示例#1
0
MStatus  retargetLocator::compute( const MPlug& plug, MDataBlock& data )
{
	MStatus status;

	MDataHandle hDiscMatrix = data.inputValue( aDiscMatrix );
	MDataHandle hDiscAxis = data.inputValue( aDiscAxis );
	MDataHandle hDiscAngle = data.inputValue( aDiscAngle );
	MDataHandle hDiscDivision = data.inputValue( aDiscDivision );
	MDataHandle hDiscOffset = data.inputValue( aDiscOffset );
	MDataHandle hDiscSize = data.inputValue( aDiscSize );
	MDataHandle hDiscActiveColor = data.inputValue( aDiscActiveColor );
	MDataHandle hDiscLeadColor = data.inputValue( aDiscLeadColor );
	MDataHandle hDiscDefaultColor = data.inputValue( aDiscDefaultColor );
	MDataHandle hDiscFillAlpha = data.inputValue( aDiscFillAlpha );
	MDataHandle hDiscLineAlpha = data.inputValue( aDiscLineAlpha );

	discAxis = hDiscAxis.asInt();
	discDivision = hDiscDivision.asInt();
	discAngle = hDiscAngle.asDouble();
	discSize = hDiscSize.asVector();
	discOffset = hDiscOffset.asVector();
	discActiveColor = hDiscActiveColor.asFloat3();
	discLeadColor = hDiscLeadColor.asFloat3();
	discDefaultColor = hDiscDefaultColor.asFloat3();
	discFillAlpha = hDiscFillAlpha.asFloat();
	discLineAlpha = hDiscLineAlpha.asFloat();

	MArrayDataHandle hArrArrow = data.inputArrayValue( aArrow );
	arrowNum = hArrArrow.elementCount();

	inheritMatrix.setLength( arrowNum );
	aimMatrix.setLength( arrowNum );
	inputMeshObj.setLength( arrowNum );
	startSize.setLength( arrowNum );
	size.setLength( arrowNum );
	activeColor.setLength( arrowNum );
	leadColor.setLength( arrowNum );
	defaultColor.setLength( arrowNum );
	fillAlpha.setLength( arrowNum );
	lineAlpha.setLength( arrowNum );
	offset.setLength( arrowNum );

	for( int i =0; i < arrowNum; i++ )
	{
		MDataHandle hArrow = hArrArrow.inputValue();

		MDataHandle hInheritMatrix = hArrow.child( aInheritMatrix );
		MDataHandle hAimMatrix = hArrow.child( aAimMatrix );
		MDataHandle hInputMesh = hArrow.child( aInputMesh );
		MDataHandle hStartSize = hArrow.child( aStartSize );
		MDataHandle hSize = hArrow.child( aSize );
		MDataHandle hActiveColor = hArrow.child( aActiveColor );
		MDataHandle hLeadColor = hArrow.child( aLeadColor );
		MDataHandle hDefaultColor = hArrow.child( aDefaultColor );
		MDataHandle hFillAlpha = hArrow.child( aFillAlpha );
		MDataHandle hLineAlpha = hArrow.child( aLineAlpha );
		MDataHandle hOffset = hArrow.child( aOffset );

		inheritMatrix[i] = hInheritMatrix.asBool();
		aimMatrix[i] = hAimMatrix.asMatrix()*hDiscMatrix.asMatrix().inverse();
		inputMeshObj[i] = hInputMesh.asMesh();
		startSize[i] = hStartSize.asFloat();
		size[i] = hSize.asFloat();
		activeColor[i] = hActiveColor.asFloat3();
		leadColor[i] = hLeadColor.asFloat3();
		defaultColor[i] = hDefaultColor.asFloat3();
		fillAlpha[i] = hFillAlpha.asFloat();
		lineAlpha[i] = hLineAlpha.asFloat();
		offset[i] = hOffset.asVector();

		hArrArrow.next();
	}

	MDataHandle hOutput = data.outputValue( aOutput );
	hOutput.set( 1.0 );
	data.setClean( plug );

	return MS::kSuccess;
}
void sixdofConstraintNode::computeWorldMatrix(const MPlug& plug, MDataBlock& data)
{
    MObject thisObject(thisMObject());
    MFnDagNode fnDagNode(thisObject);

