示例#1
0
/* virtual */
MStatus cgfxVector::compute( const MPlug& plug, MDataBlock& data )
{
	MStatus status;

	MFnData::Type dataType = MFnData::kInvalid;
 
	if( plug == sWorldVector ||
		plug == sWorldVectorX ||
		plug == sWorldVectorY ||
		plug == sWorldVectorZ ||
		plug == sWorldVectorW)
	{
		// We do isDirection first simply because if there is an
		// error, the isDirection error is more legible than the
		// vector or matrix error.
		//
		MDataHandle dhIsDirection = data.inputValue(sIsDirection, &status);
		if (!status)
		{
			status.perror("cgfxVector: isDirection handle");
			return status;
		}

		dataType = dhIsDirection.type();

		MDataHandle dhVector = data.inputValue(sVector, &status);
		if (!status)
		{
			status.perror("cgfxVector: vector handle");
			return status;
		}

		dataType = dhVector.type();

		MMatrix matrix;

		MPlug matrixPlug(thisMObject(), sMatrix);
		if (matrixPlug.isNull())
		{
			OutputDebugString("matrixPlug is NULL!\n");
		}

		// TODO: Fix this kludge.
		//
		// We should not have to do this but for some reason, 
		// using data.inputValue() fails for the sMatrix attribute.
		// Instead, we get a plug to the attribute and then get
		// the value directly.
		//
		MObject oMatrix;

		matrixPlug.getValue(oMatrix);

		MFnMatrixData fndMatrix(oMatrix, &status);
		if (!status)
		{
			status.perror("cgfxVector: matrix data");
		}

		matrix= fndMatrix.matrix(&status);
		if (!status)
		{
			status.perror("cgfxVector: get matrix");
		}

#if 0
		// TODO: This is how we are supposed to do it.  (I think).
		//
		MDataHandle dhMatrix = data.inputValue(sMatrix, &status);
		if (!status)
		{
			status.perror("cgfxVector: matrix handle");
		}

		dataType = dhMatrix.type();

		oMatrix			= dhMatrix.data();
		MFnMatrixData fnMatrix(oMatrix, &status);
		if (!status)
		{
			status.perror("cgfxVector: matrix function set");
		}

		matrix = fnMatrix.matrix();
#endif /* 0 */

		bool	 isDirection	= dhIsDirection.asBool();
		double3& vector			= dhVector.asDouble3();

		double mat[4][4];
		matrix.get(mat);

		double ix, iy, iz, iw;	// Input vector
		float  ox, oy, oz, ow;	// Output vector

		ix = vector[0];
		iy = vector[1];
		iz = vector[2];
		iw = isDirection ? 0.0 : 1.0;

		ox = (float)(mat[0][0] * ix +
					 mat[1][0] * iy +
					 mat[2][0] * iz +
					 mat[3][0] * iw);

		oy = (float)(mat[0][1] * ix +
					 mat[1][1] * iy +
					 mat[2][1] * iz +
					 mat[3][1] * iw);

		oz = (float)(mat[0][2] * ix +
					 mat[1][2] * iy +
					 mat[2][2] * iz +
					 mat[3][2] * iw);

		ow = (float)(mat[0][3] * ix +
					 mat[1][3] * iy +
					 mat[2][3] * iz +
					 mat[3][3] * iw);

		MDataHandle dhWVector = data.outputValue(sWorldVector, &status);
		if (!status)
		{
			status.perror("cgfxVector: worldVector handle");
			return status;
		}

		MDataHandle dhWVectorW = data.outputValue(sWorldVectorW, &status);
		if (!status)
		{
			status.perror("cgfxVector: worldVectorW handle");
			return status;
		}

		dhWVector.set(ox, oy, oz);
		dhWVectorW.set(ow);
		data.setClean(sWorldVector);
		data.setClean(sWorldVectorW);
	}
	else
	{
		return MS::kUnknownParameter;
	}

	return MS::kSuccess;
}
示例#2
0
MStatus sseDeformer::compute(const MPlug& plug, MDataBlock& data)
{
    MStatus status;
    if (plug.attribute() != outputGeom) {
        printf("Ignoring requested plug\n");
        return status;
    }
    unsigned int index = plug.logicalIndex();
    MObject thisNode = this->thisMObject();

