<< " Indices Index: " << mIndicesIndex
					<< " VB Num Indices: " << mVertexBuffer->getNumIndices() << llendl;
			llwarns	<< "Last Indices Count: " << mLastIndicesCount
					<< " Last Indices Index: " << mLastIndicesIndex
					<< " Face Index: " << f
					<< " Pool Type: " << mPoolType << llendl;
			return FALSE;
		}

		if (num_vertices + mGeomIndex > mVertexBuffer->getNumVerts())
		{
			llwarns << "Vertex buffer overflow!" << llendl;
			return FALSE;
		}
	}

	LLStrider<LLVector3> vertices;
	LLStrider<LLVector2> tex_coords;
	LLStrider<LLVector2> tex_coords2;
	LLStrider<LLVector3> normals;
	LLStrider<LLColor4U> colors;
	LLStrider<LLVector3> binormals;
	LLStrider<U16> indicesp;
#if MESH_ENABLED
	LLStrider<LLVector4> weights;
#endif //MESH_ENABLED

	BOOL full_rebuild = force_rebuild || mDrawablep->isState(LLDrawable::REBUILD_VOLUME);
	
	BOOL global_volume = mDrawablep->getVOVolume()->isVolumeGlobal();
	LLVector3 scale;
	if (global_volume)
	{
		scale.setVec(1,1,1);
	}
	else
	{
		scale = mVObjp->getScale();
	}
	
	bool rebuild_pos = full_rebuild || mDrawablep->isState(LLDrawable::REBUILD_POSITION);
	bool rebuild_color = full_rebuild || mDrawablep->isState(LLDrawable::REBUILD_COLOR);
	bool rebuild_tcoord = full_rebuild || mDrawablep->isState(LLDrawable::REBUILD_TCOORD);
	bool rebuild_normal = rebuild_pos && mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_NORMAL);
	bool rebuild_binormal = rebuild_pos && mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_BINORMAL);
#if MESH_ENABLED
	bool rebuild_weights = rebuild_pos && mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_WEIGHT4);
#endif //MESH_ENABLED

	const LLTextureEntry *tep = mVObjp->getTE(f);
	if (!tep) rebuild_color = FALSE;	// can't get color when tep is NULL
	U8  bump_code = tep ? tep->getBumpmap() : 0;


	
	BOOL is_static = mDrawablep->isStatic();
	BOOL is_global = is_static;

	LLVector3 center_sum(0.f, 0.f, 0.f);
	
	if (is_global)
	{
		setState(GLOBAL);
	}
	else
	{
		clearState(GLOBAL);
	}

	LLColor4U color = (tep ? LLColor4U(tep->getColor()) : LLColor4U::white);

	if (rebuild_color)	// FALSE if tep == NULL
	{
		if (tep)
		{
			GLfloat alpha[4] =
			{
				0.00f,
				0.25f,
				0.5f,
				0.75f
			};
			
			if (getPoolType() != LLDrawPool::POOL_ALPHA && (LLPipeline::sRenderDeferred || (LLPipeline::sRenderBump && tep->getShiny())))
			{
				color.mV[3] = U8 (alpha[tep->getShiny()] * 255);
			}
		}
	}

    // INDICES
	if (full_rebuild)
	{
		mVertexBuffer->getIndexStrider(indicesp, mIndicesIndex);
		for (U32 i = 0; i < (U32) num_indices; i++)
		{
			indicesp[i] = vf.mIndices[i] + index_offset;
		}

		//mVertexBuffer->setBuffer(0);
	}
	
	LLMatrix4a mat_normal;
	mat_normal.loadu(mat_norm_in);
	
	//if it's not fullbright and has no normals, bake sunlight based on face normal
	//bool bake_sunlight = !getTextureEntry()->getFullbright() &&
	//  !mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_NORMAL);

	F32 r = 0, os = 0, ot = 0, ms = 0, mt = 0, cos_ang = 0, sin_ang = 0;

	if (rebuild_tcoord)
	{
		bool do_xform;
			
		if (tep)
		{
			r  = tep->getRotation();
			os = tep->mOffsetS;
			ot = tep->mOffsetT;
			ms = tep->mScaleS;
			mt = tep->mScaleT;
			cos_ang = cos(r);
			sin_ang = sin(r);

			if (cos_ang != 1.f || 
				sin_ang != 0.f ||
				os != 0.f ||
				ot != 0.f ||
				ms != 1.f ||
				mt != 1.f)
			{
				do_xform = true;
			}
			else
			{
				do_xform = false;
			}	
		}
		else
		{
			do_xform = false;
		}
						
		//bump setup
		LLVector4a binormal_dir( -sin_ang, cos_ang, 0.f );
		LLVector4a bump_s_primary_light_ray(0.f, 0.f, 0.f);
		LLVector4a bump_t_primary_light_ray(0.f, 0.f, 0.f);