    MObject update;
    MPlug(thisObject, ca_constraint).getValue(update);
    MPlug(thisObject, ca_constraintParam).getValue(update);

    MStatus status;
    MFnTransform fnParentTransform(fnDagNode.parent(0, &status));
	double fixScale[3] = { 1., 1., 1. };  // lock scale
	fnParentTransform.setScale(fixScale);
    MVector mtranslation = fnParentTransform.getTranslation(MSpace::kTransform, &status);

	if(bSolverNode::isStartTime)
	{	// allow to edit pivots
		MPlug plgRigidBodyA(thisObject, ia_rigidBodyA);
		MPlug plgRigidBodyB(thisObject, ia_rigidBodyB);
		MObject update;
		//force evaluation of the rigidBody
		plgRigidBodyA.getValue(update);
		if(plgRigidBodyA.isConnected()) 
		{
			MPlugArray connections;
			plgRigidBodyA.connectedTo(connections, true, true);
			if(connections.length() != 0) 
			{
				MFnDependencyNode fnNode(connections[0].node());
				if(fnNode.typeId() == boingRBNode::typeId) 
				{
					MObject rbAObj = fnNode.object();
					boingRBNode *pRigidBodyNodeA = static_cast<boingRBNode*>(fnNode.userNode());
					MPlug(rbAObj, pRigidBodyNodeA->worldMatrix).elementByLogicalIndex(0).getValue(update);
				}
			}
		}
		plgRigidBodyB.getValue(update);
		if(plgRigidBodyB.isConnected()) 
		{
			MPlugArray connections;
			plgRigidBodyB.connectedTo(connections, true, true);
			if(connections.length() != 0) 
			{
	            MFnDependencyNode fnNode(connections[0].node());
				if(fnNode.typeId() == boingRBNode::typeId) 
				{
					MObject rbBObj = fnNode.object();
					boingRBNode *pRigidBodyNodeB = static_cast<boingRBNode*>(fnNode.userNode());
					MPlug(rbBObj, pRigidBodyNodeB->worldMatrix).elementByLogicalIndex(0).getValue(update);
				}
			}
		}
		if(m_constraint) 
		{
			MQuaternion mrotation;
			fnParentTransform.getRotation(mrotation, MSpace::kTransform);
			bool doUpdatePivot = m_constraint->getPivotChanged();
			if(!doUpdatePivot)
			{
				vec3f worldP;
				quatf worldR;
				m_constraint->get_world(worldP, worldR);
				float deltaPX = worldP[0] - float(mtranslation.x);
				float deltaPY = worldP[1] - float(mtranslation.y);
				float deltaPZ = worldP[2] - float(mtranslation.z);
				float deltaRX = (float)mrotation.x - worldR[1];
				float deltaRY = (float)mrotation.y - worldR[2];
				float deltaRZ = (float)mrotation.z - worldR[3];
				float deltaRW = (float)mrotation.w - worldR[0];
				float deltaSq = deltaPX * deltaPX + deltaPY * deltaPY  + deltaPZ * deltaPZ 
								+ deltaRX * deltaRX + deltaRY * deltaRY + deltaRZ * deltaRZ + deltaRW * deltaRW;
				doUpdatePivot = (deltaSq > FLT_EPSILON);
			}
			if(doUpdatePivot)
			{
				m_constraint->set_world(vec3f((float) mtranslation[0], (float) mtranslation[1], (float) mtranslation[2]),
										quatf((float)mrotation.w, (float)mrotation.x, (float)mrotation.y, (float)mrotation.z));
				vec3f pivInA, pivInB;
				quatf rotInA, rotInB;
				m_constraint->get_frameA(pivInA, rotInA);
				m_constraint->get_frameB(pivInB, rotInB);
				MDataHandle hPivInA = data.outputValue(ia_pivotInA);
				float3 &ihPivInA = hPivInA.asFloat3();
				MDataHandle hPivInB = data.outputValue(ia_pivotInB);
				float3 &ihPivInB = hPivInB.asFloat3();
				for(int i = 0; i < 3; i++) 
				{ 
					ihPivInA[i]  = pivInA[i]; 
					ihPivInB[i]  = pivInB[i]; 
				}
				MDataHandle hRotInA = data.outputValue(ia_rotationInA);
				float3 &hrotInA = hRotInA.asFloat3();
				MQuaternion mrotA(rotInA[1], rotInA[2], rotInA[3], rotInA[0]);
				MEulerRotation newrotA(mrotA.asEulerRotation());
				hrotInA[0] = rad2deg((float)newrotA.x);
				hrotInA[1] = rad2deg((float)newrotA.y);
				hrotInA[2] = rad2deg((float)newrotA.z);
				MDataHandle hRotInB = data.outputValue(ia_rotationInB);
				float3 &hrotInB = hRotInB.asFloat3();
				MQuaternion mrotB(rotInB[1], rotInB[2], rotInB[3], rotInB[0]);
				MEulerRotation newrotB(mrotB.asEulerRotation());
				hrotInB[0] = rad2deg((float)newrotB.x);
				hrotInB[1] = rad2deg((float)newrotB.y);
				hrotInB[2] = rad2deg((float)newrotB.z);
				m_constraint->setPivotChanged(false);