    // get input value
    MPlug inPlug(thisNode,input);
    inPlug.selectAncestorLogicalIndex(index,input);
    MDataHandle hInput = data.inputValue(inPlug, &status);
    MCheckStatus(status, "ERROR getting input mesh\n");

    // get the input geometry
    MDataHandle inputData = hInput.child(inputGeom);
    if (inputData.type() != MFnData::kMesh) {
        printf("Incorrect input geometry type\n");
        return MStatus::kFailure;
    }

    MObject iSurf = inputData.asMesh() ;
    MFnMesh inMesh;
    inMesh.setObject( iSurf ) ;

    MDataHandle outputData = data.outputValue(plug);
    outputData.copy(inputData);
    if (outputData.type() != MFnData::kMesh) {
        printf("Incorrect output mesh type\n");
        return MStatus::kFailure;
    }

    MObject oSurf = outputData.asMesh() ;
    if(oSurf.isNull()) {
        printf("Output surface is NULL\n");
        return MStatus::kFailure;
    }

    MFnMesh outMesh;
    outMesh.setObject( oSurf ) ;
    MCheckStatus(status, "ERROR setting points\n");

    // get all points at once for demo purposes. Really should get points from the current group using iterator
    MFloatPointArray pts;
    outMesh.getPoints(pts);

    int nPoints = pts.length();

    MDataHandle envData = data.inputValue(envelope, &status);
    float env = envData.asFloat();

    MDataHandle sseData = data.inputValue(sseEnabled, &status);
    bool sseEnabled = (bool) sseData.asBool();

    // NOTE: Using MTimer and possibly other classes disables
    // autovectorization with Intel <=10.1 compiler on OSX and Linux!!
    // Must compile this function with -fno-exceptions on OSX and
    // Linux to guarantee autovectorization is done. Use -fvec_report2
    // to check for vectorization status messages with Intel compiler.
    MTimer timer;
    timer.beginTimer();

    if(sseEnabled) {

        // Innter loop will autovectorize. Around 3x faster than the
        // loop below it. It would be faster if first element was
        // guaranteed to be aligned on 16 byte boundary.
        for(int i=0; i<nPoints; i++) {
            float* ptPtr = &pts[i].x;
            for(int j=0; j<4; j++) {
                ptPtr[j] = env * (cosf(ptPtr[j]) * sinf(ptPtr[j]) * tanf(ptPtr[j]));
            }
        }

    } else {

        // This inner loop will not autovectorize.
        for(int i=0; i<nPoints; i++) {
            MFloatPoint& pt = pts[i];
            for(int j=0; j<3; j++) {
                pt[j] = env * (cosf(pt[j]) * sinf(pt[j]) * tanf(pt[j]));
            }

        }
    }

    timer.endTimer();
    if(sseEnabled) {
        printf("SSE enabled, runtime %f\n", timer.elapsedTime());
    } else {
        printf("SSE disabled, runtime %f\n", timer.elapsedTime());
    }

    outMesh.setPoints(pts);

    return status;
}
/*! Compute function, gets the input surface, determines what type it is and calls the appropriate conversion function
    Encapsulates an cowpointer to the body into the naiadBodyData type and outputs it */
MStatus NBuddySurfaceToBodyNode::compute( const MPlug& plug, MDataBlock& data )
{
    MStatus status;
    if (plug == _outBody)
    {
        //Get the body name
        MDataHandle bodyNameHndl = data.inputValue( _bodyName, &status );
        MString bodyName = bodyNameHndl.asString();