		LLQuaternion bump_quat;
		if (mDrawablep->isActive())
		{
			bump_quat = LLQuaternion(mDrawablep->getRenderMatrix());
		}
		
		if (bump_code)
		{
			mVObjp->getVolume()->genBinormals(f);
			F32 offset_multiple; 
			switch( bump_code )
			{
				case BE_NO_BUMP:
				offset_multiple = 0.f;
				break;
				case BE_BRIGHTNESS:
				case BE_DARKNESS:
				if( mTexture.notNull() && mTexture->hasGLTexture())
				{
					// Offset by approximately one texel
					S32 cur_discard = mTexture->getDiscardLevel();
					S32 max_size = llmax( mTexture->getWidth(), mTexture->getHeight() );
					max_size <<= cur_discard;
					const F32 ARTIFICIAL_OFFSET = 2.f;
					offset_multiple = ARTIFICIAL_OFFSET / (F32)max_size;
				}
				else
				{
					offset_multiple = 1.f/256;
				}
				break;

				default:  // Standard bumpmap textures.  Assumed to be 256x256
				offset_multiple = 1.f / 256;
				break;
			}

			F32 s_scale = 1.f;
			F32 t_scale = 1.f;
			if( tep )
			{
				tep->getScale( &s_scale, &t_scale );
			}
			// Use the nudged south when coming from above sun angle, such
			// that emboss mapping always shows up on the upward faces of cubes when 
			// it's noon (since a lot of builders build with the sun forced to noon).
			LLVector3   sun_ray  = gSky.mVOSkyp->mBumpSunDir;
			LLVector3   moon_ray = gSky.getMoonDirection();
			LLVector3& primary_light_ray = (sun_ray.mV[VZ] > 0) ? sun_ray : moon_ray;

			bump_s_primary_light_ray.load3((offset_multiple * s_scale * primary_light_ray).mV);
			bump_t_primary_light_ray.load3((offset_multiple * t_scale * primary_light_ray).mV);
		}

		U8 texgen = getTextureEntry()->getTexGen();
		if (rebuild_tcoord && texgen != LLTextureEntry::TEX_GEN_DEFAULT)
		{ //planar texgen needs binormals
			mVObjp->getVolume()->genBinormals(f);
		}

		U8 tex_mode = 0;
	
		if (isState(TEXTURE_ANIM))
		{
			LLVOVolume* vobj = (LLVOVolume*) (LLViewerObject*) mVObjp;	
			tex_mode = vobj->mTexAnimMode;

			if (!tex_mode)
			{
				clearState(TEXTURE_ANIM);
			}
			else
			{
				os = ot = 0.f;
				r = 0.f;
				cos_ang = 1.f;
				sin_ang = 0.f;
				ms = mt = 1.f;

				do_xform = false;
			}

			if (getVirtualSize() >= MIN_TEX_ANIM_SIZE)
			{ //don't override texture transform during tc bake
				tex_mode = 0;
			}
		}
	
		LLVector4a scalea;
		scalea.load3(scale.mV);

		bool do_bump = bump_code && mVertexBuffer->hasDataType(LLVertexBuffer::TYPE_TEXCOORD1);
		bool do_tex_mat = tex_mode && mTextureMatrix;

		if (!do_bump)
		{ //not in atlas or not bump mapped, might be able to do a cheap update
			mVertexBuffer->getTexCoord0Strider(tex_coords, mGeomIndex);

			if (texgen != LLTextureEntry::TEX_GEN_PLANAR)
			{
				if (!do_tex_mat)
				{
					if (!do_xform)
					{
						tex_coords.assignArray((U8*) vf.mTexCoords, sizeof(vf.mTexCoords[0]), num_vertices);
					}
					else
					{
						for (S32 i = 0; i < num_vertices; i++)
						{	
							LLVector2 tc(vf.mTexCoords[i]);
							xform(tc, cos_ang, sin_ang, os, ot, ms, mt);
							*tex_coords++ = tc;	
						}
					}
				}
				else
				{ //do tex mat, no texgen, no atlas, no bump
					for (S32 i = 0; i < num_vertices; i++)
					{	
						LLVector2 tc(vf.mTexCoords[i]);
						//LLVector4a& norm = vf.mNormals[i];
						//LLVector4a& center = *(vf.mCenter);

						LLVector3 tmp(tc.mV[0], tc.mV[1], 0.f);
						tmp = tmp * *mTextureMatrix;
						tc.mV[0] = tmp.mV[0];
						tc.mV[1] = tmp.mV[1];
						*tex_coords++ = tc;	
					}
				}
			}
			else
			{ //no bump, no atlas, tex gen planar
				if (do_tex_mat)
				{
					for (S32 i = 0; i < num_vertices; i++)
					{	
						LLVector2 tc(vf.mTexCoords[i]);
						LLVector4a& norm = vf.mNormals[i];
						LLVector4a& center = *(vf.mCenter);
						LLVector4a vec = vf.mPositions[i];	
						vec.mul(scalea);
						planarProjection(tc, norm, center, vec);
						
