void SkPathStroker::quad_to(const SkPoint pts[3],
                      const SkVector& normalAB, const SkVector& unitNormalAB,
                      SkVector* normalBC, SkVector* unitNormalBC,
                      int subDivide) {
    if (!set_normal_unitnormal(pts[1], pts[2], fRadius,
                               normalBC, unitNormalBC)) {
        // pts[1] nearly equals pts[2], so just draw a line to pts[2]
        this->line_to(pts[2], normalAB);
        *normalBC = normalAB;
        *unitNormalBC = unitNormalAB;
        return;
    }

    if (--subDivide >= 0 && normals_too_curvy(unitNormalAB, *unitNormalBC)) {
        SkPoint     tmp[5];
        SkVector    norm, unit;

        SkChopQuadAtHalf(pts, tmp);
        this->quad_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit, subDivide);
        this->quad_to(&tmp[2], norm, unit, normalBC, unitNormalBC, subDivide);
    } else {
        SkVector    normalB;

        normalB = pts[2] - pts[0];
        normalB.rotateCCW();
        SkScalar dot = SkPoint::DotProduct(unitNormalAB, *unitNormalBC);
        SkAssertResult(normalB.setLength(SkScalarDiv(fRadius,
                                     SkScalarSqrt((SK_Scalar1 + dot)/2))));

        fOuter.quadTo(  pts[1].fX + normalB.fX, pts[1].fY + normalB.fY,
                        pts[2].fX + normalBC->fX, pts[2].fY + normalBC->fY);
        fInner.quadTo(  pts[1].fX - normalB.fX, pts[1].fY - normalB.fY,
                        pts[2].fX - normalBC->fX, pts[2].fY - normalBC->fY);
    }
}
static void addbump(SkPath* path, const SkPoint pts[2], SkScalar bump) {
    SkVector    tang;

    tang.setLength(pts[1].fX - pts[0].fX, pts[1].fY - pts[0].fY, bump);

    path->lineTo(SkScalarHalf(pts[0].fX + pts[1].fX) - tang.fY,
                 SkScalarHalf(pts[0].fY + pts[1].fY) + tang.fX);
    path->lineTo(pts[1]);
}
示例#3
0
bool SkEmbossMaskFilter::filterMask(SkMask* dst, const SkMask& src,
                                    const SkMatrix& matrix, SkIPoint* margin) const {
    SkScalar sigma = matrix.mapRadius(fBlurSigma);

    if (!SkBlurMask::BoxBlur(dst, src, sigma, SkBlurMask::kInner_Style,
                             SkBlurMask::kLow_Quality)) {
        return false;
    }

    dst->fFormat = SkMask::k3D_Format;
    if (margin) {
        margin->set(SkScalarCeilToInt(3*sigma), SkScalarCeilToInt(3*sigma));
    }

    if (src.fImage == NULL) {
        return true;
    }

    // create a larger buffer for the other two channels (should force fBlur to do this for us)

    {
        uint8_t* alphaPlane = dst->fImage;
        size_t   planeSize = dst->computeImageSize();
        if (0 == planeSize) {
            return false;   // too big to allocate, abort
        }
        dst->fImage = SkMask::AllocImage(planeSize * 3);
        memcpy(dst->fImage, alphaPlane, planeSize);
        SkMask::FreeImage(alphaPlane);
    }

    // run the light direction through the matrix...
    Light   light = fLight;
    matrix.mapVectors((SkVector*)(void*)light.fDirection,
                      (SkVector*)(void*)fLight.fDirection, 1);

    // now restore the length of the XY component
    // cast to SkVector so we can call setLength (this double cast silences alias warnings)
    SkVector* vec = (SkVector*)(void*)light.fDirection;
    vec->setLength(light.fDirection[0],
                   light.fDirection[1],
                   SkPoint::Length(fLight.fDirection[0], fLight.fDirection[1]));

    SkEmbossMask::Emboss(dst, light);

    // restore original alpha
    memcpy(dst->fImage, src.fImage, src.computeImageSize());

    return true;
}
// Offset line segment p0-p1 'd0' and 'd1' units in the direction specified by 'side'
bool SkOffsetSegment(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1,
                     int side, SkPoint* offset0, SkPoint* offset1) {
    SkASSERT(side == -1 || side == 1);
    SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
    if (SkScalarNearlyEqual(d0, d1)) {
        // if distances are equal, can just outset by the perpendicular
        perp.setLength(d0*side);
        *offset0 = p0 + perp;
        *offset1 = p1 + perp;
    } else {
        // Otherwise we need to compute the outer tangent.
        // See: http://www.ambrsoft.com/TrigoCalc/Circles2/Circles2Tangent_.htm
        if (d0 < d1) {
            side = -side;
        }
        SkScalar dD = d0 - d1;
        // if one circle is inside another, we can't compute an offset
        if (dD*dD >= p0.distanceToSqd(p1)) {
            return false;
        }
        SkPoint outerTangentIntersect = SkPoint::Make((p1.fX*d0 - p0.fX*d1) / dD,
                                                      (p1.fY*d0 - p0.fY*d1) / dD);