				m_constraint->get_local_frameA(m_PivInA, m_RotInA);
				m_constraint->get_local_frameB(m_PivInB, m_RotInB);
			}
		}
	}
	else
	{ // if not start time, lock position and rotation
		if(m_constraint) 
		{
			vec3f worldP;
			quatf worldR;
			m_constraint->get_world(worldP, worldR);
            fnParentTransform.setTranslation(MVector(worldP[0], worldP[1], worldP[2]), MSpace::kTransform);
			fnParentTransform.setRotation(MQuaternion(worldR[1], worldR[2], worldR[3], worldR[0])); 
		}
	}
	
	m_initialized = true;
    data.setClean(plug);
}
示例#3
0
void rigidBodyNode::computeWorldMatrix(const MPlug& plug, MDataBlock& data)
{
	if (!m_rigid_body)
		return;

  //  std::cout << "rigidBodyNode::computeWorldMatrix" << std::endl;
    MObject thisObject(thisMObject());
    MFnDagNode fnDagNode(thisObject);

    MObject update;
    MPlug(thisObject, ca_rigidBody).getValue(update);
    MPlug(thisObject, ca_rigidBodyParam).getValue(update);
    
    vec3f pos;
    quatf rot;

    MStatus status;

    MFnTransform fnParentTransform(fnDagNode.parent(0, &status));

	double mscale[3];
    fnParentTransform.getScale(mscale);
	m_rigid_body->get_transform(pos, rot);
	
	
	if(dSolverNode::isStartTime)
	{ // allow to edit ptranslation and rotation
		MVector mtranslation = fnParentTransform.getTranslation(MSpace::kTransform, &status);
		MQuaternion mrotation;
		fnParentTransform.getRotation(mrotation, MSpace::kTransform);