						LLVector3 tmp(tc.mV[0], tc.mV[1], 0.f);
						tmp = tmp * *mTextureMatrix;
						tc.mV[0] = tmp.mV[0];
						tc.mV[1] = tmp.mV[1];
				
						*tex_coords++ = tc;	
					}
				}
				else
				{
					for (S32 i = 0; i < num_vertices; i++)
					{	
						LLVector2 tc(vf.mTexCoords[i]);
						LLVector4a& norm = vf.mNormals[i];
						LLVector4a& center = *(vf.mCenter);
						LLVector4a vec = vf.mPositions[i];	
						vec.mul(scalea);
						planarProjection(tc, norm, center, vec);
						
						xform(tc, cos_ang, sin_ang, os, ot, ms, mt);

						*tex_coords++ = tc;	
					}
				}
			}

			//mVertexBuffer->setBuffer(0);
		}
		else
		{ //either bump mapped or in atlas, just do the whole expensive loop
			mVertexBuffer->getTexCoord0Strider(tex_coords, mGeomIndex);

			std::vector<LLVector2> bump_tc;
		
			for (S32 i = 0; i < num_vertices; i++)
			{	
				LLVector2 tc(vf.mTexCoords[i]);
			
				LLVector4a& norm = vf.mNormals[i];
				
				LLVector4a& center = *(vf.mCenter);
		   
				if (texgen != LLTextureEntry::TEX_GEN_DEFAULT)
				{
					LLVector4a vec = vf.mPositions[i];
				
					vec.mul(scalea);

					switch (texgen)
					{
						case LLTextureEntry::TEX_GEN_PLANAR:
							planarProjection(tc, norm, center, vec);
							break;
						case LLTextureEntry::TEX_GEN_SPHERICAL:
							sphericalProjection(tc, norm, center, vec);
							break;
						case LLTextureEntry::TEX_GEN_CYLINDRICAL:
							cylindricalProjection(tc, norm, center, vec);
							break;
						default:
							break;
					}		
				}

				if (tex_mode && mTextureMatrix)
				{
					LLVector3 tmp(tc.mV[0], tc.mV[1], 0.f);
					tmp = tmp * *mTextureMatrix;
					tc.mV[0] = tmp.mV[0];
					tc.mV[1] = tmp.mV[1];
				}
				else
				{
					xform(tc, cos_ang, sin_ang, os, ot, ms, mt);
				}


				*tex_coords++ = tc;
				if (do_bump)
				{
					bump_tc.push_back(tc);
				}
			}

			//mVertexBuffer->setBuffer(0);


			if (do_bump)
			{
				mVertexBuffer->getTexCoord1Strider(tex_coords2, mGeomIndex);
		
				for (S32 i = 0; i < num_vertices; i++)
				{
					LLVector4a tangent;
					tangent.setCross3(vf.mBinormals[i], vf.mNormals[i]);

					LLMatrix4a tangent_to_object;
					tangent_to_object.setRows(tangent, vf.mBinormals[i], vf.mNormals[i]);
					LLVector4a t;
					tangent_to_object.rotate(binormal_dir, t);
					LLVector4a binormal;
					mat_normal.rotate(t, binormal);
						
					//VECTORIZE THIS
					if (mDrawablep->isActive())
					{
						LLVector3 t;
						t.set(binormal.getF32ptr());
						t *= bump_quat;
						binormal.load3(t.mV);
					}

					binormal.normalize3fast();
					LLVector2 tc = bump_tc[i];
					tc += LLVector2( bump_s_primary_light_ray.dot3(tangent).getF32(), bump_t_primary_light_ray.dot3(binormal).getF32() );
					
					*tex_coords2++ = tc;
				}

				//mVertexBuffer->setBuffer(0);
			}
		}
	}

	if (rebuild_pos)
	{
		llassert(num_vertices > 0);
		mVertexBuffer->getVertexStrider(vertices, mGeomIndex);
		LLMatrix4a mat_vert;
		mat_vert.loadu(mat_vert_in);
		
		LLVector4a* src = vf.mPositions;
		LLVector4a position;
		for (S32 i = 0; i < num_vertices; i++)
		{
			mat_vert.affineTransform(src[i], position);
			vertices[i].set(position.getF32ptr());
		}
			
			
		//mVertexBuffer->setBuffer(0);
	}
		
	if (rebuild_normal)
	{
		mVertexBuffer->getNormalStrider(normals, mGeomIndex);
		for (S32 i = 0; i < num_vertices; i++)
		{	
			LLVector4a normal;
			mat_normal.rotate(vf.mNormals[i], normal);
			normal.normalize3fast();
			normals[i].set(normal.getF32ptr());
		}

