示例#1
0
void HyperedgeRerouter::performRerouting(void)
{
    COLA_ASSERT(m_router != NULL);

    m_new_junctions_vector.clear();
    m_new_junctions_vector.resize(count());
    m_new_connectors_vector.clear();
    m_new_connectors_vector.resize(count());

#ifdef HYPEREDGE_DEBUG
    double minX = LIMIT;
    double minY = LIMIT;
    double maxX = -LIMIT;
    double maxY = -LIMIT;

    VertInf *curr = m_router->vertices.connsBegin();
    while (curr)
    {
        Point p = curr->point;

        reduceRange(p.x);
        reduceRange(p.y);
        
        if (p.x > -LIMIT)
        {
            minX = std::min(minX, p.x);
        }
        if (p.x < LIMIT)
        {
            maxX = std::max(maxX, p.x);
        }
        if (p.y > -LIMIT)
        {
            minY = std::min(minY, p.y);
        }
        if (p.y < LIMIT)
        {
            maxY = std::max(maxY, p.y);
        }
        curr = curr->lstNext;
    }
    minX -= 8;
    minY -= 8;
    maxX += 8;
    maxY += 8;

    FILE *fp = fopen("hyperedge-debug.svg", "w");
    fprintf(fp, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
    // width=\"100%%\" height=\"100%%\" 
    fprintf(fp, "<svg xmlns:inkscape=\"http://www.inkscape.org/namespaces/inkscape\" xmlns=\"http://www.w3.org/2000/svg\" viewBox=\"%g %g %g %g\">\n", minX, minY, maxX - minX, maxY - minY);
    fprintf(fp, "<defs>\n");
    fprintf(fp, "<style type=\"text/css\" ><![CDATA[\n");
    fprintf(fp, ".shape { stroke-width: 1px; stroke: black; fill: blue; stroke-opacity: 0.50; fill-opacity: 0.50; }\n");
    fprintf(fp, ".graph { opacity: 0; fill: none; stroke: red; stroke-width: 1px; }\n");
    fprintf(fp, ".forest { fill: none; stroke: purple; stroke-width: 1px; }\n");
    fprintf(fp, ".hyperedge { fill: none; stroke-width: 1px; }\n");
    fprintf(fp, "]]></style>\n");
    fprintf(fp, "</defs>\n");

    fprintf(fp, "<g inkscape:groupmode=\"layer\" "
            "inkscape:label=\"ShapesRect\">\n");
    ObstacleList::iterator obstacleIt = m_router->m_obstacles.begin();
    while (obstacleIt != m_router->m_obstacles.end())
    {
        Obstacle *obstacle = *obstacleIt;
        bool isShape = (NULL != dynamic_cast<ShapeRef *> (obstacle));

        if ( ! isShape )
        {
            // Don't output obstacles here, for now.
            ++obstacleIt;
            continue;
        }

        Box bb = obstacle->routingBox();

        fprintf(fp, "<rect id=\"rect-%u\" x=\"%g\" y=\"%g\" width=\"%g\" "
                "height=\"%g\" class=\"shape\" />\n",
                obstacle->id(), bb.min.x, bb.min.y, 
                bb.max.x - bb.min.x, bb.max.y - bb.min.y);
        // shapeContainsEndpointVertex(obstacle) ? "style=\"fill: green;\"" : "");
        ++obstacleIt;
    }
    fprintf(fp, "</g>\n");

    fprintf(fp, "<g inkscape:groupmode=\"layer\" "
            "id=\"graph\" style=\"display: none;\" "
            "inkscape:label=\"OrthogVisGraph\">\n");
    EdgeInf *finish = m_router->visOrthogGraph.end();
    for (EdgeInf *t = m_router->visOrthogGraph.begin(); t != finish; t = t->lstNext)
    {
        std::pair<Point, Point> ptpair = t->points();
        Point p1 = ptpair.first;
        Point p2 = ptpair.second;
        
        reduceRange(p1.x);
        reduceRange(p1.y);
        reduceRange(p2.x);
        reduceRange(p2.y);
        
        // std::pair<VertID, VertID> ids = t->ids();
        // (ids.first.isConnPt() || ids.second.isConnPt()) ? "style=\"stroke: green\" " : ""
        fprintf(fp, "<path class=\"graph\" d=\"M %g %g L %g %g\" "
                "%s />\n", p1.x, p1.y, p2.x, p2.y,
                ""
                );
    }
    fprintf(fp, "</g>\n");
#endif
    
    // For each hyperedge...
    const size_t num_hyperedges = count();
    for (size_t i = 0; i < num_hyperedges; ++i)
    {
        // Execute the MTST method to find good junction positions and an
        // initial path.  A hyperedge tree will be build for the new route.
        JunctionHyperEdgeTreeNodeMap hyperEdgeTreeJunctions;
        MinimumTerminalSpanningTree mtst(m_router, 
                m_terminal_vertices_vector[i], &hyperEdgeTreeJunctions);
#ifdef HYPEREDGE_DEBUG
        mtst.setDebuggingOutput(fp, i);
#endif
        // The older MTST construction method (faster, worse results).
        //mtst.constructSequential();
        
