static void compute_rects(SkRect* devOutside, SkRect* devOutsideAssist, SkRect* devInside,
                          bool* isDegenerate, const SkMatrix& viewMatrix, const SkRect& rect,
                          SkScalar strokeWidth, bool miterStroke) {
    SkRect devRect;
    viewMatrix.mapRect(&devRect, rect);

    SkVector devStrokeSize;
    if (strokeWidth > 0) {
        devStrokeSize.set(strokeWidth, strokeWidth);
        viewMatrix.mapVectors(&devStrokeSize, 1);
        devStrokeSize.setAbs(devStrokeSize);
    } else {
        devStrokeSize.set(SK_Scalar1, SK_Scalar1);
    }

    const SkScalar dx = devStrokeSize.fX;
    const SkScalar dy = devStrokeSize.fY;
    const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf);
    const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf);

    *devOutside = devRect;
    *devOutsideAssist = devRect;
    *devInside = devRect;

    devOutside->outset(rx, ry);
    devInside->inset(rx, ry);

    // If we have a degenerate stroking rect(ie the stroke is larger than inner rect) then we
    // make a degenerate inside rect to avoid double hitting.  We will also jam all of the points
    // together when we render these rects.
    SkScalar spare;
    {
        SkScalar w = devRect.width() - dx;
        SkScalar h = devRect.height() - dy;
        spare = SkTMin(w, h);
    }

    *isDegenerate = spare <= 0;
    if (*isDegenerate) {
        devInside->fLeft = devInside->fRight = devRect.centerX();
        devInside->fTop = devInside->fBottom = devRect.centerY();
    }

    // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist)
    // to draw the outside of the octagon. Because there are 8 vertices on the outer
    // edge, while vertex number of inner edge is 4, the same as miter-stroke.
    if (!miterStroke) {
        devOutside->inset(0, ry);
        devOutsideAssist->outset(0, ry);
    }
}
示例#2
0
static void draw_45(SkCanvas* canvas, SkRRect::Corner corner,
                    SkScalar dist, const SkPoint& center) {
    SkRRect::Corner left = SkRRect::kUpperLeft_Corner, right = SkRRect::kUpperLeft_Corner;
    SkVector dir = { 0, 0 };

    constexpr SkScalar kSize = 64.0f / SK_ScalarSqrt2;

    switch (corner) {
    case SkRRect::kUpperLeft_Corner:
        left = SkRRect::kUpperRight_Corner;
        right = SkRRect::kLowerLeft_Corner;

        dir.set(-SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2);
        break;
    case SkRRect::kUpperRight_Corner:
        left = SkRRect::kUpperLeft_Corner;
        right = SkRRect::kLowerRight_Corner;
        dir.set(SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2);
        break;
    case SkRRect::kLowerRight_Corner:
        left = SkRRect::kLowerLeft_Corner;
        right = SkRRect::kUpperRight_Corner;
        dir.set(SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
        break;
    case SkRRect::kLowerLeft_Corner:
        left = SkRRect::kLowerRight_Corner;
        right = SkRRect::kUpperLeft_Corner;
        dir.set(-SK_ScalarRoot2Over2, SK_ScalarRoot2Over2);
        break;
    default:
        SkFAIL("Invalid shape.");
    }

    SkRect r = SkRect::MakeWH(kSize, kSize);
    // UL, UR, LR, LL
    SkVector radii[4] = { { 0.0f, 0.0f }, { 0.0f, 0.0f }, { 0.0f, 0.0f }, { 0.0f, 0.0f } };
    radii[left] = SkVector::Make(kSize, kSize);
    radii[right] = SkVector::Make(kSize, kSize);
    SkRRect rr;
    rr.setRectRadii(
            offset_center_to(r.roundOut(), center.fX + dist*dir.fX, center.fY + dist*dir.fY),
            radii);