		//mVertexBuffer->setBuffer(0);
	}
		
	if (rebuild_binormal)
	{
		mVertexBuffer->getBinormalStrider(binormals, mGeomIndex);
		for (S32 i = 0; i < num_vertices; i++)
		{	
			LLVector4a binormal;
			mat_normal.rotate(vf.mBinormals[i], binormal);
			binormal.normalize3fast();
			binormals[i].set(binormal.getF32ptr());
		}

		//mVertexBuffer->setBuffer(0);
	}
	
#if MESH_ENABLED
	if (rebuild_weights && vf.mWeights)
	{
		mVertexBuffer->getWeight4Strider(weights, mGeomIndex);
		weights.assignArray((U8*) vf.mWeights, sizeof(vf.mWeights[0]), num_vertices);
		//mVertexBuffer->setBuffer(0);
	}
#endif //MESH_ENABLED

	if (rebuild_color)
	{
		mVertexBuffer->getColorStrider(colors, mGeomIndex);
		for (S32 i = 0; i < num_vertices; i++)
		{
			colors[i] = color;	
		}

		//mVertexBuffer->setBuffer(0);
	}

	if (rebuild_tcoord)
	{
		mTexExtents[0].setVec(0,0);
		mTexExtents[1].setVec(1,1);
		xform(mTexExtents[0], cos_ang, sin_ang, os, ot, ms, mt);
		xform(mTexExtents[1], cos_ang, sin_ang, os, ot, ms, mt);
		
		F32 es = vf.mTexCoordExtents[1].mV[0] - vf.mTexCoordExtents[0].mV[0] ;
		F32 et = vf.mTexCoordExtents[1].mV[1] - vf.mTexCoordExtents[0].mV[1] ;
		mTexExtents[0][0] *= es ;
		mTexExtents[1][0] *= es ;
		mTexExtents[0][1] *= et ;
		mTexExtents[1][1] *= et ;
	}

	mLastVertexBuffer = mVertexBuffer;
	mLastGeomCount = mGeomCount;
	mLastGeomIndex = mGeomIndex;
	mLastIndicesCount = mIndicesCount;
	mLastIndicesIndex = mIndicesIndex;

	return TRUE;
}
void LLVOClouds::getGeometry(S32 idx,
								LLStrider<LLVector4a>& verticesp,
								LLStrider<LLVector3>& normalsp, 
								LLStrider<LLVector2>& texcoordsp,
								LLStrider<LLColor4U>& colorsp, 
								LLStrider<U16>& indicesp)
{

	if (idx >= mCloudGroupp->getNumPuffs())
	{
		return;
	}

	LLDrawable* drawable = mDrawable;
	LLFace *facep = drawable->getFace(idx);

	if (!facep->hasGeometry())
	{
		return;
	}
	

	const LLCloudPuff &puff = mCloudGroupp->getPuff(idx);

	LLColor4 float_color(LLColor3(gSky.getSunDiffuseColor() + gSky.getSunAmbientColor()),puff.getAlpha());
	LLColor4U color;
	color.setVec(float_color);
	facep->setFaceColor(float_color);
	
	U32 vert_offset = facep->getGeomIndex();
		
	LLVector4a part_pos_agent;
	part_pos_agent.load3(facep->mCenterLocal.mV);	
	LLVector4a at;
	at.load3(LLViewerCamera::getInstance()->getAtAxis().mV);
	LLVector4a up(0, 0, 1);
	LLVector4a right;

	right.setCross3(at, up);
	right.normalize3fast();
	up.setCross3(right, at);
	up.normalize3fast();
	right.mul(0.5f*CLOUD_PUFF_WIDTH);
	up.mul(0.5f*CLOUD_PUFF_HEIGHT);
		

	LLVector3 normal(0.f,0.f,-1.f);

	//HACK -- the verticesp->mV[3] = 0.f here are to set the texture index to 0 (particles don't use texture batching, maybe they should)
	// this works because there is actually a 4th float stored after the vertex position which is used as a texture index
	// also, somebody please VECTORIZE THIS

	LLVector4a ppapu;
	LLVector4a ppamu;
	
	ppapu.setAdd(part_pos_agent, up);
	ppamu.setSub(part_pos_agent, up);
	
	verticesp->setSub(ppapu, right);
	(*verticesp++).getF32ptr()[3] = 0.f;
	verticesp->setSub(ppamu, right);
	(*verticesp++).getF32ptr()[3] = 0.f;
	verticesp->setAdd(ppapu, right);
	(*verticesp++).getF32ptr()[3] = 0.f;
	verticesp->setAdd(ppamu, right);
	(*verticesp++).getF32ptr()[3] = 0.f;