        // The preferred MTST construction method.
        // Slightly slower, better quality results.
        mtst.constructInterleaved();

        HyperEdgeTreeNode *treeRoot = mtst.rootJunction();
        COLA_ASSERT(treeRoot);
        
        // Fill in connector information and join them to junctions of endpoints
        // of original connectors.
        treeRoot->addConns(NULL, m_router, 
                m_deleted_connectors_vector[i], NULL);

        // Output the list of new junctions and connectors from hyperedge tree.
        treeRoot->listJunctionsAndConnectors(NULL, m_new_junctions_vector[i],
                m_new_connectors_vector[i]);

        // Write paths from the hyperedge tree back into individual
        // connector routes.
        for (size_t pass = 0; pass < 2; ++pass)
        {
            treeRoot->writeEdgesToConns(NULL, pass);
        }

        // Tell the router that we are deleting the objects used for the
        // previous path for the hyperedge.
        for (ConnRefList::iterator curr = 
                m_deleted_connectors_vector[i].begin();
                curr != m_deleted_connectors_vector[i].end(); ++curr)
        {
            // Clear visibility assigned for connection pins.
            (*curr)->assignConnectionPinVisibility(false);

            m_router->deleteConnector(*curr);
        }
        for (JunctionRefList::iterator curr = 
                m_deleted_junctions_vector[i].begin();
                curr != m_deleted_junctions_vector[i].end(); ++curr)
        {
            m_router->deleteJunction(*curr);
        }
    }

    // Clear the input to this class, so that new objects can be registered
    // for rerouting for the next time that transaction that is processed.
    m_terminals_vector.clear();
    m_root_junction_vector.clear();

    // Free temporarily added vertices.
    for (VertexList::iterator curr = m_added_vertices.begin();
            curr != m_added_vertices.end(); ++curr)
    {
        (*curr)->removeFromGraph();
        m_router->vertices.removeVertex(*curr);
        delete *curr;
    }
    m_added_vertices.clear();
#ifdef HYPEREDGE_DEBUG
    fprintf(fp, "</svg>\n");
    fclose(fp);
#endif
}
示例#2
0
void buildOrthogonalChannelInfo(Router *router,
                                const size_t dim, ShiftSegmentList& segmentList)
{
    if (segmentList.empty())
    {
        // There are no segments, so we can just return now.
        return;
    }

    // Do a sweep to determine space for shifting segments.
    size_t altDim = (dim + 1) % 2;
    const size_t n = router->m_obstacles.size();
    const size_t cpn = segmentList.size();
    // Set up the events for the sweep.
    size_t totalEvents = 2 * (n + cpn);
    Event **events = new Event*[totalEvents];
    unsigned ctr = 0;
    ObstacleList::iterator obstacleIt = router->m_obstacles.begin();
    for (unsigned i = 0; i < n; i++)
    {
        Obstacle *obstacle = *obstacleIt;
        JunctionRef *junction = dynamic_cast<JunctionRef *> (obstacle);
        if (junction && ! junction->positionFixed())
        {
            // Junctions that are free to move are not treated as obstacles.
            ++obstacleIt;
            totalEvents -= 2;
            continue;
        }
        Box bBox = obstacle->routingBox();
        Point min = bBox.min;
        Point max = bBox.max;
        double mid = min[dim] + ((max[dim] - min[dim]) / 2);
        Node *v = new Node(obstacle, mid);
        events[ctr++] = new Event(Open, v, min[altDim]);
        events[ctr++] = new Event(Close, v, max[altDim]);

        ++obstacleIt;
    }
    for (ShiftSegmentList::iterator curr = segmentList.begin();
            curr != segmentList.end(); ++curr)
    {
        const Point& lowPt = (*curr)->lowPoint();
        const Point& highPt = (*curr)->highPoint();

        COLA_ASSERT(lowPt[dim] == highPt[dim]);
        COLA_ASSERT(lowPt[altDim] < highPt[altDim]);
        Node *v = new Node(*curr, lowPt[dim]);
        events[ctr++] = new Event(SegOpen, v, lowPt[altDim]);
        events[ctr++] = new Event(SegClose, v, highPt[altDim]);
    }
    qsort((Event*)events, (size_t) totalEvents, sizeof(Event*), compare_events);

