示例#1
0
double 
ME_Model::regularized_func_grad(const double C, const Vec & x, Vec & grad)
{
  double f = FunctionGradient(x.STLVec(), grad.STLVec());
  for (size_t i = 0; i < x.Size(); i++) {
    f += C * fabs(x[i]);
  }

  return f;
}
示例#2
0
double 
ME_Model::backtracking_line_search(
			 const Vec & x0, const Vec & grad0, const double f0, 
			 const Vec & dx, Vec & x, Vec & grad1)
{
  double t = 1.0 / LINE_SEARCH_BETA;

  double f;
  do {
    t *= LINE_SEARCH_BETA;
    x = x0 + t * dx;
    f = FunctionGradient(x.STLVec(), grad1.STLVec());
    //        cout << "*";
  } while (f > f0 + LINE_SEARCH_ALPHA * t * dot_product(dx, grad0));

  return f;
}
示例#3
0
vector<double> 
ME_Model::perform_LBFGS(const vector<double> & x0)
{
  const size_t dim = x0.size();
  Vec x = x0;

  Vec grad(dim), dx(dim);
  double f = FunctionGradient(x.STLVec(), grad.STLVec());

  Vec s[M], y[M];
  double z[M];  // rho

  for (int iter = 0; iter < LBFGS_MAX_ITER; iter++) {

    Rprintf("%3d  obj(err) = %f (%6.4f)", iter+1, -f, _train_error);
    if (_nheldout > 0) {
      const double heldout_logl = heldout_likelihood();
      Rprintf("  heldout_logl(err) = %f (%6.4f)", heldout_logl, _heldout_error);
    }
    Rprintf("\n");

    if (sqrt(dot_product(grad, grad)) < MIN_GRAD_NORM) break;

    dx = -1 * approximate_Hg(iter, grad, s, y, z);

    Vec x1(dim), grad1(dim);
    f = backtracking_line_search(x, grad, f, dx, x1, grad1);

    s[iter % M] = x1 - x;
    y[iter % M] = grad1 - grad;
    z[iter % M] = 1.0 / dot_product(y[iter % M], s[iter % M]);
    x = x1;
    grad = grad1;
  }

  return x.STLVec();
}
示例#4
0
vector<double> 
ME_Model::perform_OWLQN(const vector<double> & x0, const double C)
{
  const size_t dim = x0.size();
  Vec x = x0;

  Vec grad(dim), dx(dim);
  double f = regularized_func_grad(C, x, grad);

  Vec s[M], y[M];
  double z[M];  // rho

  for (int iter = 0; iter < OWLQN_MAX_ITER; iter++) {
    Vec pg = pseudo_gradient(x, grad, C);

    fprintf(stderr, "%3d  obj(err) = %f (%6.4f)", iter+1, -f, _train_error);
    if (_nheldout > 0) {
      const double heldout_logl = heldout_likelihood();
      fprintf(stderr, "  heldout_logl(err) = %f (%6.4f)", heldout_logl, _heldout_error);
    }
    fprintf(stderr, "\n");

    if (sqrt(dot_product(pg, pg)) < MIN_GRAD_NORM) break;

    dx = -1 * approximate_Hg(iter, pg, s, y, z);
    if (dot_product(dx, pg) >= 0)
      dx.Project(-1 * pg);

    Vec x1(dim), grad1(dim);
    f = constrained_line_search(C, x, pg, f, dx, x1, grad1);

    s[iter % M] = x1 - x;
    y[iter % M] = grad1 - grad;
    z[iter % M] = 1.0 / dot_product(y[iter % M], s[iter % M]);

    x = x1;
    grad = grad1;
  }

  return x.STLVec();
}