	// *verticesp++ = puff_pos_agent - right + up;
	// *verticesp++ = puff_pos_agent - right - up;
	// *verticesp++ = puff_pos_agent + right + up;
	// *verticesp++ = puff_pos_agent + right - up;

	*colorsp++ = color;
	*colorsp++ = color;
	*colorsp++ = color;
	*colorsp++ = color;

	*texcoordsp++ = LLVector2(0.f, 1.f);
	*texcoordsp++ = LLVector2(0.f, 0.f);
	*texcoordsp++ = LLVector2(1.f, 1.f);
	*texcoordsp++ = LLVector2(1.f, 0.f);

	*normalsp++   = normal;
	*normalsp++   = normal;
	*normalsp++   = normal;
	*normalsp++   = normal;

	*indicesp++ = vert_offset + 0;
	*indicesp++ = vert_offset + 1;
	*indicesp++ = vert_offset + 2;

	*indicesp++ = vert_offset + 1;
	*indicesp++ = vert_offset + 3;
	*indicesp++ = vert_offset + 2;
}
void LLVOPartGroup::getGeometry(const LLViewerPart& part,
								LLStrider<LLVector4a>& verticesp)
{
	if (part.mFlags & LLPartData::LL_PART_RIBBON_MASK)
	{
		LLVector4a axis, pos, paxis, ppos;
		F32 scale, pscale;

		pos.load3(part.mPosAgent.mV);
		axis.load3(part.mAxis.mV);
		scale = part.mScale.mV[0];
		
		if (part.mParent)
		{
			ppos.load3(part.mParent->mPosAgent.mV);
			paxis.load3(part.mParent->mAxis.mV);
			pscale = part.mParent->mScale.mV[0];
		}
		else
		{ //use source object as position
			
			if (part.mPartSourcep->mSourceObjectp.notNull())
			{
				LLVector3 v = LLVector3(0,0,1);
				v *= part.mPartSourcep->mSourceObjectp->getRenderRotation();
				paxis.load3(v.mV);
				ppos.load3(part.mPartSourcep->mPosAgent.mV);
				pscale = part.mStartScale.mV[0];
			}
			else
			{ //no source object, no parent, nothing to draw
				ppos = pos;
				pscale = scale;
				paxis = axis;
			}
		}

		LLVector4a p0, p1, p2, p3;

		scale *= 0.5f;
		pscale *= 0.5f;

		axis.mul(scale);
		paxis.mul(pscale);

		p0.setAdd(pos, axis);
		p1.setSub(pos,axis);
		p2.setAdd(ppos, paxis);
		p3.setSub(ppos, paxis);

		(*verticesp++) = p2;
		(*verticesp++) = p3;
		(*verticesp++) = p0;
		(*verticesp++) = p1;
	}
	else
	{
		LLVector4a part_pos_agent;
		part_pos_agent.load3(part.mPosAgent.mV);
		LLVector4a camera_agent;
	camera_agent.load3(getCameraPosition().mV); 
	LLVector4a at;
	at.setSub(part_pos_agent, camera_agent);
	LLVector4a up(0, 0, 1);
	LLVector4a right;

	right.setCross3(at, up);
	right.normalize3fast();
	up.setCross3(right, at);
	up.normalize3fast();

	if (part.mFlags & LLPartData::LL_PART_FOLLOW_VELOCITY_MASK)
	{
		LLVector4a normvel;
		normvel.load3(part.mVelocity.mV);
		normvel.normalize3fast();
		LLVector2 up_fracs;
		up_fracs.mV[0] = normvel.dot3(right).getF32();
		up_fracs.mV[1] = normvel.dot3(up).getF32();
		up_fracs.normalize();
		LLVector4a new_up;
		LLVector4a new_right;

		//new_up = up_fracs.mV[0] * right + up_fracs.mV[1]*up;
		LLVector4a t = right;
		t.mul(up_fracs.mV[0]);
		new_up = up;
		new_up.mul(up_fracs.mV[1]);
		new_up.add(t);

		//new_right = up_fracs.mV[1] * right - up_fracs.mV[0]*up;
		t = right;
		t.mul(up_fracs.mV[1]);
		new_right = up;
		new_right.mul(up_fracs.mV[0]);
		t.sub(new_right);

		up = new_up;
		right = t;
		up.normalize3fast();
		right.normalize3fast();
	}

		right.mul(0.5f*part.mScale.mV[0]);
		up.mul(0.5f*part.mScale.mV[1]);


		//HACK -- the verticesp->mV[3] = 0.f here are to set the texture index to 0 (particles don't use texture batching, maybe they should)
		// this works because there is actually a 4th float stored after the vertex position which is used as a texture index
		// also, somebody please VECTORIZE THIS

