示例#1
0
    /// Compute the output.
    void IncompTpfa::computeResults(TwophaseState& state,
                                    WellState& well_state) const
    {
        // Make sure h_ contains the direct-solution matrix
        // and right hand side (not jacobian and residual).
        // TODO: optimize by only adjusting b and diagonal of A.
        UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
        ifs_tpfa_assemble(gg, &forces_, &trans_[0], &gpress_omegaweighted_[0], h_);


        // Make sure h_->x contains the direct solution vector.
        ASSERT(int(state.pressure().size()) == grid_.number_of_cells);
        ASSERT(int(state.faceflux().size()) == grid_.number_of_faces);
        std::copy(state.pressure().begin(), state.pressure().end(), h_->x);
        std::copy(well_state.bhp().begin(), well_state.bhp().end(), h_->x + grid_.number_of_cells);

        // Obtain solution.
        ifs_tpfa_solution soln = { NULL, NULL, NULL, NULL };
        soln.cell_press = &state.pressure()[0];
        soln.face_flux  = &state.faceflux()[0];
        if (wells_ != NULL) {
            ASSERT(int(well_state.bhp().size()) == wells_->number_of_wells);
            ASSERT(int(well_state.perfRates().size()) == wells_->well_connpos[ wells_->number_of_wells ]);
            soln.well_flux = &well_state.perfRates()[0];
            soln.well_press = &well_state.bhp()[0];
        }
        ifs_tpfa_press_flux(gg, &forces_, &trans_[0], h_, &soln); // TODO: Check what parts of h_ are used here.
    }
示例#2
0
    // Solve with no rock compressibility (linear eqn).
    void IncompTpfa::solveIncomp(const double dt,
                                 TwophaseState& state,
                                 WellState& well_state)
    {
        // Set up properties.
        computePerSolveDynamicData(dt, state, well_state);

        // Assemble.
        UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
        int ok = ifs_tpfa_assemble(gg, &forces_, &trans_[0], &gpress_omegaweighted_[0], h_);
        if (!ok) {
            THROW("Failed assembling pressure system.");
        }

        // Solve.
        linsolver_.solve(h_->A, h_->b, h_->x);

        // Obtain solution.
        ASSERT(int(state.pressure().size()) == grid_.number_of_cells);
        ASSERT(int(state.faceflux().size()) == grid_.number_of_faces);
        ifs_tpfa_solution soln = { NULL, NULL, NULL, NULL };
        soln.cell_press = &state.pressure()[0];
        soln.face_flux  = &state.faceflux()[0];
        if (wells_ != NULL) {
            ASSERT(int(well_state.bhp().size()) == wells_->number_of_wells);
            ASSERT(int(well_state.perfRates().size()) == wells_->well_connpos[ wells_->number_of_wells ]);
            soln.well_flux = &well_state.perfRates()[0];
            soln.well_press = &well_state.bhp()[0];
        }
        ifs_tpfa_press_flux(gg, &forces_, &trans_[0], h_, &soln);
    }
    void TransportSolverTwophaseReorder::solve(const double* porevolume,
                                               const double* source,
                                               const double dt,
                                               TwophaseState& state)
    {
        darcyflux_ = &state.faceflux()[0];
        porevolume_ = porevolume;
        source_ = source;
        dt_ = dt;
        toWaterSat(state.saturation(), saturation_);

#ifdef EXPERIMENT_GAUSS_SEIDEL
        std::vector<int> seq(grid_.number_of_cells);
        std::vector<int> comp(grid_.number_of_cells + 1);
        int ncomp;
        compute_sequence_graph(&grid_, darcyflux_,
                               &seq[0], &comp[0], &ncomp,
                               &ia_upw_[0], &ja_upw_[0]);
        const int nf = grid_.number_of_faces;
        std::vector<double> neg_darcyflux(nf);
        std::transform(darcyflux_, darcyflux_ + nf, neg_darcyflux.begin(), std::negate<double>());
        compute_sequence_graph(&grid_, &neg_darcyflux[0],
                               &seq[0], &comp[0], &ncomp,
                               &ia_downw_[0], &ja_downw_[0]);
#endif
        std::fill(reorder_iterations_.begin(),reorder_iterations_.end(),0);
        reorderAndTransport(grid_, darcyflux_);
        toBothSat(saturation_, state.saturation());
    }
示例#4
0
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
    using namespace Opm;