    SkRRect occRR;
    dist -= 10.0f;
    occRR.setRectRadii(
            offset_center_to(r.roundOut(), center.fX + dist*dir.fX, center.fY + dist*dir.fY),
            radii);

    draw_rrect(canvas, rr, occRR);
}
示例#3
0
文件: SkDevice.cpp 项目: OwenTan/skia
static void morphpoints(SkPoint dst[], const SkPoint src[], int count,
                        SkPathMeasure& meas, const SkMatrix& matrix) {
    SkMatrix::MapXYProc proc = matrix.getMapXYProc();

    for (int i = 0; i < count; i++) {
        SkPoint pos;
        SkVector tangent;

        proc(matrix, src[i].fX, src[i].fY, &pos);
        SkScalar sx = pos.fX;
        SkScalar sy = pos.fY;

        if (!meas.getPosTan(sx, &pos, &tangent)) {
            // set to 0 if the measure failed, so that we just set dst == pos
            tangent.set(0, 0);
        }

        /*  This is the old way (that explains our approach but is way too slow
         SkMatrix    matrix;
         SkPoint     pt;

         pt.set(sx, sy);
         matrix.setSinCos(tangent.fY, tangent.fX);
         matrix.preTranslate(-sx, 0);
         matrix.postTranslate(pos.fX, pos.fY);
         matrix.mapPoints(&dst[i], &pt, 1);
         */
        dst[i].set(pos.fX - SkScalarMul(tangent.fY, sy),
                   pos.fY + SkScalarMul(tangent.fX, sy));
    }
}
示例#4
0
void TextArt::EnvelopeWarp::morphpoints(SkPoint dst[], const SkPoint src[], int count,
                        SkPathMeasure& meas, const SkMatrix& matrix)
{
    SkMatrix::MapXYProc proc = matrix.getMapXYProc();

    for (int i = 0; i < count; i++)
	{
        SkPoint pos;
        SkVector tangent;

		SkPoint iSrc = src[i];
		iSrc.fX = k1_ * iSrc.fX;

        proc(matrix, iSrc.fX, iSrc.fY, &pos);

		SkScalar sx = pos.fX;
        SkScalar sy = pos.fY;

		if (xWeightingMode_ & XWeightingMode_Linearly)
		{	//in Linearly mode adjust Top text by TopLength/BottomLength relation 
			if (isTop)
			{
				//move text below the Top skeleton
				sy -= boundsRect_.fTop;
			}
		}

        if (!meas.getPosTan(sx, &pos, &tangent))
		{
            // set to 0 if the measure failed, so that we just set dst == pos
            tangent.set(0, 0);
        }

        /*  This is the old way (that explains our approach but is way too slow
            SkMatrix    matrix;
            SkPoint     pt;

            pt.set(sx, sy);
            matrix.setSinCos(tangent.fY, tangent.fX);
            matrix.preTranslate(-sx, 0);
            matrix.postTranslate(pos.fX, pos.fY);
            matrix.mapPoints(&dst[i], &pt, 1);
        */

		if (isNormalRotated_)
		{
			dst[i].set(pos.fX - SkScalarMul(tangent.fY, sy),
                   pos.fY + SkScalarMul(tangent.fX, sy));
		}
		else
		{
			dst[i].set(pos.fX,
				pos.fY + sy);
		}
    }
}
示例#5
0
GrFragmentProcessor* GrConvexPolyEffect::Create(GrPrimitiveEdgeType type, const SkPath& path,
                                                const SkVector* offset) {
    if (kHairlineAA_GrProcessorEdgeType == type) {
        return NULL;
    }
    if (path.getSegmentMasks() != SkPath::kLine_SegmentMask ||
        !path.isConvex()) {
        return NULL;
    }

    if (path.countPoints() > kMaxEdges) {
        return NULL;
    }

    SkPoint pts[kMaxEdges];
    SkScalar edges[3 * kMaxEdges];

    SkPath::Direction dir;
    SkAssertResult(path.cheapComputeDirection(&dir));