        //Create the MFnPluginData for the naiadBody
        MFnPluginData dataFn;
        dataFn.create( MTypeId( naiadBodyData::id ), &status);
        NM_CheckMStatus( status, "Failed to create naiadBodyData in MFnPluginData");

        //Get subdivision info from plugs so better approximations of meshes can be done
        int divisions = data.inputValue( _subDivide, &status ).asBool();
	
        //Getting genericAttribute handle containing the surface and pick the correct conversion function
        MObject meshObj;
        MDataHandle inSurfaceHdl = data.inputValue( _inSurface, &status );
        if (inSurfaceHdl.type() == MFnData::kNurbsSurface)
        {
            MFnNurbsSurface nurbsFn(inSurfaceHdl.asNurbsSurface());

            // Create the data holder for the tesselated mesh
            MFnMeshData dataCreator;
            MObject newOutputData = dataCreator.create(&status);

            //Setup the tesselation parameters
            MTesselationParams tParams;
            tParams.setOutputType( MTesselationParams::kTriangles );
            tParams.setFormatType( MTesselationParams::kGeneralFormat );
            tParams.setUIsoparmType( MTesselationParams::kSpanEquiSpaced );
            tParams.setVIsoparmType( MTesselationParams::kSpanEquiSpaced );
            tParams.setUNumber( divisions+1 );
            tParams.setVNumber( divisions+1 );

            // Tesselate and get the returned mesh
            meshObj = nurbsFn.tesselate( tParams, newOutputData, &status );
            NM_CheckMStatus( status, "NBuddySurfaceToBodyNode::compute Failed to tesselate nurbs surface to poly");
        }
        else if (inSurfaceHdl.type() == MFnData::kMesh)
        {
            meshObj = inSurfaceHdl.asMesh();

            if ( divisions > 0 )
            {
                MFnMeshData dataCreator;
                MObject newOutputData = dataCreator.create(&status);

                MFnMesh meshFn(meshObj);
                MIntArray faceIds;
                for ( unsigned int i(0); i < meshFn.numPolygons(); ++i )
                    faceIds.append(i);

                meshFn.subdivideFaces( faceIds , divisions );
            }
        }
        else if (inSurfaceHdl.type() == MFnData::kSubdSurface)
        {
            // Create the subd function set so we can tesselate
            MFnSubd subDfn(inSurfaceHdl.asSubdSurface());

            // Create the data holder for the tesselated mesh
            MFnMeshData dataCreator;
            MObject newOutputData = dataCreator.create(&status);

            // Tesselate the subD surface
            meshObj = subDfn.tesselate(true, 1 , divisions , newOutputData, &status );
            NM_CheckMStatus( status, "NBuddySurfaceToBodyNode::compute Failed to tesselate SubD surface to poly");
        }
        else
            return status ;

	//Get the handle for the input transform
        MDataHandle inTransformHdl = data.inputValue( _inTransform, &status );
	NM_CheckMStatus( status, "Failed to get inTransform handle");

	MDataHandle useTransformHdl = data.inputValue( _useTransform, &status);
	NM_CheckMStatus( status, "Failed to get worldSpaceHdl ");
	bool useTransform = useTransformHdl.asBool();

        //Get a new naiadBodyData
        naiadBodyData * newBodyData = (naiadBodyData*)dataFn.data( &status );
        NM_CheckMStatus( status, "Failed to get naiadBodyData handle from MFnPluginData");

        try {
            newBodyData->nBody = mayaMeshToNaiadBody( meshObj, std::string(bodyName.asChar()), useTransform, inTransformHdl.asMatrix() );
        }
        catch(std::exception& ex) {
            NM_ExceptionPlugDisplayError("NBuddySurfaceToBodyNode::compute ", plug, ex );
        }

