/// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool AlphaAsmPrinter::runOnMachineFunction(MachineFunction &MF) { this->MF = &MF; SetupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // Print out jump tables referenced by the function EmitJumpTableInfo(MF.getJumpTableInfo(), MF); // Print out labels for the function. const Function *F = MF.getFunction(); OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); EmitAlignment(MF.getAlignment(), F); switch (F->getLinkage()) { default: llvm_unreachable("Unknown linkage type!"); case Function::InternalLinkage: // Symbols default to internal. case Function::PrivateLinkage: case Function::LinkerPrivateLinkage: break; case Function::ExternalLinkage: O << "\t.globl " << CurrentFnName << "\n"; break; case Function::WeakAnyLinkage: case Function::WeakODRLinkage: case Function::LinkOnceAnyLinkage: case Function::LinkOnceODRLinkage: O << TAI->getWeakRefDirective() << CurrentFnName << "\n"; break; } printVisibility(CurrentFnName, F->getVisibility()); O << "\t.ent " << CurrentFnName << "\n"; O << CurrentFnName << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { if (I != MF.begin()) { printBasicBlockLabel(I, true, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. ++EmittedInsts; printInstruction(II); } } O << "\t.end " << CurrentFnName << "\n"; // We didn't modify anything. return false; }
void MachineVerifier::verifyLiveVariables() { assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); MFI != MFE; ++MFI) { BBInfo &MInfo = MBBInfoMap[MFI]; // Our vregsRequired should be identical to LiveVariables' AliveBlocks if (MInfo.vregsRequired.count(Reg)) { if (!VI.AliveBlocks.test(MFI->getNumber())) { report("LiveVariables: Block missing from AliveBlocks", MFI); *OS << "Virtual register " << PrintReg(Reg) << " must be live through the block.\n"; } } else { if (VI.AliveBlocks.test(MFI->getNumber())) { report("LiveVariables: Block should not be in AliveBlocks", MFI); *OS << "Virtual register " << PrintReg(Reg) << " is not needed live through the block.\n"; } } } } }
/// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool AlphaAsmPrinter::runOnMachineFunction(MachineFunction &MF) { SetupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // Print out jump tables referenced by the function EmitJumpTableInfo(MF.getJumpTableInfo(), MF); // Print out labels for the function. const Function *F = MF.getFunction(); SwitchToSection(TAI->SectionForGlobal(F)); EmitAlignment(4, F); switch (F->getLinkage()) { default: assert(0 && "Unknown linkage type!"); case Function::InternalLinkage: // Symbols default to internal. case Function::PrivateLinkage: break; case Function::ExternalLinkage: O << "\t.globl " << CurrentFnName << "\n"; break; case Function::WeakLinkage: case Function::LinkOnceLinkage: O << TAI->getWeakRefDirective() << CurrentFnName << "\n"; break; } printVisibility(CurrentFnName, F->getVisibility()); O << "\t.ent " << CurrentFnName << "\n"; O << CurrentFnName << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { if (I != MF.begin()) { printBasicBlockLabel(I, true, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. ++EmittedInsts; if (!printInstruction(II)) { assert(0 && "Unhandled instruction in asm writer!"); abort(); } } } O << "\t.end " << CurrentFnName << "\n"; // We didn't modify anything. return false; }
/// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the variable information of a virtual register /// which is used in a PHI node. We map that to the BB the vreg is coming from. /// void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] .push_back(BBI->getOperand(i).getReg()); }
/// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the number of uses of a virtual register which is /// used in a PHI node. We map that to the BB the vreg is coming from. This is /// used later to determine when the vreg is killed in the BB. /// void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) { for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(), BBI->getOperand(i).getReg())]; }
/// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the number of uses of a virtual register which is /// used in a PHI node. We map that to the BB the vreg is coming from. This is /// used later to determine when the vreg is killed in the BB. /// void PHIElimination::analyzePHINodes(const MachineFunction& MF) { for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->isPHI(); ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(), BBI->getOperand(i).getReg())]; }
/// extractLexicalScopes - Extract instruction ranges for each lexical scopes /// for the given machine function. void LexicalScopes:: extractLexicalScopes(SmallVectorImpl<InsnRange> &MIRanges, DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) { // Scan each instruction and create scopes. First build working set of scopes. for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { const MachineInstr *RangeBeginMI = NULL; const MachineInstr *PrevMI = NULL; DebugLoc PrevDL; for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); II != IE; ++II) { const MachineInstr *MInsn = II; // Check if instruction has valid location information. const DebugLoc MIDL = MInsn->getDebugLoc(); if (MIDL.isUnknown()) { PrevMI = MInsn; continue; } // If scope has not changed then skip this instruction. if (MIDL == PrevDL) { PrevMI = MInsn; continue; } // Ignore DBG_VALUE. It does not contribute to any instruction in output. if (MInsn->isDebugValue()) continue; if (RangeBeginMI) { // If we have already seen a beginning of an instruction range and // current instruction scope does not match scope of first instruction // in this range then create a new instruction range. InsnRange R(RangeBeginMI, PrevMI); MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL); MIRanges.push_back(R); } // This is a beginning of a new instruction range. RangeBeginMI = MInsn; // Reset previous markers. PrevMI = MInsn; PrevDL = MIDL; } // Create last instruction range. if (RangeBeginMI && PrevMI && !PrevDL.isUnknown()) { InsnRange R(RangeBeginMI, PrevMI); MIRanges.push_back(R); MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL); } } }
void WinException::computeIP2StateTable( const MachineFunction *MF, const WinEHFuncInfo &FuncInfo, SmallVectorImpl<std::pair<const MCExpr *, int>> &IPToStateTable) { for (MachineFunction::const_iterator FuncletStart = MF->begin(), FuncletEnd = MF->begin(), End = MF->end(); FuncletStart != End; FuncletStart = FuncletEnd) { // Find the end of the funclet while (++FuncletEnd != End) { if (FuncletEnd->isEHFuncletEntry()) { break; } } // Don't emit ip2state entries for cleanup funclets. Any interesting // exceptional actions in cleanups must be handled in a separate IR // function. if (FuncletStart->isCleanupFuncletEntry()) continue; MCSymbol *StartLabel; int BaseState; if (FuncletStart == MF->begin()) { BaseState = NullState; StartLabel = Asm->getFunctionBegin(); } else { auto *FuncletPad = cast<FuncletPadInst>(FuncletStart->getBasicBlock()->getFirstNonPHI()); assert(FuncInfo.FuncletBaseStateMap.count(FuncletPad) != 0); BaseState = FuncInfo.FuncletBaseStateMap.find(FuncletPad)->second; StartLabel = getMCSymbolForMBB(Asm, &*FuncletStart); } assert(StartLabel && "need local function start label"); IPToStateTable.push_back( std::make_pair(create32bitRef(StartLabel), BaseState)); for (const auto &StateChange : InvokeStateChangeIterator::range( FuncInfo, FuncletStart, FuncletEnd, BaseState)) { // Compute the label to report as the start of this entry; use the EH // start label for the invoke if we have one, otherwise (this is a call // which may unwind to our caller and does not have an EH start label, so) // use the previous end label. const MCSymbol *ChangeLabel = StateChange.NewStartLabel; if (!ChangeLabel) ChangeLabel = StateChange.PreviousEndLabel; // Emit an entry indicating that PCs after 'Label' have this EH state. IPToStateTable.push_back( std::make_pair(getLabelPlusOne(ChangeLabel), StateChange.NewState)); // FIXME: assert that NewState is between CatchLow and CatchHigh. } } }
/// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool SparcAsmPrinter::runOnMachineFunction(MachineFunction &MF) { SetupMachineFunction(MF); // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // BBNumber is used here so that a given Printer will never give two // BBs the same name. (If you have a better way, please let me know!) static unsigned BBNumber = 0; O << "\n\n"; // What's my mangled name? CurrentFnName = Mang->getValueName(MF.getFunction()); // Print out the label for the function. const Function *F = MF.getFunction(); SwitchToTextSection(getSectionForFunction(*F).c_str(), F); EmitAlignment(4, F); O << "\t.globl\t" << CurrentFnName << "\n"; O << "\t.type\t" << CurrentFnName << ", #function\n"; O << CurrentFnName << ":\n"; // Number each basic block so that we can consistently refer to them // in PC-relative references. // FIXME: Why not use the MBB numbers? NumberForBB.clear(); for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { NumberForBB[I->getBasicBlock()] = BBNumber++; } // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I != MF.begin()) { printBasicBlockLabel(I, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printInstruction(II); ++EmittedInsts; } } // We didn't modify anything. return false; }
void BT::runEdgeQueue(BitVector &BlockScanned) { while (!FlowQ.empty()) { CFGEdge Edge = FlowQ.front(); FlowQ.pop(); if (EdgeExec.count(Edge)) return; EdgeExec.insert(Edge); ReachedBB.insert(Edge.second); const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second); MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); // Visit PHI nodes first. while (It != End && It->isPHI()) { const MachineInstr &PI = *It++; InstrExec.insert(&PI); visitPHI(PI); } // If this block has already been visited through a flow graph edge, // then the instructions have already been processed. Any updates to // the cells would now only happen through visitUsesOf... if (BlockScanned[Edge.second]) return; BlockScanned[Edge.second] = true; // Visit non-branch instructions. while (It != End && !It->isBranch()) { const MachineInstr &MI = *It++; InstrExec.insert(&MI); visitNonBranch(MI); } // If block end has been reached, add the fall-through edge to the queue. if (It == End) { MachineFunction::const_iterator BIt = B.getIterator(); MachineFunction::const_iterator Next = std::next(BIt); if (Next != MF.end() && B.isSuccessor(&*Next)) { int ThisN = B.getNumber(); int NextN = Next->getNumber(); FlowQ.push(CFGEdge(ThisN, NextN)); } } else { // Handle the remaining sequence of branches. This function will update // the work queue. visitBranchesFrom(*It); } } // while (!FlowQ->empty()) }
/// Emit the language-specific data that __C_specific_handler expects. This /// handler lives in the x64 Microsoft C runtime and allows catching or cleaning /// up after faults with __try, __except, and __finally. The typeinfo values /// are not really RTTI data, but pointers to filter functions that return an /// integer (1, 0, or -1) indicating how to handle the exception. For __finally /// blocks and other cleanups, the landing pad label is zero, and the filter /// function is actually a cleanup handler with the same prototype. A catch-all /// entry is modeled with a null filter function field and a non-zero landing /// pad label. /// /// Possible filter function return values: /// EXCEPTION_EXECUTE_HANDLER (1): /// Jump to the landing pad label after cleanups. /// EXCEPTION_CONTINUE_SEARCH (0): /// Continue searching this table or continue unwinding. /// EXCEPTION_CONTINUE_EXECUTION (-1): /// Resume execution at the trapping PC. /// /// Inferred table structure: /// struct Table { /// int NumEntries; /// struct Entry { /// imagerel32 LabelStart; /// imagerel32 LabelEnd; /// imagerel32 FilterOrFinally; // One means catch-all. /// imagerel32 LabelLPad; // Zero means __finally. /// } Entries[NumEntries]; /// }; void WinException::emitCSpecificHandlerTable(const MachineFunction *MF) { auto &OS = *Asm->OutStreamer; MCContext &Ctx = Asm->OutContext; WinEHFuncInfo &FuncInfo = MMI->getWinEHFuncInfo(MF->getFunction()); // Use the assembler to compute the number of table entries through label // difference and division. MCSymbol *TableBegin = Ctx.createTempSymbol("lsda_begin", /*AlwaysAddSuffix=*/true); MCSymbol *TableEnd = Ctx.createTempSymbol("lsda_end", /*AlwaysAddSuffix=*/true); const MCExpr *LabelDiff = getOffset(TableEnd, TableBegin); const MCExpr *EntrySize = MCConstantExpr::create(16, Ctx); const MCExpr *EntryCount = MCBinaryExpr::createDiv(LabelDiff, EntrySize, Ctx); OS.EmitValue(EntryCount, 4); OS.EmitLabel(TableBegin); // Iterate over all the invoke try ranges. Unlike MSVC, LLVM currently only // models exceptions from invokes. LLVM also allows arbitrary reordering of // the code, so our tables end up looking a bit different. Rather than // trying to match MSVC's tables exactly, we emit a denormalized table. For // each range of invokes in the same state, we emit table entries for all // the actions that would be taken in that state. This means our tables are // slightly bigger, which is OK. const MCSymbol *LastStartLabel = nullptr; int LastEHState = -1; // Break out before we enter into a finally funclet. // FIXME: We need to emit separate EH tables for cleanups. MachineFunction::const_iterator End = MF->end(); MachineFunction::const_iterator Stop = std::next(MF->begin()); while (Stop != End && !Stop->isEHFuncletEntry()) ++Stop; for (const auto &StateChange : InvokeStateChangeIterator::range(FuncInfo, MF->begin(), Stop)) { // Emit all the actions for the state we just transitioned out of // if it was not the null state if (LastEHState != -1) emitSEHActionsForRange(FuncInfo, LastStartLabel, StateChange.PreviousEndLabel, LastEHState); LastStartLabel = StateChange.NewStartLabel; LastEHState = StateChange.NewState; } OS.EmitLabel(TableEnd); }
/// runOnMachineFunction - This uses the printInstruction() /// method to print assembly for each instruction. /// bool PIC16AsmPrinter::runOnMachineFunction(MachineFunction &MF) { this->MF = &MF; // This calls the base class function required to be called at beginning // of runOnMachineFunction. SetupMachineFunction(MF); // Get the mangled name. const Function *F = MF.getFunction(); CurrentFnName = Mang->getValueName(F); // Emit the function variables. emitFunctionData(MF); std::string codeSection; codeSection = "code." + CurrentFnName + ".# " + "CODE"; const Section *fCodeSection = TAI->getNamedSection(codeSection.c_str(), SectionFlags::Code); O << "\n"; SwitchToSection (fCodeSection); // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I != MF.begin()) { printBasicBlockLabel(I, true); O << '\n'; } else O << CurrentFnName << ":\n"; CurBank = ""; for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. printMachineInstruction(II); } } return false; // we didn't modify anything. }
/// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool IA64AsmPrinter::runOnMachineFunction(MachineFunction &MF) { this->MF = &MF; SetupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); const Function *F = MF.getFunction(); SwitchToSection(TAI->SectionForGlobal(F)); // Print out labels for the function. EmitAlignment(5); O << "\t.global\t" << CurrentFnName << '\n'; printVisibility(CurrentFnName, F->getVisibility()); O << "\t.type\t" << CurrentFnName << ", @function\n"; O << CurrentFnName << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block if there are any predecessors. if (!I->pred_empty()) { printBasicBlockLabel(I, true, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. printMachineInstruction(II); } } // We didn't modify anything. return false; }