    SkVector t;
    if (NULL == offset) {
        t.set(0, 0);
    } else {
        t = *offset;
    }

    int count = path.getPoints(pts, kMaxEdges);
    int n = 0;
    for (int lastPt = count - 1, i = 0; i < count; lastPt = i++) {
        if (pts[lastPt] != pts[i]) {
            SkVector v = pts[i] - pts[lastPt];
            v.normalize();
            if (SkPath::kCCW_Direction == dir) {
                edges[3 * n] = v.fY;
                edges[3 * n + 1] = -v.fX;
            } else {
                edges[3 * n] = -v.fY;
                edges[3 * n + 1] = v.fX;
            }
            SkPoint p = pts[i] + t;
            edges[3 * n + 2] = -(edges[3 * n] * p.fX + edges[3 * n + 1] * p.fY);
            ++n;
        }
    }
    if (path.isInverseFillType()) {
        type = GrInvertProcessorEdgeType(type);
    }
    return Create(type, n, edges);
}
示例#6
0
void GrAARectRenderer::strokeAARect(GrDrawTarget* target,
                                    GrDrawState* drawState,
                                    GrColor color,
                                    const SkRect& rect,
                                    const SkMatrix& combinedMatrix,
                                    const SkRect& devRect,
                                    const SkStrokeRec& stroke) {
    SkVector devStrokeSize;
    SkScalar width = stroke.getWidth();
    if (width > 0) {
        devStrokeSize.set(width, width);
        combinedMatrix.mapVectors(&devStrokeSize, 1);
        devStrokeSize.setAbs(devStrokeSize);
    } else {
        devStrokeSize.set(SK_Scalar1, SK_Scalar1);
    }

    const SkScalar dx = devStrokeSize.fX;
    const SkScalar dy = devStrokeSize.fY;
    const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf);
    const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf);

    // Temporarily #if'ed out. We don't want to pass in the devRect but
    // right now it is computed in GrContext::apply_aa_to_rect and we don't
    // want to throw away the work
#if 0
    SkRect devRect;
    combinedMatrix.mapRect(&devRect, rect);
#endif

    SkScalar spare;
    {
        SkScalar w = devRect.width() - dx;
        SkScalar h = devRect.height() - dy;
        spare = SkTMin(w, h);
    }

    SkRect devOutside(devRect);
    devOutside.outset(rx, ry);

    bool miterStroke = true;
    // For hairlines, make bevel and round joins appear the same as mitered ones.
    // small miter limit means right angles show bevel...
    if ((width > 0) && (stroke.getJoin() != SkPaint::kMiter_Join ||
                        stroke.getMiter() < SK_ScalarSqrt2)) {
        miterStroke = false;
    }

    if (spare <= 0 && miterStroke) {
        this->fillAARect(target, drawState, color, devOutside, SkMatrix::I(), devOutside);
        return;
    }

    SkRect devInside(devRect);
    devInside.inset(rx, ry);

    SkRect devOutsideAssist(devRect);

    // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist)
    // to draw the outer of the rect. Because there are 8 vertices on the outer
    // edge, while vertex number of inner edge is 4, the same as miter-stroke.
    if (!miterStroke) {
        devOutside.inset(0, ry);
        devOutsideAssist.outset(0, ry);
    }

    this->geometryStrokeAARect(target, drawState, color, devOutside, devOutsideAssist, devInside,
                               miterStroke);
}
static void MiterJoiner(SkPath* outer, SkPath* inner, const SkVector& beforeUnitNormal,
                        const SkPoint& pivot, const SkVector& afterUnitNormal,
                        SkScalar radius, SkScalar invMiterLimit,
                        bool prevIsLine, bool currIsLine)
{
    // negate the dot since we're using normals instead of tangents
    SkScalar    dotProd = SkPoint::DotProduct(beforeUnitNormal, afterUnitNormal);
    AngleType   angleType = Dot2AngleType(dotProd);
    SkVector    before = beforeUnitNormal;
    SkVector    after = afterUnitNormal;
    SkVector    mid;
    SkScalar    sinHalfAngle;
    bool        ccw;

    if (angleType == kNearlyLine_AngleType)
        return;
    if (angleType == kNearly180_AngleType)
    {
        currIsLine = false;
        goto DO_BLUNT;
    }

    ccw = !is_clockwise(before, after);
    if (ccw)
    {
        SkTSwap<SkPath*>(outer, inner);
        before.negate();
        after.negate();
    }