        //Give the data to the output handle and set it clean
        MDataHandle bodyDataHnd = data.outputValue( _outBody, &status );
        NM_CheckMStatus( status, "Failed to get outputData handle for outBody");
        bodyDataHnd.set( newBodyData );
        data.setClean( plug );
    }

    return status;
}
示例#4
0
MStatus splatDeformer::compute(const MPlug& plug, MDataBlock& data)
{
	// do this if we are using an OpenMP implementation that is not the same as Maya's.
	// Even if it is the same, it does no harm to make this call.
	MThreadUtils::syncNumOpenMPThreads();

	MStatus status = MStatus::kUnknownParameter;
 	if (plug.attribute() != outputGeom) {
		return status;
	}

	unsigned int index = plug.logicalIndex();
	MObject thisNode = this->thisMObject();

	// get input value
	MPlug inPlug(thisNode,input);
	inPlug.selectAncestorLogicalIndex(index,input);
	MDataHandle hInput = data.inputValue(inPlug, &status);
	MCheckStatus(status, "ERROR getting input mesh\n");
	
	// get the input geometry
	MDataHandle inputData = hInput.child(inputGeom);
	if (inputData.type() != MFnData::kMesh) {
 		printf("Incorrect input geometry type\n");
		return MStatus::kFailure;
 	}

	// get the input groupId - ignored for now...
	MDataHandle hGroup = inputData.child(groupId);
	unsigned int groupId = hGroup.asLong();

	// get deforming mesh
	MDataHandle deformData = data.inputValue(deformingMesh, &status);
	MCheckStatus(status, "ERROR getting deforming mesh\n");
    if (deformData.type() != MFnData::kMesh) {
		printf("Incorrect deformer geometry type %d\n", deformData.type());
		return MStatus::kFailure;
	}

  	MObject dSurf = deformData.asMeshTransformed();
 	MFnMesh fnDeformingMesh;
 	fnDeformingMesh.setObject( dSurf ) ;

	MDataHandle outputData = data.outputValue(plug);
	outputData.copy(inputData);
 	if (outputData.type() != MFnData::kMesh) {
		printf("Incorrect output mesh type\n");
		return MStatus::kFailure;
	}
	
	MItGeometry iter(outputData, groupId, false);

	// create fast intersector structure
	MMeshIntersector intersector;
	intersector.create(dSurf);

	// get all points at once. Faster to query, and also better for
	// threading than using iterator
	MPointArray verts;
	iter.allPositions(verts);
	int nPoints = verts.length();

	// use bool variable as lightweight object for failure check in loop below
	bool failed = false;

 	MTimer timer; timer.beginTimer();

#ifdef _OPENMP
#pragma omp parallel for
#endif
 	for(int i=0; i<nPoints; i++) {

		// Cannot break out of an OpenMP loop, so if one of the
		// intersections failed, skip the rest
		if(failed) continue;

		// mesh point object must be in loop-local scope to avoid race conditions
		MPointOnMesh meshPoint;

		// Do intersection. Need to use per-thread status value as
		// MStatus has internal state and may trigger race conditions
		// if set from multiple threads. Probably benign in this case,
		// but worth being careful.
		MStatus localStatus = intersector.getClosestPoint(verts[i], meshPoint);
		if(localStatus != MStatus::kSuccess) {
			// NOTE - we cannot break out of an OpenMP region, so set
			// bad status and skip remaining iterations
			failed = true;
			continue;
		}

		// default OpenMP scheduling breaks traversal into large
		// chunks, so low risk of false sharing here in array write.
		verts[i] = meshPoint.getPoint();
 	}

 	timer.endTimer(); printf("Runtime for threaded loop %f\n", timer.elapsedTime());

	// write values back onto output using fast set method on iterator
	iter.setAllPositions(verts);

	if(failed) {
		printf("Closest point failed\n");
		return MStatus::kFailure;
	}

	return status;
}
示例#5
0
MStatus finalproject::compute(const MPlug& plug, MDataBlock& data)
{
	// do this if we are using an OpenMP implementation that is not the same as Maya's.
	// Even if it is the same, it does no harm to make this call.
	MThreadUtils::syncNumOpenMPThreads();