		LLVector4a ppapu;
		LLVector4a ppamu;

		ppapu.setAdd(part_pos_agent, up);
		ppamu.setSub(part_pos_agent, up);

		verticesp->setSub(ppapu, right);
		(*verticesp++).getF32ptr()[3] = 0.f;
		verticesp->setSub(ppamu, right);
		(*verticesp++).getF32ptr()[3] = 0.f;
		verticesp->setAdd(ppapu, right);
		(*verticesp++).getF32ptr()[3] = 0.f;
		verticesp->setAdd(ppamu, right);
		(*verticesp++).getF32ptr()[3] = 0.f;
	}
}
void LLSurfacePatch::updateVisibility()
{
	if (mVObjp.isNull())
	{
		return;
	}

	const F32 DEFAULT_DELTA_ANGLE 	= (0.15f);
	U32 old_render_stride, max_render_stride;
	U32 new_render_level;
	F32 stride_per_distance = DEFAULT_DELTA_ANGLE / mSurfacep->getMetersPerGrid();
	U32 grids_per_patch_edge = mSurfacep->getGridsPerPatchEdge();

	LLVector4a center;
	center.load3( (mCenterRegion + mSurfacep->getOriginAgent()).mV);
	LLVector4a radius;
	radius.splat(mRadius);

	// sphere in frustum on global coordinates
	if (LLViewerCamera::getInstance()->AABBInFrustumNoFarClip(center, radius))
	{
		// We now need to calculate the render stride based on patchp's distance 
		// from LLCamera render_stride is governed by a relation something like this...
		//
		//                       delta_angle * patch.distance
		// render_stride <=  ----------------------------------------
		//                           mMetersPerGrid
		//
		// where 'delta_angle' is the desired solid angle of the average polgon on a patch.
		//
		// Any render_stride smaller than the RHS would be 'satisfactory'.  Smaller 
		// strides give more resolution, but efficiency suggests that we use the largest 
		// of the render_strides that obey the relation.  Flexibility is achieved by 
		// modulating 'delta_angle' until we have an acceptable number of triangles.
	
		old_render_stride = mVisInfo.mRenderStride;

		// Calculate the render_stride using information in agent
		max_render_stride = lltrunc(mVisInfo.mDistance * stride_per_distance);
		max_render_stride = llmin(max_render_stride , 2*grids_per_patch_edge);

		// We only use render_strides that are powers of two, so we use look-up tables to figure out
		// the render_level and corresponding render_stride
		new_render_level = mVisInfo.mRenderLevel = mSurfacep->getRenderLevel(max_render_stride);
		mVisInfo.mRenderStride = mSurfacep->getRenderStride(new_render_level);

		if ((mVisInfo.mRenderStride != old_render_stride)) 
			// The reason we check !mbIsVisible is because non-visible patches normals 
			// are not updated when their data is changed.  When this changes we can get 
			// rid of mbIsVisible altogether.
		{
			if (mVObjp)
			{
				mVObjp->dirtyGeom();
				if (getNeighborPatch(WEST))
				{
					getNeighborPatch(WEST)->mVObjp->dirtyGeom();
				}
				if (getNeighborPatch(SOUTH))
				{
					getNeighborPatch(SOUTH)->mVObjp->dirtyGeom();
				}
			}
		}
		mVisInfo.mbIsVisible = TRUE;
	}
	else
	{
		mVisInfo.mbIsVisible = FALSE;
	}
}
示例#20
0
// convert surface coordinates to texture coordinates, based on
// the values in the texture entry.  probably should be
// integrated with getGeometryVolume() for its texture coordinate
// generation - but i'll leave that to someone more familiar
// with the implications.
LLVector2 LLFace::surfaceToTexture(LLVector2 surface_coord, LLVector3 position, LLVector3 normal)
{
	LLVector2 tc = surface_coord;
	
	const LLTextureEntry *tep = getTextureEntry();

	if (tep == NULL)
	{
		// can't do much without the texture entry
		return surface_coord;
	}

	//VECTORIZE THIS
	// see if we have a non-default mapping
    U8 texgen = getTextureEntry()->getTexGen();
	if (texgen != LLTextureEntry::TEX_GEN_DEFAULT)
	{
		LLVector4a& center = *(mDrawablep->getVOVolume()->getVolume()->getVolumeFace(mTEOffset).mCenter);
		
		LLVector4a volume_position;
		volume_position.load3(mDrawablep->getVOVolume()->agentPositionToVolume(position).mV);
		
		if (!mDrawablep->getVOVolume()->isVolumeGlobal())
		{
			LLVector4a scale;
			scale.load3(mVObjp->getScale().mV);
			volume_position.mul(scale);
		}
		