    /*  Before we enter the world of square-roots and divides,
        check if we're trying to join an upright right angle
        (common case for stroking rectangles). If so, special case
        that (for speed an accuracy).
        Note: we only need to check one normal if dot==0
    */
    if (0 == dotProd && invMiterLimit <= kOneOverSqrt2)
    {
        mid.set(SkScalarMul(before.fX + after.fX, radius),
                SkScalarMul(before.fY + after.fY, radius));
        goto DO_MITER;
    }

    /*  midLength = radius / sinHalfAngle
        if (midLength > miterLimit * radius) abort
        if (radius / sinHalf > miterLimit * radius) abort
        if (1 / sinHalf > miterLimit) abort
        if (1 / miterLimit > sinHalf) abort
        My dotProd is opposite sign, since it is built from normals and not tangents
        hence 1 + dot instead of 1 - dot in the formula
    */
    sinHalfAngle = SkScalarSqrt(SkScalarHalf(SK_Scalar1 + dotProd));
    if (sinHalfAngle < invMiterLimit)
    {
        currIsLine = false;
        goto DO_BLUNT;
    }

    // choose the most accurate way to form the initial mid-vector
    if (angleType == kSharp_AngleType)
    {
        mid.set(after.fY - before.fY, before.fX - after.fX);
        if (ccw)
            mid.negate();
    }
    else
        mid.set(before.fX + after.fX, before.fY + after.fY);

    mid.setLength(SkScalarDiv(radius, sinHalfAngle));
DO_MITER:
    if (prevIsLine)
        outer->setLastPt(pivot.fX + mid.fX, pivot.fY + mid.fY);
    else
        outer->lineTo(pivot.fX + mid.fX, pivot.fY + mid.fY);

DO_BLUNT:
    after.scale(radius);
    if (!currIsLine)
        outer->lineTo(pivot.fX + after.fX, pivot.fY + after.fY);
    HandleInnerJoin(inner, pivot, after);
}
示例#8
0
GrFragmentProcessor* GrConvexPolyEffect::Create(GrPrimitiveEdgeType type, const SkPath& path,
                                                const SkVector* offset) {
    if (kHairlineAA_GrProcessorEdgeType == type) {
        return nullptr;
    }
    if (path.getSegmentMasks() != SkPath::kLine_SegmentMask ||
        !path.isConvex()) {
        return nullptr;
    }

    SkPathPriv::FirstDirection dir;
    // The only way this should fail is if the clip is effectively a infinitely thin line. In that
    // case nothing is inside the clip. It'd be nice to detect this at a higher level and either
    // skip the draw or omit the clip element.
    if (!SkPathPriv::CheapComputeFirstDirection(path, &dir)) {
        if (GrProcessorEdgeTypeIsInverseFill(type)) {
            return GrConstColorProcessor::Create(0xFFFFFFFF,
                                                 GrConstColorProcessor::kModulateRGBA_InputMode);
        }
        return GrConstColorProcessor::Create(0, GrConstColorProcessor::kIgnore_InputMode);
    }

    SkVector t;
    if (nullptr == offset) {
        t.set(0, 0);
    } else {
        t = *offset;
    }

    SkScalar        edges[3 * kMaxEdges];
    SkPoint         pts[4];
    SkPath::Verb    verb;
    SkPath::Iter    iter(path, true);