	MStatus status = MStatus::kUnknownParameter;
 	if (plug.attribute() != outputGeom) {
		return status;
	}

	unsigned int index = plug.logicalIndex();
	MObject thisNode = this->thisMObject();

	// get input value
	MPlug inPlug(thisNode,input);
	inPlug.selectAncestorLogicalIndex(index,input);
	MDataHandle hInput = data.inputValue(inPlug, &status);
	MCheckStatus(status, "ERROR getting input mesh\n");
	
	// get the input geometry
	MDataHandle inputData = hInput.child(inputGeom);
	if (inputData.type() != MFnData::kMesh) {
 		printf("Incorrect input geometry type\n");
		return MStatus::kFailure;
 	}

	// get the input groupId - ignored for now...
	MDataHandle hGroup = inputData.child(groupId);
	unsigned int groupId = hGroup.asLong();

	// get deforming mesh
	MDataHandle deformData = data.inputValue(deformingMesh, &status);
	MCheckStatus(status, "ERROR getting deforming mesh\n");
    if (deformData.type() != MFnData::kMesh) {
		printf("Incorrect deformer geometry type %d\n", deformData.type());
		return MStatus::kFailure;
	}
	
   MDataHandle offloadData = data.inputValue(offload, &status);

   //gathers world space positions of the object and the magnet
  	MObject dSurf = deformData.asMeshTransformed();
  	MObject iSurf = inputData.asMeshTransformed();
 	MFnMesh fnDeformingMesh, fnInputMesh;
 	fnDeformingMesh.setObject( dSurf ) ;
 	fnInputMesh.setObject( iSurf ) ;

	MDataHandle outputData = data.outputValue(plug);
	outputData.copy(inputData);
 	if (outputData.type() != MFnData::kMesh) {
		printf("Incorrect output mesh type\n");
		return MStatus::kFailure;
	}
	
	MItGeometry iter(outputData, groupId, false);

	// get all points at once. Faster to query, and also better for
	// threading than using iterator
	MPointArray objVerts;
	iter.allPositions(objVerts);
	int objNumPoints = objVerts.length();
 	
 	MPointArray magVerts, tempverts;
 	fnDeformingMesh.getPoints(magVerts);
 	fnInputMesh.getPoints(tempverts);
 	int magNumPoints = magVerts.length();
 	
 	double min = DBL_MAX, max = -DBL_MAX;
   
   //finds min and max z-coordinate values to determine middle point (choice of z-axis was ours)
 	for (int i = 0; i < magNumPoints; i++) {
      min = magVerts[i].z < min ? magVerts[i].z : min;
      max = magVerts[i].z > max ? magVerts[i].z : max;
   }

   double middle = (min + max) / 2;
   double polarity[magNumPoints];
   
   //assigns polarity based on middle point of mesh
   for (int i = 0; i < magNumPoints; i++) {
      polarity[i] = magVerts[i].z > middle ? max / magVerts[i].z : -min / magVerts[i].z;
   }
 	
 	double* objdVerts = (double *)malloc(sizeof(double) * objNumPoints * 3);
 	double* magdVerts = (double *)malloc(sizeof(double) * magNumPoints * 3);
 	
   //creates handles to use attribute data
 	MDataHandle vecX = data.inputValue(transX, &status);
   MDataHandle vecY = data.inputValue(transY, &status);
   MDataHandle vecZ = data.inputValue(transZ, &status);
   
   //gathers previously stored coordinates of the center of the object
   double moveX = vecX.asFloat();
   double moveY = vecY.asFloat();
   double moveZ = vecZ.asFloat();
 	