bool VirtRegReduction::runOnMachineFunction(MachineFunction &MF) { bool Changed = false; #if VRRPROF const Function *F = MF.getFunction(); std::string FN = F->getName().str(); llog("starting vrr... %s (%d)\n", FN.c_str(), (int)time(NULL)); llog("starting immRegs finder... (%d)\n", (int)time(NULL)); #endif std::auto_ptr<std::unordered_set<unsigned> > immRegsHolder; std::unordered_set<unsigned> *immRegs = NULL; // single-def regs defined by a MoveImm shouldn't coalesce as we may be // able to fold them later { std::unordered_map<unsigned, const MachineInstr *> singleDef; MachineFunction::const_iterator I = MF.begin(), E = MF.end(); // find all registers w/ a single def for(; I != E; I++) { MachineBasicBlock::const_iterator BI = I->begin(), BE = I->end(); for(; BI != BE; BI++) { MachineInstr::const_mop_iterator II, IE; II = BI->operands_begin(); IE = BI->operands_end(); for(; II != IE; II++) if(II->isReg() && II->isDef()) { unsigned R = II->getReg(); std::unordered_map<unsigned, const MachineInstr *>::iterator SI = singleDef.find(R); if(SI == singleDef.end()) singleDef[R] = BI; // first seen! insert else SI->second = NULL; // second seen -- replace w/ NULL } } } std::unordered_map<unsigned, const MachineInstr *>::const_iterator SI = singleDef.begin(), SE = singleDef.end(); for(; SI != SE; SI++) { if(SI->second && SI->second->getDesc().isMoveImmediate()) // single def imm? { if(!immRegs) immRegsHolder.reset(immRegs = new std::unordered_set<unsigned>); immRegs->insert(SI->first); // don't coalesce } } } #if VRRPROF llog("starting tdkRegs finder... (%d)\n", (int)time(NULL)); #endif std::auto_ptr<std::unordered_set<unsigned> > tdkRegsHolder; std::unordered_set<unsigned> *tdkRegs = NULL; bool setjmpSafe = !MF.callsSetJmp() && MF.getFunction()->doesNotThrow(); { tdkRegsHolder.reset(tdkRegs = new std::unordered_set<unsigned>); std::unordered_map<unsigned, unsigned> trivialDefKills; MachineFunction::const_iterator I = MF.begin(), E = MF.end(); // find all registers defed and killed in the same block w/ no intervening // unsafe (due to setjmp) calls + side-effecty operations for(; I != E; I++) { std::unordered_set<unsigned> defs; MachineBasicBlock::const_iterator BI = I->begin(), BE = I->end(); for(; BI != BE; BI++) { // TODO need to add || BI->getDesc().isInlineAsm() here to help stackification? if((!setjmpSafe && BI->getDesc().isCall()) || BI->getDesc().hasUnmodeledSideEffects()) { // invalidate on a call instruction if setjmp present, or instr with side effects regardless defs.clear(); } MachineInstr::const_mop_iterator II, IE; // uses when we're not tracking a reg it make it unsafe II = BI->operands_begin(); IE = BI->operands_end(); for(; II != IE; II++) if(II->isReg() && II->isUse()) { unsigned R = II->getReg(); std::unordered_set<unsigned>::const_iterator DI = defs.find(R); if(DI == defs.end()) trivialDefKills[R] = 100; } // kills of tracked defs are trivial def/kills II = BI->operands_begin(); IE = BI->operands_end(); for(; II != IE; II++) if(II->isReg() && II->isKill()) { unsigned R = II->getReg(); std::unordered_set<unsigned>::const_iterator DI = defs.find(R); if(DI != defs.end()) { defs.erase(DI); trivialDefKills[R]++; } else trivialDefKills[R] = 100; // don't use } // record all defs in this instruction II = BI->operands_begin(); IE = BI->operands_end(); for(; II != IE; II++) if(II->isReg() && II->isDef()) defs.insert(II->getReg()); } } std::unordered_map<unsigned, unsigned>::const_iterator DKI = trivialDefKills.begin(), DKE = trivialDefKills.end(); for(; DKI != DKE; DKI++) if(DKI->second == 1) tdkRegs->insert(DKI->first); } #if VRRPROF llog("starting conflict graph construction... (%d)\n", (int)time(NULL)); #endif std::unordered_set<unsigned>::const_iterator tdkE = tdkRegs->end(); std::unordered_set<unsigned> *okRegs = NULL; if(!setjmpSafe) okRegs = tdkRegs; MachineRegisterInfo *RI = &(MF.getRegInfo()); // will eventually hold a virt register coloring for this function ConflictGraph::Coloring coloring; { ConflictGraph cg; LiveIntervals &LIS = getAnalysis<LiveIntervals>(); LiveIntervals::const_iterator I = LIS.begin(), E = LIS.end(); // check every possible LiveInterval, LiveInterval pair of the same // register class for overlap and add overlaps to the conflict graph // also, treat trivially def-kill-ed regs and not trivially def-kill-ed // regs as conflicting so they end up using different VRs -- this makes // stackification easier later in the toolchain for(; I != E; I++) { unsigned R = I->first; if(TargetRegisterInfo::isPhysicalRegister(R)) continue; if(okRegs && okRegs->find(R) == okRegs->end()) continue; // leave singly-defined MoveImm regs for later coalescing if(immRegs && immRegs->find(R) != immRegs->end()) continue; // const TargetRegisterClass *RC = RI->getRegClass(R); const LiveInterval *LI = I->second; if(LI->empty()) continue; cg.addVertex(R); bool notTDK = tdkRegs->find(R) == tdkE; LiveIntervals::const_iterator I1 = I; I1++; for(; I1 != E; I1++) { unsigned R1 = I1->first; if(TargetRegisterInfo::isPhysicalRegister(R1)) continue; if(okRegs && okRegs->find(R1) == okRegs->end()) continue; // leave singly-defined MoveImm regs for later coalescing if(immRegs && immRegs->find(R1) != immRegs->end()) continue; /* Don't bother checked RC -- even though it sounds like an opt, it doesn't speed us up in practice const TargetRegisterClass *RC1 = RI->getRegClass(R1); if(RC != RC1) continue; // different reg class... won't conflict */ const LiveInterval *LI1 = I1->second; // conflict if intervals overlap OR they're not both TDK or both NOT TDK if(LI->overlaps(*LI1) || notTDK != (tdkRegs->find(R1) == tdkE)) cg.addEdge(R, R1); } } #if VRRPROF llog("starting coloring... (%d)\n", (int)time(NULL)); #endif cg.color(&coloring); #if VRRPROF llog("starting vreg=>vreg construction... (%d)\n", (int)time(NULL)); #endif typedef std::unordered_map<unsigned, unsigned> VRegMap; VRegMap Regs; // build up map of vreg=>vreg { std::unordered_map<const TargetRegisterClass *, std::unordered_map<unsigned, unsigned> > RCColor2VReg; ConflictGraph::Coloring::const_iterator I = coloring.begin(), E = coloring.end(); for(; I != E; I++) { unsigned R = I->first; unsigned Color = I->second; const TargetRegisterClass *RC = RI->getRegClass(R); std::unordered_map<unsigned, unsigned> &Color2VReg = RCColor2VReg[RC]; VRegMap::const_iterator CI = Color2VReg.find(Color); if(CI != Color2VReg.end()) Regs[R] = CI->second; // seen this color; map it else Regs[R] = Color2VReg[Color] = R; // first sighting of color; bind to this reg } } #if VRRPROF llog("starting remap... (%d)\n", (int)time(NULL)); #endif // remap regs { VRegMap::const_iterator I = Regs.begin(), E = Regs.end(); for(; I != E; I++) if(I->first != I->second) { RI->replaceRegWith(I->first, I->second); Changed = true; } } } #if VRRPROF llog("done... (%d)\n", (int)time(NULL)); #endif return Changed; }
bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { raw_ostream *OutFile = 0; if (OutFileName) { std::string ErrorInfo; OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, raw_fd_ostream::F_Append); if (!ErrorInfo.empty()) { errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; exit(1); } OS = OutFile; } else { OS = &errs(); } foundErrors = 0; this->MF = &MF; TM = &MF.getTarget(); TII = TM->getInstrInfo(); TRI = TM->getRegisterInfo(); MRI = &MF.getRegInfo(); LiveVars = NULL; LiveInts = NULL; LiveStks = NULL; Indexes = NULL; if (PASS) { LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); // We don't want to verify LiveVariables if LiveIntervals is available. if (!LiveInts) LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); } visitMachineFunctionBefore(); for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); MFI!=MFE; ++MFI) { visitMachineBasicBlockBefore(MFI); for (MachineBasicBlock::const_iterator MBBI = MFI->begin(), MBBE = MFI->end(); MBBI != MBBE; ++MBBI) { if (MBBI->getParent() != MFI) { report("Bad instruction parent pointer", MFI); *OS << "Instruction: " << *MBBI; continue; } visitMachineInstrBefore(MBBI); for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) visitMachineOperand(&MBBI->getOperand(I), I); visitMachineInstrAfter(MBBI); } visitMachineBasicBlockAfter(MFI); } visitMachineFunctionAfter(); if (OutFile) delete OutFile; else if (foundErrors) report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); // Clean up. regsLive.clear(); regsDefined.clear(); regsDead.clear(); regsKilled.clear(); regsLiveInButUnused.clear(); MBBInfoMap.clear(); return false; // no changes }