    std::cout << "\n================    Test program for incompressible tof computations     ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    boost::scoped_ptr<EclipseGridParser> deck;
    boost::scoped_ptr<GridManager> grid;
    boost::scoped_ptr<IncompPropertiesInterface> props;
    boost::scoped_ptr<Opm::WellsManager> wells;
    TwophaseState state;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    if (use_deck) {
        std::string deck_filename = param.get<std::string>("deck_filename");
        deck.reset(new EclipseGridParser(deck_filename));
        // Grid init
        grid.reset(new GridManager(*deck));
        // Rock and fluid init
        props.reset(new IncompPropertiesFromDeck(*deck, *grid->c_grid()));
        // Wells init.
        wells.reset(new Opm::WellsManager(*deck, *grid->c_grid(), props->permeability()));
        // Gravity.
        gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
        // Init state variables (saturation and pressure).
        if (param.has("init_saturation")) {
            initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        } else {
            initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
        }
    } else {
        // Grid init.
        const int nx = param.getDefault("nx", 100);
        const int ny = param.getDefault("ny", 100);
        const int nz = param.getDefault("nz", 1);
        const double dx = param.getDefault("dx", 1.0);
        const double dy = param.getDefault("dy", 1.0);
        const double dz = param.getDefault("dz", 1.0);
        grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
        // Rock and fluid init.
        props.reset(new IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
        // Wells init.
        wells.reset(new Opm::WellsManager());
        // Gravity.
        gravity[2] = param.getDefault("gravity", 0.0);
        // Init state variables (saturation and pressure).
        initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
    }

    // Warn if gravity but no density difference.
    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    if (use_gravity) {
        if (props->density()[0] == props->density()[1]) {
            std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
        }
    }
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Initialising src
    std::vector<double> porevol;
    computePorevolume(*grid->c_grid(), props->porosity(), porevol);
    int num_cells = grid->c_grid()->number_of_cells;
    std::vector<double> src(num_cells, 0.0);
    if (use_deck) {
        // Do nothing, wells will be the driving force, not source terms.
    } else {
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        const double default_injection = use_gravity ? 0.0 : 0.1;
        const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
            *tot_porevol_init/unit::day;
        src[0] = flow_per_sec;
        src[num_cells - 1] = -flow_per_sec;
    }

    // Boundary conditions.
    FlowBCManager bcs;
    if (param.getDefault("use_pside", false)) {
        int pside = param.get<int>("pside");
        double pside_pressure = param.get<double>("pside_pressure");
        bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
    }

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Pressure solver.
    Opm::IncompTpfa psolver(*grid->c_grid(), *props, 0, linsolver,
                            0.0, 0.0, 0,
                            grav, wells->c_wells(), src, bcs.c_bcs());

    // Choice of tof solver.
    bool use_dg = param.getDefault("use_dg", false);
    int dg_degree = -1;
    if (use_dg) {
        dg_degree = param.getDefault("dg_degree", 0);
    }

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    std::ofstream epoch_os;
    std::string output_dir;
    if (output) {
        output_dir =
            param.getDefault("output_dir", std::string("output"));
        boost::filesystem::path fpath(output_dir);
        try {
            create_directories(fpath);
        }
        catch (...) {
            THROW("Creating directories failed: " << fpath);
        }
        std::string filename = output_dir + "/epoch_timing.param";
        epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
        // open file to clean it. The file is appended to in SimulatorTwophase
        filename = output_dir + "/step_timing.param";
        std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
        step_os.close();
        param.writeParam(output_dir + "/simulation.param");
    }

    // Init wells.
    Opm::WellState well_state;
    well_state.init(wells->c_wells(), state);

    // Main solvers.
    Opm::time::StopWatch pressure_timer;
    double ptime = 0.0;
    Opm::time::StopWatch transport_timer;
    double ttime = 0.0;
    Opm::time::StopWatch total_timer;
    total_timer.start();
    std::cout << "\n\n================    Starting main solvers     ===============" << std::endl;

    // Solve pressure.
    pressure_timer.start();
    psolver.solve(1.0, state, well_state);
    pressure_timer.stop();
    double pt = pressure_timer.secsSinceStart();
    std::cout << "Pressure solver took:  " << pt << " seconds." << std::endl;
    ptime += pt;

    // Process transport sources (to include bdy terms and well flows).
    std::vector<double> transport_src;
    Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0,
                                wells->c_wells(), well_state.perfRates(), transport_src);

