Example #1
0
// Visit all the blocks dominated by dominatorRoot.
bool
ValueNumberer::visitDominatorTree(MBasicBlock* dominatorRoot)
{
    JitSpew(JitSpew_GVN, "  Visiting dominator tree (with %llu blocks) rooted at block%u%s",
            uint64_t(dominatorRoot->numDominated()), dominatorRoot->id(),
            dominatorRoot == graph_.entryBlock() ? " (normal entry block)" :
            dominatorRoot == graph_.osrBlock() ? " (OSR entry block)" :
            dominatorRoot->numPredecessors() == 0 ? " (odd unreachable block)" :
            " (merge point from normal entry and OSR entry)");
    MOZ_ASSERT(dominatorRoot->immediateDominator() == dominatorRoot,
            "root is not a dominator tree root");

    // Visit all blocks dominated by dominatorRoot, in RPO. This has the nice
    // property that we'll always visit a block before any block it dominates,
    // so we can make a single pass through the list and see every full
    // redundance.
    size_t numVisited = 0;
    size_t numDiscarded = 0;
    for (ReversePostorderIterator iter(graph_.rpoBegin(dominatorRoot)); ; ) {
        MOZ_ASSERT(iter != graph_.rpoEnd(), "Inconsistent dominator information");
        MBasicBlock* block = *iter++;
        // We're only visiting blocks in dominatorRoot's tree right now.
        if (!dominatorRoot->dominates(block))
            continue;

        // If this is a loop backedge, remember the header, as we may not be able
        // to find it after we simplify the block.
        MBasicBlock* header = block->isLoopBackedge() ? block->loopHeaderOfBackedge() : nullptr;

        if (block->isMarked()) {
            // This block has become unreachable; handle it specially.
            if (!visitUnreachableBlock(block))
                return false;
            ++numDiscarded;
        } else {
            // Visit the block!
            if (!visitBlock(block, dominatorRoot))
                return false;
            ++numVisited;
        }

        // If the block is/was a loop backedge, check to see if the block that
        // is/was its header has optimizable phis, which would want a re-run.
        if (!rerun_ && header && loopHasOptimizablePhi(header)) {
            JitSpew(JitSpew_GVN, "    Loop phi in block%u can now be optimized; will re-run GVN!",
                    header->id());
            rerun_ = true;
            remainingBlocks_.clear();
        }

        MOZ_ASSERT(numVisited <= dominatorRoot->numDominated() - numDiscarded,
                   "Visited blocks too many times");
        if (numVisited >= dominatorRoot->numDominated() - numDiscarded)
            break;
    }

    totalNumVisited_ += numVisited;
    values_.clear();
    return true;
}
bool
UnreachableCodeElimination::removeUnmarkedBlocksAndClearDominators()
{
    // Removes blocks that are not marked from the graph.  For blocks
    // that *are* marked, clears the mark and adjusts the id to its
    // new value.  Also adds blocks that are immediately reachable
    // from an unmarked block to the frontier.

    size_t id = marked_;
    for (PostorderIterator iter(graph_.poBegin()); iter != graph_.poEnd();) {
        if (mir_->shouldCancel("Eliminate Unreachable Code"))
            return false;

        MBasicBlock *block = *iter;
        iter++;

        // Unconditionally clear the dominators.  It's somewhat complex to
        // adjust the values and relatively fast to just recompute.
        block->clearDominatorInfo();

        if (block->isMarked()) {
            block->setId(--id);
            for (MPhiIterator iter(block->phisBegin()); iter != block->phisEnd(); iter++)
                checkDependencyAndRemoveUsesFromUnmarkedBlocks(*iter);
            for (MInstructionIterator iter(block->begin()); iter != block->end(); iter++)
                checkDependencyAndRemoveUsesFromUnmarkedBlocks(*iter);
        } else {
            if (block->numPredecessors() > 1) {
                // If this block had phis, then any reachable
                // predecessors need to have the successorWithPhis
                // flag cleared.
                for (size_t i = 0; i < block->numPredecessors(); i++)
                    block->getPredecessor(i)->setSuccessorWithPhis(nullptr, 0);
            }

            if (block->isLoopBackedge()) {
                // NB. We have to update the loop header if we
                // eliminate the backedge. At first I thought this
                // check would be insufficient, because it would be
                // possible to have code like this:
                //
                //    while (true) {
                //       ...;
                //       if (1 == 1) break;
                //    }
                //
                // in which the backedge is removed as part of
                // rewriting the condition, but no actual blocks are
                // removed.  However, in all such cases, the backedge
                // would be a critical edge and hence the critical
                // edge block is being removed.
                block->loopHeaderOfBackedge()->clearLoopHeader();
            }

            for (size_t i = 0, c = block->numSuccessors(); i < c; i++) {
                MBasicBlock *succ = block->getSuccessor(i);
                if (succ->isMarked()) {
                    // succ is on the frontier of blocks to be removed:
                    succ->removePredecessor(block);

                    if (!redundantPhis_) {
                        for (MPhiIterator iter(succ->phisBegin()); iter != succ->phisEnd(); iter++) {
                            if (iter->operandIfRedundant()) {
                                redundantPhis_ = true;
                                break;
                            }
                        }
                    }
                }
            }

            // When we remove a call, we can't leave the corresponding MPassArg
            // in the graph. Since lowering will fail. Replace it with the
            // argument for the exceptional case when it is kept alive in a
            // ResumePoint. DCE will remove the unused MPassArg instruction.
            for (MInstructionIterator iter(block->begin()); iter != block->end(); iter++) {
                if (iter->isCall()) {
                    MCall *call = iter->toCall();
                    for (size_t i = 0; i < call->numStackArgs(); i++) {
                        JS_ASSERT(call->getArg(i)->isPassArg());
                        JS_ASSERT(call->getArg(i)->hasOneDefUse());
                        MPassArg *arg = call->getArg(i)->toPassArg();
                        arg->replaceAllUsesWith(arg->getArgument());
                    }
                }
            }

            graph_.removeBlock(block);
        }
    }

    JS_ASSERT(id == 0);

    return true;
}