    // SkPath considers itself convex so long as there is a convex contour within it,
    // regardless of any degenerate contours such as a string of moveTos before it.
    // Iterate here to consume any degenerate contours and only process the points
    // on the actual convex contour.
    int n = 0;
    while ((verb = iter.next(pts, true, true)) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kMove_Verb:
                SkASSERT(n == 0);
            case SkPath::kClose_Verb:
                break;
            case SkPath::kLine_Verb: {
                if (n >= kMaxEdges) {
                    return nullptr;
                }
                SkVector v = pts[1] - pts[0];
                v.normalize();
                if (SkPathPriv::kCCW_FirstDirection == dir) {
                    edges[3 * n] = v.fY;
                    edges[3 * n + 1] = -v.fX;
                } else {
                    edges[3 * n] = -v.fY;
                    edges[3 * n + 1] = v.fX;
                }
                SkPoint p = pts[1] + t;
                edges[3 * n + 2] = -(edges[3 * n] * p.fX + edges[3 * n + 1] * p.fY);
                ++n;
                break;
            }
            default:
                return nullptr;
        }
    }

    if (path.isInverseFillType()) {
        type = GrInvertProcessorEdgeType(type);
    }
    return Create(type, n, edges);
}
bool GrStrokePathRenderer::onDrawPath(const SkPath& origPath,
                                      const SkStrokeRec& stroke,
                                      GrDrawTarget* target,
                                      bool antiAlias) {
    if (origPath.isEmpty()) {
        return true;
    }

    SkScalar width = stroke.getWidth();
    if (width <= 0) {
        return false;
    }

    // Get the join type
    SkPaint::Join join = stroke.getJoin();
    SkScalar miterLimit = stroke.getMiter();
    SkScalar sqMiterLimit = SkScalarMul(miterLimit, miterLimit);
    if ((join == SkPaint::kMiter_Join) && (miterLimit <= SK_Scalar1)) {
        // If the miter limit is small, treat it as a bevel join
        join = SkPaint::kBevel_Join;
    }
    const bool isMiter       = (join == SkPaint::kMiter_Join);
    const bool isBevel       = (join == SkPaint::kBevel_Join);
    SkScalar invMiterLimit   = isMiter ? SK_Scalar1 / miterLimit : 0;
    SkScalar invMiterLimitSq = SkScalarMul(invMiterLimit, invMiterLimit);

    // Allocate vertices
    const int nbQuads     = origPath.countPoints() + 1; // Could be "-1" if path is not closed
    const int extraVerts  = isMiter || isBevel ? 1 : 0;
    const int maxVertexCount = nbQuads * (4 + extraVerts);
    const int maxIndexCount  = nbQuads * (6 + extraVerts * 3); // Each extra vert adds a triangle
    target->drawState()->setDefaultVertexAttribs();
    GrDrawTarget::AutoReleaseGeometry arg(target, maxVertexCount, maxIndexCount);
    if (!arg.succeeded()) {
        return false;
    }
    SkPoint* verts = reinterpret_cast<SkPoint*>(arg.vertices());
    uint16_t* idxs = reinterpret_cast<uint16_t*>(arg.indices());
    int vCount = 0, iCount = 0;