void MachineVerifier::verifyLiveIntervals() { assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); for (LiveIntervals::const_iterator LVI = LiveInts->begin(), LVE = LiveInts->end(); LVI != LVE; ++LVI) { const LiveInterval &LI = *LVI->second; // Spilling and splitting may leave unused registers around. Skip them. if (MRI->use_empty(LI.reg)) continue; // Physical registers have much weirdness going on, mostly from coalescing. // We should probably fix it, but for now just ignore them. if (TargetRegisterInfo::isPhysicalRegister(LI.reg)) continue; assert(LVI->first == LI.reg && "Invalid reg to interval mapping"); for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); I!=E; ++I) { VNInfo *VNI = *I; const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); if (!DefVNI) { if (!VNI->isUnused()) { report("Valno not live at def and not marked unused", MF); *OS << "Valno #" << VNI->id << " in " << LI << '\n'; } continue; } if (VNI->isUnused()) continue; if (DefVNI != VNI) { report("Live range at def has different valno", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << " where valno #" << DefVNI->id << " is live in " << LI << '\n'; continue; } const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); if (!MBB) { report("Invalid definition index", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << " in " << LI << '\n'; continue; } if (VNI->isPHIDef()) { if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { report("PHIDef value is not defined at MBB start", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << ", not at the beginning of BB#" << MBB->getNumber() << " in " << LI << '\n'; } } else { // Non-PHI def. const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); if (!MI) { report("No instruction at def index", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << " in " << LI << '\n'; } else if (!MI->modifiesRegister(LI.reg, TRI)) { report("Defining instruction does not modify register", MI); *OS << "Valno #" << VNI->id << " in " << LI << '\n'; } bool isEarlyClobber = false; if (MI) { for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && MOI->isEarlyClobber()) { isEarlyClobber = true; break; } } } // Early clobber defs begin at USE slots, but other defs must begin at // DEF slots. if (isEarlyClobber) { if (!VNI->def.isUse()) { report("Early clobber def must be at a USE slot", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << " in " << LI << '\n'; } } else if (!VNI->def.isDef()) { report("Non-PHI, non-early clobber def must be at a DEF slot", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << " in " << LI << '\n'; } } } for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) { const VNInfo *VNI = I->valno; assert(VNI && "Live range has no valno"); if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { report("Foreign valno in live range", MF); I->print(*OS); *OS << " has a valno not in " << LI << '\n'; } if (VNI->isUnused()) { report("Live range valno is marked unused", MF); I->print(*OS); *OS << " in " << LI << '\n'; } const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); if (!MBB) { report("Bad start of live segment, no basic block", MF); I->print(*OS); *OS << " in " << LI << '\n'; continue; } SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); if (I->start != MBBStartIdx && I->start != VNI->def) { report("Live segment must begin at MBB entry or valno def", MBB); I->print(*OS); *OS << " in " << LI << '\n' << "Basic block starts at " << MBBStartIdx << '\n'; } const MachineBasicBlock *EndMBB = LiveInts->getMBBFromIndex(I->end.getPrevSlot()); if (!EndMBB) { report("Bad end of live segment, no basic block", MF); I->print(*OS); *OS << " in " << LI << '\n'; continue; } if (I->end != LiveInts->getMBBEndIdx(EndMBB)) { // The live segment is ending inside EndMBB const MachineInstr *MI = LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); if (!MI) { report("Live segment doesn't end at a valid instruction", EndMBB); I->print(*OS); *OS << " in " << LI << '\n' << "Basic block starts at " << MBBStartIdx << '\n'; } else if (TargetRegisterInfo::isVirtualRegister(LI.reg) && !MI->readsVirtualRegister(LI.reg)) { // A live range can end with either a redefinition, a kill flag on a // use, or a dead flag on a def. // FIXME: Should we check for each of these? bool hasDeadDef = false; for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && MOI->isDead()) { hasDeadDef = true; break; } } if (!hasDeadDef) { report("Instruction killing live segment neither defines nor reads " "register", MI); I->print(*OS); *OS << " in " << LI << '\n'; } } } // Now check all the basic blocks in this live segment. MachineFunction::const_iterator MFI = MBB; // Is this live range the beginning of a non-PHIDef VN? if (I->start == VNI->def && !VNI->isPHIDef()) { // Not live-in to any blocks. if (MBB == EndMBB) continue; // Skip this block. ++MFI; } for (;;) { assert(LiveInts->isLiveInToMBB(LI, MFI)); // We don't know how to track physregs into a landing pad. if (TargetRegisterInfo::isPhysicalRegister(LI.reg) && MFI->isLandingPad()) { if (&*MFI == EndMBB) break; ++MFI; continue; } // Check that VNI is live-out of all predecessors. for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), PE = MFI->pred_end(); PI != PE; ++PI) { SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI).getPrevSlot(); const VNInfo *PVNI = LI.getVNInfoAt(PEnd); if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI)) continue; if (!PVNI) { report("Register not marked live out of predecessor", *PI); *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live at " << PEnd << " in " << LI << '\n'; continue; } if (PVNI != VNI) { report("Different value live out of predecessor", *PI); *OS << "Valno #" << PVNI->id << " live out of BB#" << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n'; } } if (&*MFI == EndMBB) break; ++MFI; } } // Check the LI only has one connected component. if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { ConnectedVNInfoEqClasses ConEQ(*LiveInts); unsigned NumComp = ConEQ.Classify(&LI); if (NumComp > 1) { report("Multiple connected components in live interval", MF); *OS << NumComp << " components in " << LI << '\n'; for (unsigned comp = 0; comp != NumComp; ++comp) { *OS << comp << ": valnos"; for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); I!=E; ++I) if (comp == ConEQ.getEqClass(*I)) *OS << ' ' << (*I)->id; *OS << '\n'; } } } } }
/// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke /// has a try-range containing the call, a non-zero landing pad, and an /// appropriate action. The entry for an ordinary call has a try-range /// containing the call and zero for the landing pad and the action. Calls /// marked 'nounwind' have no entry and must not be contained in the try-range /// of any entry - they form gaps in the table. Entries must be ordered by /// try-range address. void DwarfException:: ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, const RangeMapType &PadMap, const SmallVectorImpl<const LandingPadInfo *> &LandingPads, const SmallVectorImpl<unsigned> &FirstActions) { // The end label of the previous invoke or nounwind try-range. MCSymbol *LastLabel = 0; // Whether there is a potentially throwing instruction (currently this means // an ordinary call) between the end of the previous try-range and now. bool SawPotentiallyThrowing = false; // Whether the last CallSite entry was for an invoke. bool PreviousIsInvoke = false; // Visit all instructions in order of address. for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { if (MI->isCall()) SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI); continue; } // End of the previous try-range? MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); if (BeginLabel == LastLabel) SawPotentiallyThrowing = false; // Beginning of a new try-range? RangeMapType::const_iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) // Nope, it was just some random label. continue; const PadRange &P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // For Dwarf exception handling (SjLj handling doesn't use this). If some // instruction between the previous try-range and this one may throw, // create a call-site entry with no landing pad for the region between the // try-ranges. if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) { CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 }; CallSites.push_back(Site); PreviousIsInvoke = false; } LastLabel = LandingPad->EndLabels[P.RangeIndex]; assert(BeginLabel && LastLabel && "Invalid landing pad!"); if (!LandingPad->LandingPadLabel) { // Create a gap. PreviousIsInvoke = false; } else { // This try-range is for an invoke. CallSiteEntry Site = { BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex] }; // Try to merge with the previous call-site. SJLJ doesn't do this if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. if (Asm->MAI->isExceptionHandlingDwarf()) CallSites.push_back(Site); else { // SjLj EH must maintain the call sites in the order assigned // to them by the SjLjPrepare pass. unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel); if (CallSites.size() < SiteNo) CallSites.resize(SiteNo); CallSites[SiteNo - 1] = Site; } PreviousIsInvoke = true; } } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) { CallSiteEntry Site = { LastLabel, 0, 0, 0 }; CallSites.push_back(Site); } }