    // Process the sweep.
    // We do multiple passes over sections of the list so we can add relevant
    // entries to the scanline that might follow, before process them.
    NodeSet scanline;
    double thisPos = (totalEvents > 0) ? events[0]->pos : 0;
    unsigned int posStartIndex = 0;
    unsigned int posFinishIndex = 0;
    for (unsigned i = 0; i <= totalEvents; ++i)
    {
        // If we have finished the current scanline or all events, then we
        // process the events on the current scanline in a couple of passes.
        if ((i == totalEvents) || (events[i]->pos != thisPos))
        {
            posFinishIndex = i;
            for (int pass = 2; pass <= 4; ++pass)
            {
                for (unsigned j = posStartIndex; j < posFinishIndex; ++j)
                {
                    processShiftEvent(scanline, events[j], dim, pass);
                }
            }

            if (i == totalEvents)
            {
                // We have cleaned up, so we can now break out of loop.
                break;
            }

            thisPos = events[i]->pos;
            posStartIndex = i;
        }

        // Do the first sweep event handling -- building the correct
        // structure of the scanline.
        const int pass = 1;
        processShiftEvent(scanline, events[i], dim, pass);
    }
    COLA_ASSERT(scanline.size() == 0);
    for (unsigned i = 0; i < totalEvents; ++i)
    {
        delete events[i];
    }
    delete [] events;
}
示例#3
0
void HyperedgeRerouter::performRerouting(void)
{
    COLA_ASSERT(m_router != NULL);

    m_new_junctions_vector.clear();
    m_new_junctions_vector.resize(count());
    m_new_connectors_vector.clear();
    m_new_connectors_vector.resize(count());

#ifdef DEBUGHANDLER
    if (m_router->debugHandler())
    {
        std::vector<Box> obstacleBoxes;
        ObstacleList::iterator obstacleIt = m_router->m_obstacles.begin();
        while (obstacleIt != m_router->m_obstacles.end())
        {
            Obstacle *obstacle = *obstacleIt;
            JunctionRef *junction = dynamic_cast<JunctionRef *> (obstacle);
            if (junction && ! junction->positionFixed())
            {
                // Junctions that are free to move are not treated as obstacles.
                ++obstacleIt;
                continue;
            }
            Box bbox = obstacle->routingBox();
            obstacleBoxes.push_back(bbox);
            ++obstacleIt;
        }
        m_router->debugHandler()->updateObstacleBoxes(obstacleBoxes);
    }
#endif

    // For each hyperedge...
    const size_t num_hyperedges = count();
    for (size_t i = 0; i < num_hyperedges; ++i)
    {
        if (m_terminal_vertices_vector[i].empty())
        {
            // Invalid hyperedge, ignore.
            continue;
        }

        // Execute the MTST method to find good junction positions and an
        // initial path.  A hyperedge tree will be built for the new route.
        JunctionHyperedgeTreeNodeMap hyperedgeTreeJunctions;
        MinimumTerminalSpanningTree mtst(m_router, 
                m_terminal_vertices_vector[i], &hyperedgeTreeJunctions);

        // The older MTST construction method (faster, worse results).
        //mtst.constructSequential();
        
        // The preferred MTST construction method.
        // Slightly slower, better quality results.
        mtst.constructInterleaved();

        HyperedgeTreeNode *treeRoot = mtst.rootJunction();
        COLA_ASSERT(treeRoot);
        
        // Fill in connector information and join them to junctions of endpoints
        // of original connectors.
        treeRoot->addConns(NULL, m_router, 
                m_deleted_connectors_vector[i], NULL);

        // Output the list of new junctions and connectors from hyperedge tree.
        treeRoot->listJunctionsAndConnectors(NULL, m_new_junctions_vector[i],
                m_new_connectors_vector[i]);

        // Write paths from the hyperedge tree back into individual
        // connector routes.
        for (size_t pass = 0; pass < 2; ++pass)
        {
            treeRoot->writeEdgesToConns(NULL, pass);
        }

        // Tell the router that we are deleting the objects used for the
        // previous path for the hyperedge.
        for (ConnRefList::iterator curr = 
                m_deleted_connectors_vector[i].begin();
                curr != m_deleted_connectors_vector[i].end(); ++curr)
        {
            // Clear visibility assigned for connection pins.
            (*curr)->assignConnectionPinVisibility(false);

            m_router->deleteConnector(*curr);
        }
        for (JunctionRefList::iterator curr = 
                m_deleted_junctions_vector[i].begin();
                curr != m_deleted_junctions_vector[i].end(); ++curr)
        {
            m_router->deleteJunction(*curr);
        }
    }

    // Clear the input to this class, so that new objects can be registered
    // for rerouting for the next time that transaction that is processed.
    m_terminals_vector.clear();
    m_root_junction_vector.clear();

    // Free temporarily added vertices.
    for (VertexList::iterator curr = m_added_vertices.begin();
            curr != m_added_vertices.end(); ++curr)
    {
        (*curr)->removeFromGraph();
        m_router->vertices.removeVertex(*curr);
        delete *curr;
    }
    m_added_vertices.clear();
}