    // Transform the path into a list of triangles
    SkPath::Iter iter(origPath, false);
    SkPoint pts[4];
    const SkScalar radius = SkScalarMul(width, 0.5f);
    SkPoint *firstPt = verts, *lastPt = NULL;
    SkVector firstDir, dir;
    firstDir.set(0, 0);
    dir.set(0, 0);
    bool isOpen = true;
    for(SkPath::Verb v = iter.next(pts); v != SkPath::kDone_Verb; v = iter.next(pts)) {
        switch(v) {
            case SkPath::kMove_Verb:
                // This will already be handled as pts[0] of the 1st line
                break;
            case SkPath::kClose_Verb:
                isOpen = (lastPt == NULL);
                break;
            case SkPath::kLine_Verb:
            {
                SkVector v0 = dir;
                dir = pts[1] - pts[0];
                if (dir.setLength(radius)) {
                    SkVector dirT;
                    dirT.set(dir.fY, -dir.fX); // Get perpendicular direction
                    SkPoint l1a = pts[0]+dirT, l1b = pts[1]+dirT,
                            l2a = pts[0]-dirT, l2b = pts[1]-dirT;
                    SkPoint miterPt[2];
                    bool useMiterPoint = false;
                    int idx0(-1), idx1(-1);
                    if (NULL == lastPt) {
                        firstDir = dir;
                    } else {
                        SkVector v1 = dir;
                        if (v0.normalize() && v1.normalize()) {
                            SkScalar dotProd = v0.dot(v1);
                            // No need for bevel or miter join if the angle
                            // is either 0 or 180 degrees
                            if (!SkScalarNearlyZero(dotProd + SK_Scalar1) &&
                                !SkScalarNearlyZero(dotProd - SK_Scalar1)) {
                                bool ccw = !is_clockwise(v0, v1);
                                int offset = ccw ? 1 : 0;
                                idx0 = vCount-2+offset;
                                idx1 = vCount+offset;
                                const SkPoint* pt0 = &(lastPt[offset]);
                                const SkPoint* pt1 = ccw ? &l2a : &l1a;
                                switch(join) {
                                    case SkPaint::kMiter_Join:
                                    {
                                        // *Note : Logic is from MiterJoiner

                                        // FIXME : Special case if we have a right angle ?
                                        // if (SkScalarNearlyZero(dotProd)) {...}

                                        SkScalar sinHalfAngleSq =
                                                SkScalarHalf(SK_Scalar1 + dotProd);
                                        if (sinHalfAngleSq >= invMiterLimitSq) {
                                            // Find the miter point (or points if it is further
                                            // than the miter limit)
                                            const SkPoint pt2 = *pt0+v0, pt3 = *pt1+v1;
                                            if (intersection(*pt0, pt2, *pt1, pt3, miterPt[0]) !=
                                                kNone_IntersectionType) {
                                                SkPoint miterPt0 = miterPt[0] - *pt0;
                                                SkPoint miterPt1 = miterPt[0] - *pt1;
                                                SkScalar sqDist0 = miterPt0.dot(miterPt0);
                                                SkScalar sqDist1 = miterPt1.dot(miterPt1);
                                                const SkScalar rSq =
                                                        SkScalarDiv(SkScalarMul(radius, radius),
                                                                    sinHalfAngleSq);
                                                const SkScalar sqRLimit =
                                                        SkScalarMul(sqMiterLimit, rSq);
                                                if (sqDist0 > sqRLimit || sqDist1 > sqRLimit) {
                                                    if (sqDist1 > sqRLimit) {
                                                        v1.setLength(SkScalarSqrt(sqRLimit));
                                                        miterPt[1] = *pt1+v1;
                                                    } else {
                                                        miterPt[1] = miterPt[0];
                                                    }
                                                    if (sqDist0 > sqRLimit) {
                                                        v0.setLength(SkScalarSqrt(sqRLimit));
                                                        miterPt[0] = *pt0+v0;
                                                    }
                                                } else {
                                                    miterPt[1] = miterPt[0];
                                                }
                                                useMiterPoint = true;
                                            }
                                        }
                                        if (useMiterPoint && (miterPt[1] == miterPt[0])) {
                                            break;
                                        }
                                    }
                                    default:
                                    case SkPaint::kBevel_Join:
                                    {
                                        // Note : This currently causes some overdraw where both
                                        //        lines initially intersect. We'd need to add
                                        //        another line intersection check here if the
                                        //        overdraw becomes an issue instead of using the
                                        //        current point directly.