		LLVector4a volume_normal;
		volume_normal.load3(mDrawablep->getVOVolume()->agentDirectionToVolume(normal).mV);
		volume_normal.normalize3fast();
		
		switch (texgen)
		{
		case LLTextureEntry::TEX_GEN_PLANAR:
			planarProjection(tc, volume_normal, center, volume_position);
			break;
		case LLTextureEntry::TEX_GEN_SPHERICAL:
			sphericalProjection(tc, volume_normal, center, volume_position);
			break;
		case LLTextureEntry::TEX_GEN_CYLINDRICAL:
			cylindricalProjection(tc, volume_normal, center, volume_position);
			break;
		default:
			break;
		}		
	}

	if (mTextureMatrix)	// if we have a texture matrix, use it
	{
		LLVector3 tc3(tc);
		tc3 = tc3 * *mTextureMatrix;
		tc = LLVector2(tc3);
	}
	
	else // otherwise use the texture entry parameters
	{
		xform(tc, cos(tep->getRotation()), sin(tep->getRotation()),
			  tep->mOffsetS, tep->mOffsetT, tep->mScaleS, tep->mScaleT);
	}

	
	return tc;
}
示例#21
0
void LLVOPartGroup::getGeometry(S32 idx,
								LLStrider<LLVector4a>& verticesp,
								LLStrider<LLVector3>& normalsp, 
								LLStrider<LLVector2>& texcoordsp,
								LLStrider<LLColor4U>& colorsp, 
								LLStrider<U16>& indicesp)
{
	if (idx >= (S32) mViewerPartGroupp->mParticles.size())
	{
		return;
	}

	const LLViewerPart &part = *((LLViewerPart*) (mViewerPartGroupp->mParticles[idx]));

	U32 vert_offset = mDrawable->getFace(idx)->getGeomIndex();

	
	LLVector4a part_pos_agent;
	part_pos_agent.load3(part.mPosAgent.mV);
	LLVector4a camera_agent;
	camera_agent.load3(getCameraPosition().mV); 
	LLVector4a at;
	at.setSub(part_pos_agent, camera_agent);
	LLVector4a up(0, 0, 1);
	LLVector4a right;

	right.setCross3(at, up);
	right.normalize3fast();
	up.setCross3(right, at);
	up.normalize3fast();

	if (part.mFlags & LLPartData::LL_PART_FOLLOW_VELOCITY_MASK)
	{
		LLVector4a normvel;
		normvel.load3(part.mVelocity.mV);
		normvel.normalize3fast();
		LLVector2 up_fracs;
		up_fracs.mV[0] = normvel.dot3(right).getF32();
		up_fracs.mV[1] = normvel.dot3(up).getF32();
		up_fracs.normalize();
		LLVector4a new_up;
		LLVector4a new_right;

		//new_up = up_fracs.mV[0] * right + up_fracs.mV[1]*up;
		LLVector4a t = right;
		t.mul(up_fracs.mV[0]);
		new_up = up;
		new_up.mul(up_fracs.mV[1]);
		new_up.add(t);

		//new_right = up_fracs.mV[1] * right - up_fracs.mV[0]*up;
		t = right;
		t.mul(up_fracs.mV[1]);
		new_right = up;
		new_right.mul(up_fracs.mV[0]);
		t.sub(new_right);

		up = new_up;
		right = t;
		up.normalize3fast();
		right.normalize3fast();
	}

	right.mul(0.5f*part.mScale.mV[0]);
	up.mul(0.5f*part.mScale.mV[1]);


	LLVector3 normal = -LLViewerCamera::getInstance()->getXAxis();

	//HACK -- the verticesp->mV[3] = 0.f here are to set the texture index to 0 (particles don't use texture batching, maybe they should)
	// this works because there is actually a 4th float stored after the vertex position which is used as a texture index
	// also, somebody please VECTORIZE THIS

	LLVector4a ppapu;
	LLVector4a ppamu;

	ppapu.setAdd(part_pos_agent, up);
	ppamu.setSub(part_pos_agent, up);

	verticesp->setSub(ppapu, right);
	(*verticesp++).getF32ptr()[3] = 0.f;
	verticesp->setSub(ppamu, right);
	(*verticesp++).getF32ptr()[3] = 0.f;
	verticesp->setAdd(ppapu, right);
	(*verticesp++).getF32ptr()[3] = 0.f;
	verticesp->setAdd(ppamu, right);
	(*verticesp++).getF32ptr()[3] = 0.f;

	//*verticesp++ = part_pos_agent + up - right;
	//*verticesp++ = part_pos_agent - up - right;
	//*verticesp++ = part_pos_agent + up + right;
	//*verticesp++ = part_pos_agent - up + right;

	*colorsp++ = part.mColor;
	*colorsp++ = part.mColor;
	*colorsp++ = part.mColor;
	*colorsp++ = part.mColor;