		float deltaPX = (float)mtranslation.x - pos[0];
		float deltaPY = (float)mtranslation.y - pos[1];
		float deltaPZ = (float)mtranslation.z - pos[2];
		float deltaRX = (float)mrotation.x - rot[1];
		float deltaRY = (float)mrotation.y - rot[2];
		float deltaRZ = (float)mrotation.z - rot[3];
		float deltaRW = (float)mrotation.w - rot[0];
		float deltaSq = deltaPX * deltaPX + deltaPY * deltaPY  + deltaPZ * deltaPZ 
						+ deltaRX * deltaRX + deltaRY * deltaRY + deltaRZ * deltaRZ + deltaRW * deltaRW;
		if(deltaSq > FLT_EPSILON)
		{
			m_rigid_body->set_transform(vec3f((float)mtranslation.x, (float)mtranslation.y, (float)mtranslation.z),
										quatf((float)mrotation.w, (float)mrotation.x, (float)mrotation.y, (float)mrotation.z));
			m_rigid_body->set_interpolation_transform(vec3f((float)mtranslation.x, (float)mtranslation.y, (float)mtranslation.z),
														quatf((float)mrotation.w, (float)mrotation.x, (float)mrotation.y, (float)mrotation.z));
			m_rigid_body->update_constraint();
				MDataHandle hInitPos = data.outputValue(ia_initialPosition);
				float3 &ihpos = hInitPos.asFloat3();
				ihpos[0] = (float)mtranslation.x;
				ihpos[1] = (float)mtranslation.y;
				ihpos[2] = (float)mtranslation.z;
				MDataHandle hInitRot = data.outputValue(ia_initialRotation);
				float3 &ihrot = hInitRot.asFloat3();
				MEulerRotation newrot(mrotation.asEulerRotation());
				ihrot[0] = rad2deg((float)newrot.x);
				ihrot[1] = rad2deg((float)newrot.y);
				ihrot[2] = rad2deg((float)newrot.z);
		}
	}
	else
	{ // if not start time, lock position and rotation for active rigid bodies
        float mass = 0.f;
		MPlug(thisObject, rigidBodyNode::ia_mass).getValue(mass);
        if(mass > 0.f) 
		{
			fnParentTransform.setTranslation(MVector(pos[0], pos[1], pos[2]), MSpace::kTransform);
			fnParentTransform.setRotation(MQuaternion(rot[1], rot[2], rot[3], rot[0])); 
		}
	}

	float mass = 0.f;
	MPlug(thisObject, rigidBodyNode::ia_mass).getValue(mass);

	float curMass = m_rigid_body->get_mass();
	bool changedMassStatus= false;
	if ((curMass > 0.f) != (mass > 0.f))
	{
		changedMassStatus = true;
	}
	if (changedMassStatus)
		solver_t::remove_rigid_body(m_rigid_body);
	
	m_rigid_body->set_mass(mass);
	m_rigid_body->set_inertia((float)mass * m_rigid_body->collision_shape()->local_inertia());

	if (changedMassStatus)
		solver_t::remove_rigid_body(m_rigid_body);

	float restitution = 0.f;
	 MPlug(thisObject, rigidBodyNode::ia_restitution).getValue(restitution);
	 m_rigid_body->set_restitution(restitution);
	 float friction = 0.5f;
	  MPlug(thisObject, rigidBodyNode::ia_friction).getValue(friction);
    m_rigid_body->set_friction(friction);
    float linDamp = 0.f;
	  MPlug(thisObject, rigidBodyNode::ia_linearDamping).getValue(linDamp);
	m_rigid_body->set_linear_damping(linDamp);
    float angDamp = 0.f;
	  MPlug(thisObject, rigidBodyNode::ia_angularDamping).getValue(angDamp);
	m_rigid_body->set_angular_damping(angDamp);

    data.setClean(plug);
    //set the scale to the collision shape
    m_rigid_body->collision_shape()->set_scale(vec3f((float)mscale[0], (float)mscale[1], (float)mscale[2]));
}
/* virtual */
bool 
hwColorPerVertexShader::setInternalValueInContext( const MPlug& plug,
												  const MDataHandle& handle,
												  MDGContext&)
{
	bool handledAttribute = false;
	if (plug == aNormalsPerVertex)
	{
		handledAttribute = true;
		mNormalsPerVertex = (unsigned int) handle.asInt();
	}
	else if (plug == aColorsPerVertex)
	{
		handledAttribute = true;
		mColorsPerVertex = (unsigned int) handle.asInt();
	}
	else if (plug == aColorSetName)
	{
		handledAttribute = true;
		mColorSetName = (MString) handle.asString();
	}
	else if (plug == aTexRotateX)
	{
		handledAttribute = true;
		mTexRotateX = handle.asFloat();
	}
	else if (plug == aTexRotateY)
	{
		handledAttribute = true;
		mTexRotateY = handle.asFloat();
	}
	else if (plug == aTexRotateZ)
	{
		handledAttribute = true;
		mTexRotateZ = handle.asFloat();
	}