                                        // Add center point
                                        *verts++ = pts[0]; // Use current point directly
                                        // This idx is passed the current point so increment it
                                        ++idx1;
                                        // Add center triangle
                                        *idxs++ = idx0;
                                        *idxs++ = vCount;
                                        *idxs++ = idx1;
                                        vCount++;
                                        iCount += 3;
                                    }
                                    break;
                                }
                            }
                        }
                    }
                    *verts++ = l1a;
                    *verts++ = l2a;
                    lastPt   = verts;
                    *verts++ = l1b;
                    *verts++ = l2b;

                    if (useMiterPoint && (idx0 >= 0) && (idx1 >= 0)) {
                        firstPt[idx0] = miterPt[0];
                        firstPt[idx1] = miterPt[1];
                    }

                    // 1st triangle
                    *idxs++  = vCount+0;
                    *idxs++  = vCount+2;
                    *idxs++  = vCount+1;
                    // 2nd triangle
                    *idxs++  = vCount+1;
                    *idxs++  = vCount+2;
                    *idxs++  = vCount+3;

                    vCount += 4;
                    iCount += 6;
                }
            }
                break;
            case SkPath::kQuad_Verb:
            case SkPath::kCubic_Verb:
                SkDEBUGFAIL("Curves not supported!");
            default:
                // Unhandled cases
                SkASSERT(false);
        }
    }

    if (isOpen) {
        // Add caps
        switch (stroke.getCap()) {
            case SkPaint::kSquare_Cap:
                firstPt[0] -= firstDir;
                firstPt[1] -= firstDir;
                lastPt [0] += dir;
                lastPt [1] += dir;
                break;
            case SkPaint::kRound_Cap:
                SkDEBUGFAIL("Round caps not supported!");
            default: // No cap
                break;
        }
    }

    SkASSERT(vCount <= maxVertexCount);
    SkASSERT(iCount <= maxIndexCount);

    if (vCount > 0) {
        target->drawIndexed(kTriangles_GrPrimitiveType,
                            0,        // start vertex
                            0,        // start index
                            vCount,
                            iCount);
    }

    return true;
}
示例#10
0
void GrAARectRenderer::StrokeAARect(GrDrawTarget* target,
                                    const GrPipelineBuilder& pipelineBuilder,
                                    GrColor color,
                                    const SkMatrix& viewMatrix,
                                    const SkRect& rect,
                                    const SkRect& devRect,
                                    const SkStrokeRec& stroke) {
    SkVector devStrokeSize;
    SkScalar width = stroke.getWidth();
    if (width > 0) {
        devStrokeSize.set(width, width);
        viewMatrix.mapVectors(&devStrokeSize, 1);
        devStrokeSize.setAbs(devStrokeSize);
    } else {
        devStrokeSize.set(SK_Scalar1, SK_Scalar1);
    }

    const SkScalar dx = devStrokeSize.fX;
    const SkScalar dy = devStrokeSize.fY;
    const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf);
    const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf);

    SkScalar spare;
    {
        SkScalar w = devRect.width() - dx;
        SkScalar h = devRect.height() - dy;
        spare = SkTMin(w, h);
    }

    SkRect devOutside(devRect);
    devOutside.outset(rx, ry);

    bool miterStroke = true;
    // For hairlines, make bevel and round joins appear the same as mitered ones.
    // small miter limit means right angles show bevel...
    if ((width > 0) && (stroke.getJoin() != SkPaint::kMiter_Join ||
                        stroke.getMiter() < SK_ScalarSqrt2)) {
        miterStroke = false;
    }

    if (spare <= 0 && miterStroke) {
        FillAARect(target, pipelineBuilder, color, viewMatrix, devOutside, devOutside);
        return;
    }

    SkRect devInside(devRect);
    devInside.inset(rx, ry);

    SkRect devOutsideAssist(devRect);

    // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist)
    // to draw the outer of the rect. Because there are 8 vertices on the outer
    // edge, while vertex number of inner edge is 4, the same as miter-stroke.
    if (!miterStroke) {
        devOutside.inset(0, ry);
        devOutsideAssist.outset(0, ry);
    }

    GeometryStrokeAARect(target, pipelineBuilder, color, viewMatrix, devOutside,
                         devOutsideAssist, devInside, miterStroke);
}