void InterferenceCache::Entry::update(unsigned MBBNum) { SlotIndex Start, Stop; tie(Start, Stop) = Indexes->getMBBRange(MBBNum); // Use advanceTo only when possible. if (PrevPos != Start) { if (!PrevPos.isValid() || Start < PrevPos) for (unsigned i = 0, e = Iters.size(); i != e; ++i) Iters[i].find(Start); else for (unsigned i = 0, e = Iters.size(); i != e; ++i) Iters[i].advanceTo(Start); PrevPos = Start; } MachineFunction::const_iterator MFI = MF->getBlockNumbered(MBBNum); BlockInterference *BI = &Blocks[MBBNum]; ArrayRef<SlotIndex> RegMaskSlots; ArrayRef<const uint32_t*> RegMaskBits; for (;;) { BI->Tag = Tag; BI->First = BI->Last = SlotIndex(); // Check for first interference. for (unsigned i = 0, e = Iters.size(); i != e; ++i) { Iter &I = Iters[i]; if (!I.valid()) continue; SlotIndex StartI = I.start(); if (StartI >= Stop) continue; if (!BI->First.isValid() || StartI < BI->First) BI->First = StartI; } // Also check for register mask interference. RegMaskSlots = LIS->getRegMaskSlotsInBlock(MBBNum); RegMaskBits = LIS->getRegMaskBitsInBlock(MBBNum); SlotIndex Limit = BI->First.isValid() ? BI->First : Stop; for (unsigned i = 0, e = RegMaskSlots.size(); i != e && RegMaskSlots[i] < Limit; ++i) if (MachineOperand::clobbersPhysReg(RegMaskBits[i], PhysReg)) { // Register mask i clobbers PhysReg before the LIU interference. BI->First = RegMaskSlots[i]; break; } PrevPos = Stop; if (BI->First.isValid()) break; // No interference in this block? Go ahead and precompute the next block. if (++MFI == MF->end()) return; MBBNum = MFI->getNumber(); BI = &Blocks[MBBNum]; if (BI->Tag == Tag) return; tie(Start, Stop) = Indexes->getMBBRange(MBBNum); } // Check for last interference in block. for (unsigned i = 0, e = Iters.size(); i != e; ++i) { Iter &I = Iters[i]; if (!I.valid() || I.start() >= Stop) continue; I.advanceTo(Stop); bool Backup = !I.valid() || I.start() >= Stop; if (Backup) --I; SlotIndex StopI = I.stop(); if (!BI->Last.isValid() || StopI > BI->Last) BI->Last = StopI; if (Backup) ++I; } // Also check for register mask interference. SlotIndex Limit = BI->Last.isValid() ? BI->Last : Start; for (unsigned i = RegMaskSlots.size(); i && RegMaskSlots[i-1].getDeadSlot() > Limit; --i) if (MachineOperand::clobbersPhysReg(RegMaskBits[i-1], PhysReg)) { // Register mask i-1 clobbers PhysReg after the LIU interference. // Model the regmask clobber as a dead def. BI->Last = RegMaskSlots[i-1].getDeadSlot(); break; } }
/// runOnMachineFunction - This emits the frame section, autos section and /// assembly for each instruction. Also takes care of function begin debug /// directive and file begin debug directive (if required) for the function. /// bool PIC16AsmPrinter::runOnMachineFunction(MachineFunction &MF) { this->MF = &MF; // This calls the base class function required to be called at beginning // of runOnMachineFunction. SetupMachineFunction(MF); // Get the mangled name. const Function *F = MF.getFunction(); CurrentFnName = Mang->getMangledName(F); // Emit the function frame (args and temps). EmitFunctionFrame(MF); DbgInfo.BeginFunction(MF); // Emit the autos section of function. EmitAutos(CurrentFnName); // Now emit the instructions of function in its code section. const MCSection *fCodeSection = getObjFileLowering().getSectionForFunction(CurrentFnName); // Start the Code Section. O << "\n"; OutStreamer.SwitchSection(fCodeSection); // Emit the frame address of the function at the beginning of code. O << "\tretlw low(" << PAN::getFrameLabel(CurrentFnName) << ")\n"; O << "\tretlw high(" << PAN::getFrameLabel(CurrentFnName) << ")\n"; // Emit function start label. O << CurrentFnName << ":\n"; DebugLoc CurDL; O << "\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I != MF.begin()) { printBasicBlockLabel(I, true); O << '\n'; } // Print a basic block. for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Emit the line directive if source line changed. const DebugLoc DL = II->getDebugLoc(); if (!DL.isUnknown() && DL != CurDL) { DbgInfo.ChangeDebugLoc(MF, DL); CurDL = DL; } // Print the assembly for the instruction. printMachineInstruction(II); } } // Emit function end debug directives. DbgInfo.EndFunction(MF); return false; // we didn't modify anything. }
void MachineVerifier::verifyLiveIntervals() { assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); // Spilling and splitting may leave unused registers around. Skip them. if (MRI->reg_nodbg_empty(Reg)) continue; if (!LiveInts->hasInterval(Reg)) { report("Missing live interval for virtual register", MF); *OS << PrintReg(Reg, TRI) << " still has defs or uses\n"; continue; } const LiveInterval &LI = LiveInts->getInterval(Reg); assert(Reg == LI.reg && "Invalid reg to interval mapping"); for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); I!=E; ++I) { VNInfo *VNI = *I; const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); if (!DefVNI) { if (!VNI->isUnused()) { report("Valno not live at def and not marked unused", MF); *OS << "Valno #" << VNI->id << " in " << LI << '\n'; } continue; } if (VNI->isUnused()) continue; if (DefVNI != VNI) { report("Live range at def has different valno", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << " where valno #" << DefVNI->id << " is live in " << LI << '\n'; continue; } const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); if (!MBB) { report("Invalid definition index", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << " in " << LI << '\n'; continue; } if (VNI->isPHIDef()) { if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { report("PHIDef value is not defined at MBB start", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << ", not at the beginning of BB#" << MBB->getNumber() << " in " << LI << '\n'; } } else { // Non-PHI def. const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); if (!MI) { report("No instruction at def index", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << " in " << LI << '\n'; continue; } bool hasDef = false; bool isEarlyClobber = false; for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { if (!MOI->isReg() || !MOI->isDef()) continue; if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { if (MOI->getReg() != LI.reg) continue; } else { if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || !TRI->regsOverlap(LI.reg, MOI->getReg())) continue; } hasDef = true; if (MOI->isEarlyClobber()) isEarlyClobber = true; } if (!hasDef) { report("Defining instruction does not modify register", MI); *OS << "Valno #" << VNI->id << " in " << LI << '\n'; } // Early clobber defs begin at USE slots, but other defs must begin at // DEF slots. if (isEarlyClobber) { if (!VNI->def.isEarlyClobber()) { report("Early clobber def must be at an early-clobber slot", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << " in " << LI << '\n'; } } else if (!VNI->def.isRegister()) { report("Non-PHI, non-early clobber def must be at a register slot", MF); *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << " in " << LI << '\n'; } } } for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) { const VNInfo *VNI = I->valno; assert(VNI && "Live range has no valno"); if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { report("Foreign valno in live range", MF); I->print(*OS); *OS << " has a valno not in " << LI << '\n'; } if (VNI->isUnused()) { report("Live range valno is marked unused", MF); I->print(*OS); *OS << " in " << LI << '\n'; } const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); if (!MBB) { report("Bad start of live segment, no basic block", MF); I->print(*OS); *OS << " in " << LI << '\n'; continue; } SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); if (I->start != MBBStartIdx && I->start != VNI->def) { report("Live segment must begin at MBB entry or valno def", MBB); I->print(*OS); *OS << " in " << LI << '\n' << "Basic block starts at " << MBBStartIdx << '\n'; } const MachineBasicBlock *EndMBB = LiveInts->getMBBFromIndex(I->end.getPrevSlot()); if (!EndMBB) { report("Bad end of live segment, no basic block", MF); I->print(*OS); *OS << " in " << LI << '\n'; continue; } // No more checks for live-out segments. if (I->end == LiveInts->getMBBEndIdx(EndMBB)) continue; // The live segment is ending inside EndMBB const MachineInstr *MI = LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); if (!MI) { report("Live segment doesn't end at a valid instruction", EndMBB); I->print(*OS); *OS << " in " << LI << '\n' << "Basic block starts at " << MBBStartIdx << '\n'; continue; } // The block slot must refer to a basic block boundary. if (I->end.isBlock()) { report("Live segment ends at B slot of an instruction", MI); I->print(*OS); *OS << " in " << LI << '\n'; } if (I->end.isDead()) { // Segment ends on the dead slot. // That means there must be a dead def. if (!SlotIndex::isSameInstr(I->start, I->end)) { report("Live segment ending at dead slot spans instructions", MI); I->print(*OS); *OS << " in " << LI << '\n'; } } // A live segment can only end at an early-clobber slot if it is being // redefined by an early-clobber def. if (I->end.isEarlyClobber()) { if (I+1 == E || (I+1)->start != I->end) { report("Live segment ending at early clobber slot must be " "redefined by an EC def in the same instruction", MI); I->print(*OS); *OS << " in " << LI << '\n'; } } // The following checks only apply to virtual registers. Physreg liveness // is too weird to check. if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { // A live range can end with either a redefinition, a kill flag on a // use, or a dead flag on a def. bool hasRead = false; bool hasDeadDef = false; for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { if (!MOI->isReg() || MOI->getReg() != LI.reg) continue; if (MOI->readsReg()) hasRead = true; if (MOI->isDef() && MOI->isDead()) hasDeadDef = true; } if (I->end.isDead()) { if (!hasDeadDef) { report("Instruction doesn't have a dead def operand", MI); I->print(*OS); *OS << " in " << LI << '\n'; } } else { if (!hasRead) { report("Instruction ending live range doesn't read the register", MI); I->print(*OS); *OS << " in " << LI << '\n'; } } } // Now check all the basic blocks in this live segment. MachineFunction::const_iterator MFI = MBB; // Is this live range the beginning of a non-PHIDef VN? if (I->start == VNI->def && !VNI->isPHIDef()) { // Not live-in to any blocks. if (MBB == EndMBB) continue; // Skip this block. ++MFI; } for (;;) { assert(LiveInts->isLiveInToMBB(LI, MFI)); // We don't know how to track physregs into a landing pad. if (TargetRegisterInfo::isPhysicalRegister(LI.reg) && MFI->isLandingPad()) { if (&*MFI == EndMBB) break; ++MFI; continue; } // Is VNI a PHI-def in the current block? bool IsPHI = VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI); // Check that VNI is live-out of all predecessors. for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), PE = MFI->pred_end(); PI != PE; ++PI) { SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); const VNInfo *PVNI = LI.getVNInfoBefore(PEnd); // All predecessors must have a live-out value. if (!PVNI) { report("Register not marked live out of predecessor", *PI); *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before " << PEnd << " in " << LI << '\n'; continue; } // Only PHI-defs can take different predecessor values. if (!IsPHI && PVNI != VNI) { report("Different value live out of predecessor", *PI); *OS << "Valno #" << PVNI->id << " live out of BB#" << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << PrintReg(Reg) << ": " << LI << '\n'; } } if (&*MFI == EndMBB) break; ++MFI; } } // Check the LI only has one connected component. if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { ConnectedVNInfoEqClasses ConEQ(*LiveInts); unsigned NumComp = ConEQ.Classify(&LI); if (NumComp > 1) { report("Multiple connected components in live interval", MF); *OS << NumComp << " components in " << LI << '\n'; for (unsigned comp = 0; comp != NumComp; ++comp) { *OS << comp << ": valnos"; for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); I!=E; ++I) if (comp == ConEQ.getEqClass(*I)) *OS << ' ' << (*I)->id; *OS << '\n'; } } } } }
void InterferenceCache::Entry::update(unsigned MBBNum) { SlotIndex Start, Stop; tie(Start, Stop) = Indexes->getMBBRange(MBBNum); // Use advanceTo only when possible. if (PrevPos != Start) { if (!PrevPos.isValid() || Start < PrevPos) for (unsigned i = 0, e = Iters.size(); i != e; ++i) Iters[i].find(Start); else for (unsigned i = 0, e = Iters.size(); i != e; ++i) Iters[i].advanceTo(Start); PrevPos = Start; } MachineFunction::const_iterator MFI = MF->getBlockNumbered(MBBNum); BlockInterference *BI = &Blocks[MBBNum]; for (;;) { BI->Tag = Tag; BI->First = BI->Last = SlotIndex(); // Check for first interference. for (unsigned i = 0, e = Iters.size(); i != e; ++i) { Iter &I = Iters[i]; if (!I.valid()) continue; SlotIndex StartI = I.start(); if (StartI >= Stop) continue; if (!BI->First.isValid() || StartI < BI->First) BI->First = StartI; } PrevPos = Stop; if (BI->First.isValid()) break; // No interference in this block? Go ahead and precompute the next block. if (++MFI == MF->end()) return; MBBNum = MFI->getNumber(); BI = &Blocks[MBBNum]; if (BI->Tag == Tag) return; tie(Start, Stop) = Indexes->getMBBRange(MBBNum); } // Check for last interference in block. for (unsigned i = 0, e = Iters.size(); i != e; ++i) { Iter &I = Iters[i]; if (!I.valid() || I.start() >= Stop) continue; I.advanceTo(Stop); bool Backup = !I.valid() || I.start() >= Stop; if (Backup) --I; SlotIndex StopI = I.stop(); if (!BI->Last.isValid() || StopI > BI->Last) BI->Last = StopI; if (Backup) ++I; } }
/// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool X86IntelAsmPrinter::runOnMachineFunction(MachineFunction &MF) { SetupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // Print out labels for the function. const Function *F = MF.getFunction(); unsigned CC = F->getCallingConv(); // Populate function information map. Actually, We don't want to populate // non-stdcall or non-fastcall functions' information right now. if (CC == CallingConv::X86_StdCall || CC == CallingConv::X86_FastCall) FunctionInfoMap[F] = *MF.getInfo<X86MachineFunctionInfo>(); decorateName(CurrentFnName, F); SwitchToTextSection("_text", F); unsigned FnAlign = 4; if (F->hasFnAttr(Attribute::OptimizeForSize)) FnAlign = 1; switch (F->getLinkage()) { default: assert(0 && "Unsupported linkage type!"); case Function::PrivateLinkage: case Function::InternalLinkage: EmitAlignment(FnAlign); break; case Function::DLLExportLinkage: DLLExportedFns.insert(CurrentFnName); //FALLS THROUGH case Function::ExternalLinkage: O << "\tpublic " << CurrentFnName << "\n"; EmitAlignment(FnAlign); break; } O << CurrentFnName << "\tproc near\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block if there are any predecessors. if (!I->pred_empty()) { printBasicBlockLabel(I, true, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. printMachineInstruction(II); } } // Print out jump tables referenced by the function. EmitJumpTableInfo(MF.getJumpTableInfo(), MF); O << CurrentFnName << "\tendp\n"; O.flush(); // We didn't modify anything. return false; }
/// runOnMachineFunction - This uses the printInstruction() /// method to print assembly for each instruction. /// bool PIC16AsmPrinter::runOnMachineFunction(MachineFunction &MF) { this->MF = &MF; // This calls the base class function required to be called at beginning // of runOnMachineFunction. SetupMachineFunction(MF); // Get the mangled name. const Function *F = MF.getFunction(); CurrentFnName = Mang->getValueName(F); // Emit the function variables. EmitFunctionFrame(MF); // Emit function begin debug directives DbgInfo.EmitFunctBeginDI(F); EmitAutos(CurrentFnName); const char *codeSection = PAN::getCodeSectionName(CurrentFnName).c_str(); const Section *fCodeSection = TAI->getNamedSection(codeSection, SectionFlags::Code); O << "\n"; // Start the Code Section. SwitchToSection (fCodeSection); // Emit the frame address of the function at the beginning of code. O << "\tretlw low(" << PAN::getFrameLabel(CurrentFnName) << ")\n"; O << "\tretlw high(" << PAN::getFrameLabel(CurrentFnName) << ")\n"; // Emit function start label. O << CurrentFnName << ":\n"; // For emitting line directives, we need to keep track of the current // source line. When it changes then only emit the line directive. unsigned CurLine = 0; O << "\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I != MF.begin()) { printBasicBlockLabel(I, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Emit the line directive if source line changed. const DebugLoc DL = II->getDebugLoc(); if (!DL.isUnknown()) { unsigned line = MF.getDebugLocTuple(DL).Line; if (line != CurLine) { O << "\t.line " << line << "\n"; CurLine = line; } } // Print the assembly for the instruction. printMachineInstruction(II); } } // Emit function end debug directives. DbgInfo.EmitFunctEndDI(F, CurLine); return false; // we didn't modify anything. }