    // Solve time-of-flight.
    std::vector<double> tof;
    if (use_dg) {
        bool use_cvi = param.getDefault("use_cvi", false);
        Opm::TransportModelTracerTofDiscGal tofsolver(*grid->c_grid(), use_cvi);
        transport_timer.start();
        tofsolver.solveTof(&state.faceflux()[0], &porevol[0], &transport_src[0], dg_degree, tof);
        transport_timer.stop();
    } else {
        Opm::TransportModelTracerTof tofsolver(*grid->c_grid());
        transport_timer.start();
        tofsolver.solveTof(&state.faceflux()[0], &porevol[0], &transport_src[0], tof);
        transport_timer.stop();
    }
    double tt = transport_timer.secsSinceStart();
    std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
    ttime += tt;
    total_timer.stop();

    // Output.
    if (output) {
        std::string tof_filename = output_dir + "/tof.txt";
        std::ofstream tof_stream(tof_filename.c_str());
        std::copy(tof.begin(), tof.end(), std::ostream_iterator<double>(tof_stream, "\n"));
    }

    std::cout << "\n\n================    End of simulation     ===============\n"
              << "Total time taken: " << total_timer.secsSinceStart()
              << "\n  Pressure time:  " << ptime
              << "\n  Transport time: " << ttime << std::endl;
}
示例#5
0
    SimulatorReport SimulatorIncompTwophase::Impl::run(SimulatorTimer& timer,
                                                       TwophaseState& state,
                                                       WellState& well_state)
    {
        std::vector<double> transport_src;

        // Initialisation.
        std::vector<double> porevol;
        if (rock_comp_props_ && rock_comp_props_->isActive()) {
            computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
        } else {
            computePorevolume(grid_, props_.porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        std::vector<double> initial_porevol = porevol;

        // Main simulation loop.
        Opm::time::StopWatch pressure_timer;
        double ptime = 0.0;
        Opm::time::StopWatch transport_timer;
        double ttime = 0.0;
        Opm::time::StopWatch callback_timer;
        double time_in_callbacks = 0.0;
        Opm::time::StopWatch step_timer;
        Opm::time::StopWatch total_timer;
        total_timer.start();
        double init_satvol[2] = { 0.0 };
        double satvol[2] = { 0.0 };
        double tot_injected[2] = { 0.0 };
        double tot_produced[2] = { 0.0 };
        Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
        *log_ << "\nInitial saturations are    " << init_satvol[0]/tot_porevol_init
              << "    " << init_satvol[1]/tot_porevol_init << std::endl;
        Opm::Watercut watercut;
        watercut.push(0.0, 0.0, 0.0);
        Opm::WellReport wellreport;
        std::vector<double> fractional_flows;
        std::vector<double> well_resflows_phase;
        if (wells_) {
            well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
            wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
        }
        std::fstream tstep_os;
        if (output_) {
            std::string filename = output_dir_ + "/step_timing.param";
            tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
        }
        while (!timer.done()) {
            // Report timestep and (optionally) write state to disk.
            step_timer.start();
            timer.report(*log_);
            if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
                if (output_vtk_) {
                    outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
                }
                outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
                if (use_reorder_) {
                    // This use of dynamic_cast is not ideal, but should be safe.
                    outputVectorMatlab(std::string("reorder_it"),
                                       dynamic_cast<const TransportSolverTwophaseReorder&>(*tsolver_).getReorderIterations(),
                                       timer.currentStepNum(), output_dir_);
                }
            }

            SimulatorReport sreport;

            // Solve pressure equation.
            if (check_well_controls_) {
                computeFractionalFlow(props_, allcells_, state.saturation(), fractional_flows);
                wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
            }
            bool well_control_passed = !check_well_controls_;
            int well_control_iteration = 0;
            do {
                // Run solver.
                pressure_timer.start();
                std::vector<double> initial_pressure = state.pressure();
                psolver_.solve(timer.currentStepLength(), state, well_state);

                // Renormalize pressure if rock is incompressible, and
                // there are no pressure conditions (bcs or wells).
                // It is deemed sufficient for now to renormalize
                // using geometric volume instead of pore volume.
                if ((rock_comp_props_ == NULL || !rock_comp_props_->isActive())
                    && allNeumannBCs(bcs_) && allRateWells(wells_)) {
                    // Compute average pressures of previous and last
                    // step, and total volume.
                    double av_prev_press = 0.0;
                    double av_press = 0.0;
                    double tot_vol = 0.0;
                    const int num_cells = grid_.number_of_cells;
                    for (int cell = 0; cell < num_cells; ++cell) {
                        av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
                        av_press      += state.pressure()[cell]*grid_.cell_volumes[cell];
                        tot_vol       += grid_.cell_volumes[cell];
                    }
                    // Renormalization constant
                    const double ren_const = (av_prev_press - av_press)/tot_vol;
                    for (int cell = 0; cell < num_cells; ++cell) {
                        state.pressure()[cell] += ren_const;
                    }
                    const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
                    for (int well = 0; well < num_wells; ++well) {
                        well_state.bhp()[well] += ren_const;
                    }
                }