	*texcoordsp++ = LLVector2(0.f, 1.f);
	*texcoordsp++ = LLVector2(0.f, 0.f);
	*texcoordsp++ = LLVector2(1.f, 1.f);
	*texcoordsp++ = LLVector2(1.f, 0.f);

	*normalsp++   = normal;
	*normalsp++   = normal;
	*normalsp++   = normal;
	*normalsp++   = normal;

	*indicesp++ = vert_offset + 0;
	*indicesp++ = vert_offset + 1;
	*indicesp++ = vert_offset + 2;

	*indicesp++ = vert_offset + 1;
	*indicesp++ = vert_offset + 3;
	*indicesp++ = vert_offset + 2;
}
示例#22
0
BOOL LLFace::genVolumeBBoxes(const LLVolume &volume, S32 f,
								const LLMatrix4& mat_vert_in, const LLMatrix3& mat_normal_in, BOOL global_volume)
{
	LLMemType mt1(LLMemType::MTYPE_DRAWABLE);

	//get bounding box
	if (mDrawablep->isState(LLDrawable::REBUILD_VOLUME | LLDrawable::REBUILD_POSITION
#if MESH_ENABLED
		| LLDrawable::REBUILD_RIGGED
#endif //MESH_ENABLED
		))
	{
		//VECTORIZE THIS
		LLMatrix4a mat_vert;
		mat_vert.loadu(mat_vert_in);

		LLMatrix4a mat_normal;
		mat_normal.loadu(mat_normal_in);

		//if (mDrawablep->isState(LLDrawable::REBUILD_VOLUME))
		//{ //vertex buffer no longer valid
		//	mVertexBuffer = NULL;
		//	mLastVertexBuffer = NULL;
		//}

		//VECTORIZE THIS
		LLVector4a min,max;
	
		if (f >= volume.getNumVolumeFaces())
		{
			llwarns << "Generating bounding box for invalid face index!" << llendl;
			f = 0;
		}

		const LLVolumeFace &face = volume.getVolumeFace(f);
		min = face.mExtents[0];
		max = face.mExtents[1];
		
		llassert(less_than_max_mag(min));
		llassert(less_than_max_mag(max));

		//min, max are in volume space, convert to drawable render space
		LLVector4a center;
		LLVector4a t;
		t.setAdd(min, max);
		t.mul(0.5f);
		mat_vert.affineTransform(t, center);
		LLVector4a size;
		size.setSub(max, min);
		size.mul(0.5f);

		llassert(less_than_max_mag(min));
		llassert(less_than_max_mag(max));

		if (!global_volume)
		{
			//VECTORIZE THIS
			LLVector4a scale;
			scale.load3(mDrawablep->getVObj()->getScale().mV);
			size.mul(scale);
		}

		mat_normal.mMatrix[0].normalize3fast();
		mat_normal.mMatrix[1].normalize3fast();
		mat_normal.mMatrix[2].normalize3fast();
		
		LLVector4a v[4];

		//get 4 corners of bounding box
		mat_normal.rotate(size,v[0]);

		//VECTORIZE THIS
		LLVector4a scale;
		
		scale.set(-1.f, -1.f, 1.f);
		scale.mul(size);
		mat_normal.rotate(scale, v[1]);
		
		scale.set(1.f, -1.f, -1.f);
		scale.mul(size);
		mat_normal.rotate(scale, v[2]);
		
		scale.set(-1.f, 1.f, -1.f);
		scale.mul(size);
		mat_normal.rotate(scale, v[3]);

		LLVector4a& newMin = mExtents[0];
		LLVector4a& newMax = mExtents[1];
		
		newMin = newMax = center;
		
		llassert(less_than_max_mag(center));
		
		for (U32 i = 0; i < 4; i++)
		{
			LLVector4a delta;
			delta.setAbs(v[i]);
			LLVector4a min;
			min.setSub(center, delta);
			LLVector4a max;
			max.setAdd(center, delta);

			newMin.setMin(newMin,min);
			newMax.setMax(newMax,max);

			llassert(less_than_max_mag(newMin));
			llassert(less_than_max_mag(newMax));
		}

		if (!mDrawablep->isActive())
		{
			LLVector4a offset;
			offset.load3(mDrawablep->getRegion()->getOriginAgent().mV);
			newMin.add(offset);
			newMax.add(offset);
			
			llassert(less_than_max_mag(newMin));
			llassert(less_than_max_mag(newMax));
		}

		t.setAdd(newMin, newMax);
		t.mul(0.5f);

		llassert(less_than_max_mag(t));
		
		//VECTORIZE THIS
		mCenterLocal.set(t.getF32ptr());
		
		llassert(less_than_max_mag(newMin));
		llassert(less_than_max_mag(newMax));

		t.setSub(newMax,newMin);
		mBoundingSphereRadius = t.getLength3().getF32()*0.5f;

		updateCenterAgent();
	}

	return TRUE;
}