bool AccessFrequency::runOnMachineFunction(MachineFunction &mf) { MF = &mf; MRI = &mf.getRegInfo(); TRI = MF->getTarget().getRegisterInfo(); m_nVars = 0; const llvm::Function *fn = mf.getFunction(); std::string szMain = "main"; if(fn->getName() != szMain && g_hFuncCall[szMain].find(fn->getName()) == g_hFuncCall[szMain].end() ) { errs() << "--------qali:--------Skip function " << fn->getName() << " in AccessFrequency !\n"; return true; } for (MachineFunction::const_iterator FI = MF->begin(), FE = MF->end(); FI != FE; ++FI) { double dFactor = 0.0; const BasicBlock *bb = FI->getBasicBlock(); if( bb != NULL ) { //const std::map<const Function *, std::map<const BasicBlock *, double> > &hF2B2Acc =(SP->BlockInformation); std::map<const Function *, std::map<const BasicBlock *, double> >::const_iterator f2b2acc_p, E = g_hF2B2Acc->end(); if( (f2b2acc_p = g_hF2B2Acc->find(fn) ) != E ) { std::map<const BasicBlock *, double>::const_iterator b2acc_p, EE = f2b2acc_p->second.end(); if( (b2acc_p = f2b2acc_p->second.find(bb) ) != EE ) dFactor = b2acc_p->second; } } if( dFactor == 0.0 ) dFactor = 1.0; for (MachineBasicBlock::const_iterator BBI = FI->begin(), BBE = FI->end(); BBI != BBE; ++BBI) { DEBUG(BBI->print(dbgs(), NULL )); //MachineInstr *MI = BBI; for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++ i) { const MachineOperand &MO = BBI->getOperand(i); // TODO (qali#1#): To hack other kinds of MachineOperands switch (MO.getType() ) { case MachineOperand::MO_Register: if( MO.getReg() != 0 && TargetRegisterInfo::isVirtualRegister(MO.getReg()) ) { unsigned MOReg = MO.getReg(); unsigned int nSize = getRegSize(MOReg); if( MO.isUse() ) { int nAcc = ROUND(dFactor); m_RegReadMap[MOReg] = m_RegReadMap[MOReg] + dFactor; //if( nAcc >= 1) m_SimTrace.push_back(llvm::TraceRecord(MOReg, nAcc)); } else if( MO.isDef()) { int nAcc = ROUND(dFactor); m_RegWriteMap[MOReg] = m_RegWriteMap[MOReg] + dFactor; //if( nAcc >= 1) m_SimTrace.push_back(llvm::TraceRecord(MOReg, nAcc, false)); } else assert("Unrecoganized operation in AccessFrequency::runOnMachineFunction!\n"); } break; default: break; } } // Analyze the memoperations if(!BBI->memoperands_empty() ) { for( MachineInstr::mmo_iterator i = BBI->memoperands_begin(), e = BBI->memoperands_end(); i != e; ++ i) { if( (*i)->isLoad() ) { const char *tmp = (**i).getValue()->getName().data(); m_StackReadMap[tmp] ++; } else if( (*i)->isStore()) { const char *tmp = (**i).getValue()->getName().data(); m_StackWriteMap[tmp] ++; } else { assert(false); dbgs() << __FILE__ << __LINE__; } } } } } m_nVars = m_RegReadMap.size(); //print(afout); //printInt(afout); //reset(); std::string szInfo; std::string szSrcFile = mf.getMMI().getModule()->getModuleIdentifier(); std::string szFile = szSrcFile + ".accInt"; raw_fd_ostream accIfout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); printInt(accIfout); accIfout.close(); szFile = szSrcFile + ".acc"; raw_fd_ostream accfout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); print(accfout); accfout.close(); szFile = szSrcFile + "." + "var"; raw_fd_ostream varfout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); printVars(varfout); varfout.close(); szFile = szSrcFile + ".read"; raw_fd_ostream readfout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); printRead(readfout); readfout.close(); szFile = szSrcFile + ".write"; raw_fd_ostream writefout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); printWrite(writefout); writefout.close(); szFile = szSrcFile + ".size"; raw_fd_ostream sizefout(szFile.c_str(), szInfo, raw_fd_ostream::F_Append ); printSize(sizefout); sizefout.close(); return true; }
void BT::run() { reset(); assert(FlowQ.empty()); typedef GraphTraits<const MachineFunction*> MachineFlowGraphTraits; const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF); unsigned MaxBN = 0; for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { assert(I->getNumber() >= 0 && "Disconnected block"); unsigned BN = I->getNumber(); if (BN > MaxBN) MaxBN = BN; } // Keep track of visited blocks. BitVector BlockScanned(MaxBN+1); int EntryN = Entry->getNumber(); // Generate a fake edge to get something to start with. FlowQ.push(CFGEdge(-1, EntryN)); while (!FlowQ.empty()) { CFGEdge Edge = FlowQ.front(); FlowQ.pop(); if (EdgeExec.count(Edge)) continue; EdgeExec.insert(Edge); const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second); MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); // Visit PHI nodes first. while (It != End && It->isPHI()) { const MachineInstr &PI = *It++; InstrExec.insert(&PI); visitPHI(PI); } // If this block has already been visited through a flow graph edge, // then the instructions have already been processed. Any updates to // the cells would now only happen through visitUsesOf... if (BlockScanned[Edge.second]) continue; BlockScanned[Edge.second] = true; // Visit non-branch instructions. while (It != End && !It->isBranch()) { const MachineInstr &MI = *It++; InstrExec.insert(&MI); visitNonBranch(MI); } // If block end has been reached, add the fall-through edge to the queue. if (It == End) { MachineFunction::const_iterator BIt = B.getIterator(); MachineFunction::const_iterator Next = std::next(BIt); if (Next != MF.end() && B.isSuccessor(&*Next)) { int ThisN = B.getNumber(); int NextN = Next->getNumber(); FlowQ.push(CFGEdge(ThisN, NextN)); } } else { // Handle the remaining sequence of branches. This function will update // the work queue. visitBranchesFrom(*It); } } // while (!FlowQ->empty()) if (Trace) print_cells(dbgs() << "Cells after propagation:\n"); }
unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF, unsigned char* StartFunction, unsigned char* EndFunction) const { assert(MMI && "MachineModuleInfo not registered!"); // Map all labels and get rid of any dead landing pads. MMI->TidyLandingPads(JCE->getLabelLocations()); const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); if (PadInfos.empty()) return 0; // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector<const LandingPadInfo *, 64> LandingPads; LandingPads.reserve(PadInfos.size()); for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) LandingPads.push_back(&PadInfos[i]); std::sort(LandingPads.begin(), LandingPads.end(), PadLT); // Negative type ids index into FilterIds, positive type ids index into // TypeInfos. The value written for a positive type id is just the type // id itself. For a negative type id, however, the value written is the // (negative) byte offset of the corresponding FilterIds entry. The byte // offset is usually equal to the type id, because the FilterIds entries // are written using a variable width encoding which outputs one byte per // entry as long as the value written is not too large, but can differ. // This kind of complication does not occur for positive type ids because // type infos are output using a fixed width encoding. // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i]. SmallVector<int, 16> FilterOffsets; FilterOffsets.reserve(FilterIds.size()); int Offset = -1; for(std::vector<unsigned>::const_iterator I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { FilterOffsets.push_back(Offset); Offset -= MCAsmInfo::getULEB128Size(*I); } // Compute the actions table and gather the first action index for each // landing pad site. SmallVector<ActionEntry, 32> Actions; SmallVector<unsigned, 64> FirstActions; FirstActions.reserve(LandingPads.size()); int FirstAction = 0; unsigned SizeActions = 0; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LP = LandingPads[i]; const std::vector<int> &TypeIds = LP->TypeIds; const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; unsigned SizeSiteActions = 0; if (NumShared < TypeIds.size()) { unsigned SizeAction = 0; ActionEntry *PrevAction = 0; if (NumShared) { const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); assert(Actions.size()); PrevAction = &Actions.back(); SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); for (unsigned j = NumShared; j != SizePrevIds; ++j) { SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); SizeAction += -PrevAction->NextAction; PrevAction = PrevAction->Previous; } } // Compute the actions. for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { int TypeID = TypeIds[I]; assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); SizeSiteActions += SizeAction; ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; Actions.push_back(Action); PrevAction = &Actions.back(); } // Record the first action of the landing pad site. FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; } // else identical - re-use previous FirstAction FirstActions.push_back(FirstAction); // Compute this sites contribution to size. SizeActions += SizeSiteActions; } // Compute the call-site table. Entries must be ordered by address. SmallVector<CallSiteEntry, 64> CallSites; RangeMapType PadMap; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) { MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } bool MayThrow = false; MCSymbol *LastLabel = 0; for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { MayThrow |= MI->getDesc().isCall(); continue; } MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); assert(BeginLabel && "Invalid label!"); if (BeginLabel == LastLabel) MayThrow = false; RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) continue; PadRange P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // If some instruction between the previous try-range and this one may // throw, create a call-site entry with no landing pad for the region // between the try-ranges. if (MayThrow) { CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; CallSites.push_back(Site); } LastLabel = LandingPad->EndLabels[P.RangeIndex]; CallSiteEntry Site = {BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && "Invalid landing pad!"); // Try to merge with the previous call-site. if (CallSites.size()) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. CallSites.push_back(Site); } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (MayThrow) { CallSiteEntry Site = {LastLabel, 0, 0, 0}; CallSites.push_back(Site); } // Final tallies. unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start. sizeof(int32_t) + // Site length. sizeof(int32_t)); // Landing pad. for (unsigned i = 0, e = CallSites.size(); i < e; ++i) SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize(); unsigned TypeOffset = sizeof(int8_t) + // Call site format // Call-site table length MCAsmInfo::getULEB128Size(SizeSites) + SizeSites + SizeActions + SizeTypes; // Begin the exception table. JCE->emitAlignmentWithFill(4, 0); // Asm->EOL("Padding"); unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue(); // Emit the header. JCE->emitByte(dwarf::DW_EH_PE_omit); // Asm->EOL("LPStart format (DW_EH_PE_omit)"); JCE->emitByte(dwarf::DW_EH_PE_absptr); // Asm->EOL("TType format (DW_EH_PE_absptr)"); JCE->emitULEB128Bytes(TypeOffset); // Asm->EOL("TType base offset"); JCE->emitByte(dwarf::DW_EH_PE_udata4); // Asm->EOL("Call site format (DW_EH_PE_udata4)"); JCE->emitULEB128Bytes(SizeSites); // Asm->EOL("Call-site table length"); // Emit the landing pad site information. for (unsigned i = 0; i < CallSites.size(); ++i) { CallSiteEntry &S = CallSites[i]; intptr_t BeginLabelPtr = 0; intptr_t EndLabelPtr = 0; if (!S.BeginLabel) { BeginLabelPtr = (intptr_t)StartFunction; JCE->emitInt32(0); } else { BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel); JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction); } // Asm->EOL("Region start"); if (!S.EndLabel) EndLabelPtr = (intptr_t)EndFunction; else EndLabelPtr = JCE->getLabelAddress(S.EndLabel); JCE->emitInt32(EndLabelPtr - BeginLabelPtr); //Asm->EOL("Region length"); if (!S.PadLabel) { JCE->emitInt32(0); } else { unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel); JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction); } // Asm->EOL("Landing pad"); JCE->emitULEB128Bytes(S.Action); // Asm->EOL("Action"); } // Emit the actions. for (unsigned I = 0, N = Actions.size(); I != N; ++I) { ActionEntry &Action = Actions[I]; JCE->emitSLEB128Bytes(Action.ValueForTypeID); //Asm->EOL("TypeInfo index"); JCE->emitSLEB128Bytes(Action.NextAction); //Asm->EOL("Next action"); } // Emit the type ids. for (unsigned M = TypeInfos.size(); M; --M) { const GlobalVariable *GV = TypeInfos[M - 1]; if (GV) { if (TD->getPointerSize() == sizeof(int32_t)) JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV)); else JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV)); } else { if (TD->getPointerSize() == sizeof(int32_t)) JCE->emitInt32(0); else JCE->emitInt64(0); } // Asm->EOL("TypeInfo"); } // Emit the filter typeids. for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { unsigned TypeID = FilterIds[j]; JCE->emitULEB128Bytes(TypeID); //Asm->EOL("Filter TypeInfo index"); } JCE->emitAlignmentWithFill(4, 0); return DwarfExceptionTable; }
/// PrepareMonoLSDA - Collect information needed by EmitMonoLSDA /// /// This function collects information available only during EndFunction which is needed /// by EmitMonoLSDA and stores it into EHFrameInfo. It is the same as the /// beginning of EmitExceptionTable. /// void DwarfMonoException::PrepareMonoLSDA(FunctionEHFrameInfo *EHFrameInfo) { const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); const MachineFunction *MF = Asm->MF; // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector<const LandingPadInfo *, 64> LandingPads; LandingPads.reserve(PadInfos.size()); for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) LandingPads.push_back(&PadInfos[i]); std::sort(LandingPads.begin(), LandingPads.end(), [](const LandingPadInfo *L, const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; }); // Invokes and nounwind calls have entries in PadMap (due to being bracketed // by try-range labels when lowered). Ordinary calls do not, so appropriate // try-ranges for them need be deduced when using DWARF exception handling. RangeMapType PadMap; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } // Compute the call-site table. SmallVector<MonoCallSiteEntry, 64> CallSites; MCSymbol *LastLabel = 0; for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { continue; } MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); assert(BeginLabel && "Invalid label!"); RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) continue; PadRange P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // Mono emits one landing pad for each CLR exception clause, // and the type info contains the clause index assert (LandingPad->TypeIds.size() == 1); assert (LandingPad->LandingPadLabel); LastLabel = LandingPad->EndLabels[P.RangeIndex]; MonoCallSiteEntry Site = {BeginLabel, LastLabel, LandingPad->LandingPadLabel, LandingPad->TypeIds [0]}; assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && "Invalid landing pad!"); // FIXME: This doesn't work because it includes ranges outside clauses #if 0 // Try to merge with the previous call-site. if (CallSites.size()) { MonoCallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.TypeID == Prev.TypeID) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } #endif // Otherwise, create a new call-site. CallSites.push_back(Site); } } // // Compute a mapping from method names to their AOT method index // if (FuncIndexes.size () == 0) { const Module *m = MMI->getModule (); NamedMDNode *indexes = m->getNamedMetadata ("mono.function_indexes"); if (indexes) { for (unsigned int i = 0; i < indexes->getNumOperands (); ++i) { MDNode *n = indexes->getOperand (i); MDString *s = (MDString*)n->getOperand (0); ConstantInt *idx = (ConstantInt*)n->getOperand (1); FuncIndexes.GetOrCreateValue (s->getString (), (int)idx->getLimitedValue () + 1); } } } MonoEHFrameInfo *MonoEH = &EHFrameInfo->MonoEH; // Save information for EmitMonoLSDA MonoEH->MF = Asm->MF; MonoEH->FunctionNumber = Asm->getFunctionNumber(); MonoEH->CallSites.insert(MonoEH->CallSites.begin(), CallSites.begin(), CallSites.end()); MonoEH->TypeInfos = TypeInfos; MonoEH->PadInfos = PadInfos; MonoEH->MonoMethodIdx = FuncIndexes.lookup (Asm->MF->getFunction ()->getName ()) - 1; //outs()<<"A:"<<Asm->MF->getFunction()->getName() << " " << MonoEH->MonoMethodIdx << "\n"; int ThisSlot = Asm->MF->getMonoInfo()->getThisStackSlot(); if (ThisSlot != -1) { unsigned FrameReg; MonoEH->ThisOffset = Asm->MF->getTarget ().getSubtargetImpl ()->getFrameLowering ()->getFrameIndexReference (*Asm->MF, ThisSlot, FrameReg); MonoEH->FrameReg = Asm->MF->getTarget ().getSubtargetImpl ()->getRegisterInfo ()->getDwarfRegNum (FrameReg, true); } else { MonoEH->FrameReg = -1; } }