        SkScalar d0sq = d0*d0;
        SkVector dP = outerTangentIntersect - p0;
        SkScalar dPlenSq = dP.lengthSqd();
        SkScalar discrim = SkScalarSqrt(dPlenSq - d0sq);
        offset0->fX = p0.fX + (d0sq*dP.fX - side*d0*dP.fY*discrim) / dPlenSq;
        offset0->fY = p0.fY + (d0sq*dP.fY + side*d0*dP.fX*discrim) / dPlenSq;

        SkScalar d1sq = d1*d1;
        dP = outerTangentIntersect - p1;
        dPlenSq = dP.lengthSqd();
        discrim = SkScalarSqrt(dPlenSq - d1sq);
        offset1->fX = p1.fX + (d1sq*dP.fX - side*d1*dP.fY*discrim) / dPlenSq;
        offset1->fY = p1.fY + (d1sq*dP.fY + side*d1*dP.fX*discrim) / dPlenSq;
    }

    return true;
}
示例#5
0
static void Perterb(SkPoint* p, const SkVector& tangent, SkScalar scale) {
    SkVector normal = tangent;
    SkPointPriv::RotateCCW(&normal);
    normal.setLength(scale);
    *p += normal;
}
static void MiterJoiner(SkPath* outer, SkPath* inner, const SkVector& beforeUnitNormal,
                        const SkPoint& pivot, const SkVector& afterUnitNormal,
                        SkScalar radius, SkScalar invMiterLimit,
                        bool prevIsLine, bool currIsLine)
{
    // negate the dot since we're using normals instead of tangents
    SkScalar    dotProd = SkPoint::DotProduct(beforeUnitNormal, afterUnitNormal);
    AngleType   angleType = Dot2AngleType(dotProd);
    SkVector    before = beforeUnitNormal;
    SkVector    after = afterUnitNormal;
    SkVector    mid;
    SkScalar    sinHalfAngle;
    bool        ccw;

    if (angleType == kNearlyLine_AngleType)
        return;
    if (angleType == kNearly180_AngleType)
    {
        currIsLine = false;
        goto DO_BLUNT;
    }

    ccw = !is_clockwise(before, after);
    if (ccw)
    {
        SkTSwap<SkPath*>(outer, inner);
        before.negate();
        after.negate();
    }

    /*  Before we enter the world of square-roots and divides,
        check if we're trying to join an upright right angle
        (common case for stroking rectangles). If so, special case
        that (for speed an accuracy).
        Note: we only need to check one normal if dot==0
    */
    if (0 == dotProd && invMiterLimit <= kOneOverSqrt2)
    {
        mid.set(SkScalarMul(before.fX + after.fX, radius),
                SkScalarMul(before.fY + after.fY, radius));
        goto DO_MITER;
    }

    /*  midLength = radius / sinHalfAngle
        if (midLength > miterLimit * radius) abort
        if (radius / sinHalf > miterLimit * radius) abort
        if (1 / sinHalf > miterLimit) abort
        if (1 / miterLimit > sinHalf) abort
        My dotProd is opposite sign, since it is built from normals and not tangents
        hence 1 + dot instead of 1 - dot in the formula
    */
    sinHalfAngle = SkScalarSqrt(SkScalarHalf(SK_Scalar1 + dotProd));
    if (sinHalfAngle < invMiterLimit)
    {
        currIsLine = false;
        goto DO_BLUNT;
    }

    // choose the most accurate way to form the initial mid-vector
    if (angleType == kSharp_AngleType)
    {
        mid.set(after.fY - before.fY, before.fX - after.fX);
        if (ccw)
            mid.negate();
    }
    else
        mid.set(before.fX + after.fX, before.fY + after.fY);

    mid.setLength(SkScalarDiv(radius, sinHalfAngle));
DO_MITER:
    if (prevIsLine)
        outer->setLastPt(pivot.fX + mid.fX, pivot.fY + mid.fY);
    else
        outer->lineTo(pivot.fX + mid.fX, pivot.fY + mid.fY);

DO_BLUNT:
    after.scale(radius);
    if (!currIsLine)
        outer->lineTo(pivot.fX + after.fX, pivot.fY + after.fY);
    HandleInnerJoin(inner, pivot, after);
}