   //translates object based on the position stored in the attribute values
 	for (int i=0; i<objNumPoints; i++) {
 	   objdVerts[i * 3] = tempverts[i].x + moveX;
 	   objdVerts[i * 3 + 1] = tempverts[i].y + moveY;
 	   objdVerts[i * 3 + 2] = tempverts[i].z + moveZ;
 	}
 	
 	for (int i=0; i<magNumPoints; i++) {
 	   magdVerts[i * 3] = magVerts[i].x;
 	   magdVerts[i * 3 + 1] = magVerts[i].y;
 	   magdVerts[i * 3 + 2] = magVerts[i].z;
 	}
 	
 	double teslaData = data.inputValue(tesla, &status).asDouble();
   MDataHandle posiData = data.inputValue(positivelycharged, &status);
   
   double pivot[6] = {DBL_MAX, -DBL_MAX, DBL_MAX, -DBL_MAX, DBL_MAX, -DBL_MAX};
   
   //finds the pivot point of the object in world space prior to being affected by the magnet
 	for (int i = 0; i < tempverts.length(); i++) {
      pivot[0] = tempverts[i].x < pivot[0] ? tempverts[i].x : pivot[0];
      pivot[1] = tempverts[i].x > pivot[1] ? tempverts[i].x : pivot[1];
      pivot[2] = tempverts[i].y < pivot[2] ? tempverts[i].y : pivot[2];
      pivot[3] = tempverts[i].y > pivot[3] ? tempverts[i].y : pivot[3];
      pivot[4] = tempverts[i].z < pivot[4] ? tempverts[i].z : pivot[4];
      pivot[5] = tempverts[i].z > pivot[5] ? tempverts[i].z : pivot[5];
   }
   
   MTimer timer; timer.beginTimer();
 	
   //main function call
   magnetForce(magNumPoints, objNumPoints, teslaData, magdVerts, 
      objdVerts, polarity, posiData.asBool(), offloadData.asBool());
      
   timer.endTimer(); printf("Runtime for threaded loop %f\n", timer.elapsedTime());
 	
 	for (int i=0; i<objNumPoints; i++) {
 	   objVerts[i].x = objdVerts[i * 3 + 0];
 	   objVerts[i].y = objdVerts[i * 3 + 1];
 	   objVerts[i].z = objdVerts[i * 3 + 2];      
 	}
 	
   //finds the pivot point of object in world space after being affected by the magnet
   double objCenter[6] = {DBL_MAX, -DBL_MAX, DBL_MAX, -DBL_MAX, DBL_MAX, -DBL_MAX};
 	for (int i = 0; i < tempverts.length(); i++) {
      objCenter[0] = objVerts[i].x < objCenter[0] ? objVerts[i].x : objCenter[0];
      objCenter[1] = objVerts[i].x > objCenter[1] ? objVerts[i].x : objCenter[1];
      objCenter[2] = objVerts[i].y < objCenter[2] ? objVerts[i].y : objCenter[2];
      objCenter[3] = objVerts[i].y > objCenter[3] ? objVerts[i].y : objCenter[3];
      objCenter[4] = objVerts[i].z < objCenter[4] ? objVerts[i].z : objCenter[4];
      objCenter[5] = objVerts[i].z > objCenter[5] ? objVerts[i].z : objCenter[5];
   }
 	
   //creates vector based on the two calculated pivot points
 	moveX = (objCenter[0] + objCenter[1]) / 2 - (pivot[0] + pivot[1]) / 2;
 	moveY = (objCenter[2] + objCenter[3]) / 2 - (pivot[2] + pivot[3]) / 2;
 	moveZ = (objCenter[4] + objCenter[5]) / 2 - (pivot[4] + pivot[5]) / 2;
 	
   //stores pivot vector for next computation
 	if (teslaData) {
 	   vecX.setFloat(moveX);
 	   vecY.setFloat(moveY);
 	   vecZ.setFloat(moveZ);
 	}
 	
	// write values back onto output using fast set method on iterator
	iter.setAllPositions(objVerts, MSpace::kWorld);
   
   free(objdVerts);
   free(magdVerts);

	return status;
}