	else if (plug == aColorGain)
	{
		handledAttribute = true;
		float3 & val = handle.asFloat3();
		if (val[0] != mColorGain[0] || 
			val[1] != mColorGain[1] || 
			val[2] != mColorGain[2])
		{
			mColorGain[0] = val[0];
			mColorGain[1] = val[1];
			mColorGain[2] = val[2];
			mAttributesChanged = true;
		}
	}
	else if (plug == aColorBias)
	{
		handledAttribute = true;
		float3 &val = handle.asFloat3();
		if (val[0] != mColorBias[0] || 
			val[1] != mColorBias[1] || 
			val[2] != mColorBias[2])
		{
			mColorBias[0] = val[0];
			mColorBias[1] = val[1];
			mColorBias[2] = val[2];
			mAttributesChanged = true;
		}
	}
	else if (plug == aTranspGain)
	{
		handledAttribute = true;
		float val = handle.asFloat();
		if (val != mTranspGain)
		{
			mTranspGain = val;
			mAttributesChanged = true;
		}
	}
	else if (plug == aTranspBias)
	{
		handledAttribute = true;
		float val = handle.asFloat();
		if (val != mTranspBias)
		{
			mTranspBias = val;
			mAttributesChanged = true;
		}
	}

	return handledAttribute;
}
示例#5
0
/* virtual */
bool hwPhongShader::setInternalValueInContext( const MPlug &plug, 
											   const MDataHandle &handle,
											   MDGContext & )
{
	bool handledAttribute = false;
	if (plug == aColor)
	{
		handledAttribute = true;
		float3 & val = handle.asFloat3();
		if (val[0] != mAmbientColor[0] || 
			val[1] != mAmbientColor[1] || 
			val[2] != mAmbientColor[2])
		{
			mAmbientColor[0] = val[0];
			mAmbientColor[1] = val[1];
			mAmbientColor[2] = val[2];
			mAttributesChanged = true;
		}
	}
	else if (plug == aDiffuseColor)
	{
		handledAttribute = true;
		float3 & val = handle.asFloat3();
		if (val[0] != mDiffuseColor[0] || 
			val[1] != mDiffuseColor[1] || 
			val[2] != mDiffuseColor[2])
		{
			mDiffuseColor[0] = val[0];
			mDiffuseColor[1] = val[1];
			mDiffuseColor[2] = val[2];
			mAttributesChanged = true;
		}
	}
	else if (plug == aSpecularColor)
	{
		handledAttribute = true;
		float3 & val = handle.asFloat3();
		if (val[0] != mSpecularColor[0] || 
			val[1] != mSpecularColor[1] || 
			val[2] != mSpecularColor[2])
		{
			mSpecularColor[0] = val[0];
			mSpecularColor[1] = val[1];
			mSpecularColor[2] = val[2];
			mAttributesChanged = true;
		}
	}
	else if (plug == aShininess)
	{
		handledAttribute = true;
		float3 & val = handle.asFloat3();
		if (val[0] != mShininess[0] || 
			val[1] != mShininess[1] || 
			val[2] != mShininess[2])
		{
			mShininess[0] = val[0];
			mShininess[1] = val[1];
			mShininess[2] = val[2];
			mAttributesChanged = true;
		}
	}
	else if (plug == aGeometryShape)
	{
		handledAttribute = true;
		mGeometryShape = handle.asInt();
	}

	return handledAttribute;
}