                // Stop timer and report.
                pressure_timer.stop();
                double pt = pressure_timer.secsSinceStart();
                *log_ << "Pressure solver took:  " << pt << " seconds." << std::endl;
                ptime += pt;
                sreport.pressure_time = pt;

                // Optionally, check if well controls are satisfied.
                if (check_well_controls_) {
                    Opm::computePhaseFlowRatesPerWell(*wells_,
                                                      well_state.perfRates(),
                                                      fractional_flows,
                                                      well_resflows_phase);
                    *log_ << "Checking well conditions." << std::endl;
                    // For testing we set surface := reservoir
                    well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
                    ++well_control_iteration;
                    if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
                        OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
                    }
                    if (!well_control_passed) {
                        *log_ << "Well controls not passed, solving again." << std::endl;
                    } else {
                        *log_ << "Well conditions met." << std::endl;
                    }
                }
            } while (!well_control_passed);

            // Update pore volumes if rock is compressible.
            if (rock_comp_props_ && rock_comp_props_->isActive()) {
                initial_porevol = porevol;
                computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
            }

            // Process transport sources (to include bdy terms and well flows).
            Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
                                        wells_, well_state.perfRates(), transport_src);

            // Solve transport.
            transport_timer.start();
            double stepsize = timer.currentStepLength();
            if (num_transport_substeps_ != 1) {
                stepsize /= double(num_transport_substeps_);
                *log_ << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
            }
            double injected[2] = { 0.0 };
            double produced[2] = { 0.0 };
            for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
                tsolver_->solve(&initial_porevol[0], &transport_src[0], stepsize, state);

                double substep_injected[2] = { 0.0 };
                double substep_produced[2] = { 0.0 };
                Opm::computeInjectedProduced(props_, state.saturation(), transport_src, stepsize,
                                             substep_injected, substep_produced);
                injected[0] += substep_injected[0];
                injected[1] += substep_injected[1];
                produced[0] += substep_produced[0];
                produced[1] += substep_produced[1];
                if (use_reorder_ && use_segregation_split_) {
                    // Again, unfortunate but safe use of dynamic_cast.
                    // Possible solution: refactor gravity solver to its own class.
                    dynamic_cast<TransportSolverTwophaseReorder&>(*tsolver_)
                        .solveGravity(&initial_porevol[0], stepsize, state);
                }
                watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
                              produced[0]/(produced[0] + produced[1]),
                              tot_produced[0]/tot_porevol_init);
                if (wells_) {
                    wellreport.push(props_, *wells_, state.saturation(),
                                    timer.simulationTimeElapsed() + timer.currentStepLength(),
                                    well_state.bhp(), well_state.perfRates());
                }
            }
            transport_timer.stop();
            double tt = transport_timer.secsSinceStart();
            sreport.transport_time = tt;
            *log_ << "Transport solver took: " << tt << " seconds." << std::endl;
            ttime += tt;
            // Report volume balances.
            Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
            tot_injected[0] += injected[0];
            tot_injected[1] += injected[1];
            tot_produced[0] += produced[0];
            tot_produced[1] += produced[1];
            reportVolumes(*log_, satvol, tot_porevol_init,
                          tot_injected, tot_produced,
                          injected, produced,
                          init_satvol);
            sreport.total_time =  step_timer.secsSinceStart();
            if (output_) {
                sreport.reportParam(tstep_os);
            }

            // advance the timer to the end of the timestep *before* notifying
            // the client that the timestep is done
            ++timer;

            // notify all clients that we are done with the timestep
            callback_timer.start ();
            timestep_completed_.signal ();
            callback_timer.stop ();
            time_in_callbacks += callback_timer.secsSinceStart ();
        }

        if (output_) {
            if (output_vtk_) {
                outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
            }
            outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
            if (use_reorder_) {
                // This use of dynamic_cast is not ideal, but should be safe.
                outputVectorMatlab(std::string("reorder_it"),
                                   dynamic_cast<const TransportSolverTwophaseReorder&>(*tsolver_).getReorderIterations(),
                                   timer.currentStepNum(), output_dir_);
                }
            outputWaterCut(watercut, output_dir_);
            if (wells_) {
                outputWellReport(wellreport, output_dir_);
            }
            tstep_os.close();
        }

        total_timer.stop();

        SimulatorReport report;
        report.pressure_time = ptime;
        report.transport_time = ttime;
        report.total_time = total_timer.secsSinceStart() - time_in_callbacks;
        return report;
    }