static void
AnalyzeLsh(TempAllocator& alloc, MLsh* lsh)
{
    if (lsh->specialization() != MIRType::Int32)
        return;

    if (lsh->isRecoveredOnBailout())
        return;

    MDefinition* index = lsh->lhs();
    MOZ_ASSERT(index->type() == MIRType::Int32);

    MConstant* shiftValue = lsh->rhs()->maybeConstantValue();
    if (!shiftValue)
        return;

    if (shiftValue->type() != MIRType::Int32 || !IsShiftInScaleRange(shiftValue->toInt32()))
        return;

    Scale scale = ShiftToScale(shiftValue->toInt32());

    int32_t displacement = 0;
    MInstruction* last = lsh;
    MDefinition* base = nullptr;
    while (true) {
        if (!last->hasOneUse())
            break;

        MUseIterator use = last->usesBegin();
        if (!use->consumer()->isDefinition() || !use->consumer()->toDefinition()->isAdd())
            break;

        MAdd* add = use->consumer()->toDefinition()->toAdd();
        if (add->specialization() != MIRType::Int32 || !add->isTruncated())
            break;

        MDefinition* other = add->getOperand(1 - add->indexOf(*use));

        if (MConstant* otherConst = other->maybeConstantValue()) {
            displacement += otherConst->toInt32();
        } else {
            if (base)
                break;
            base = other;
        }

        last = add;
        if (last->isRecoveredOnBailout())
            return;
    }

    if (!base) {
        uint32_t elemSize = 1 << ScaleToShift(scale);
        if (displacement % elemSize != 0)
            return;

        if (!last->hasOneUse())
            return;

        MUseIterator use = last->usesBegin();
        if (!use->consumer()->isDefinition() || !use->consumer()->toDefinition()->isBitAnd())
            return;

        MBitAnd* bitAnd = use->consumer()->toDefinition()->toBitAnd();
        if (bitAnd->isRecoveredOnBailout())
            return;

        MDefinition* other = bitAnd->getOperand(1 - bitAnd->indexOf(*use));
        MConstant* otherConst = other->maybeConstantValue();
        if (!otherConst || otherConst->type() != MIRType::Int32)
            return;

        uint32_t bitsClearedByShift = elemSize - 1;
        uint32_t bitsClearedByMask = ~uint32_t(otherConst->toInt32());
        if ((bitsClearedByShift & bitsClearedByMask) != bitsClearedByMask)
            return;

        bitAnd->replaceAllUsesWith(last);
        return;
    }

    if (base->isRecoveredOnBailout())
        return;

    MEffectiveAddress* eaddr = MEffectiveAddress::New(alloc, base, index, scale, displacement);
    last->replaceAllUsesWith(eaddr);
    last->block()->insertAfter(last, eaddr);
}
Example #2
0
bool
jit::ReorderInstructions(MIRGraph& graph)
{
    // Renumber all instructions in the graph as we go.
    size_t nextId = 0;

    // List of the headers of any loops we are in.
    Vector<MBasicBlock*, 4, SystemAllocPolicy> loopHeaders;

    for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) {
        // Renumber all definitions inside the basic blocks.
        for (MPhiIterator iter(block->phisBegin()); iter != block->phisEnd(); iter++)
            iter->setId(nextId++);

        for (MInstructionIterator iter(block->begin()); iter != block->end(); iter++)
            iter->setId(nextId++);

        // Don't reorder instructions within entry blocks, which have special requirements.
        if (*block == graph.entryBlock() || *block == graph.osrBlock())
            continue;

        if (block->isLoopHeader()) {
            if (!loopHeaders.append(*block))
                return false;
        }

        MBasicBlock* innerLoop = loopHeaders.empty() ? nullptr : loopHeaders.back();

        MInstruction* top = block->safeInsertTop();
        MInstructionReverseIterator rtop = ++block->rbegin(top);
        for (MInstructionIterator iter(block->begin(top)); iter != block->end(); ) {
            MInstruction* ins = *iter;

            // Filter out some instructions which are never reordered.
            if (ins->isEffectful() ||
                !ins->isMovable() ||
                ins->resumePoint() ||
                ins == block->lastIns())
            {
                iter++;
                continue;
            }

            // Move constants with a single use in the current block to the
            // start of the block. Constants won't be reordered by the logic
            // below, as they have no inputs. Moving them up as high as
            // possible can allow their use to be moved up further, though,
            // and has no cost if the constant is emitted at its use.
            if (ins->isConstant() &&
                ins->hasOneUse() &&
                ins->usesBegin()->consumer()->block() == *block &&
                !IsFloatingPointType(ins->type()))
            {
                iter++;
                MInstructionIterator targetIter = block->begin();
                while (targetIter->isConstant() || targetIter->isInterruptCheck()) {
                    if (*targetIter == ins)
                        break;
                    targetIter++;
                }
                MoveBefore(*block, *targetIter, ins);
                continue;
            }

            // Look for inputs where this instruction is the last use of that
            // input. If we move this instruction up, the input's lifetime will
            // be shortened, modulo resume point uses (which don't need to be
            // stored in a register, and can be handled by the register
            // allocator by just spilling at some point with no reload).
            Vector<MDefinition*, 4, SystemAllocPolicy> lastUsedInputs;
            for (size_t i = 0; i < ins->numOperands(); i++) {
                MDefinition* input = ins->getOperand(i);
                if (!input->isConstant() && IsLastUse(ins, input, innerLoop)) {
                    if (!lastUsedInputs.append(input))
                        return false;
                }
            }

            // Don't try to move instructions which aren't the last use of any
            // of their inputs (we really ought to move these down instead).
            if (lastUsedInputs.length() < 2) {
                iter++;
                continue;
            }

            MInstruction* target = ins;
            for (MInstructionReverseIterator riter = ++block->rbegin(ins); riter != rtop; riter++) {
                MInstruction* prev = *riter;
                if (prev->isInterruptCheck())
                    break;

                // The instruction can't be moved before any of its uses.
                bool isUse = false;
                for (size_t i = 0; i < ins->numOperands(); i++) {
                    if (ins->getOperand(i) == prev) {
                        isUse = true;
                        break;
                    }
                }
                if (isUse)
                    break;

                // The instruction can't be moved before an instruction that
                // stores to a location read by the instruction.
                if (prev->isEffectful() &&
                    (ins->getAliasSet().flags() & prev->getAliasSet().flags()) &&
                    ins->mightAlias(prev) != MDefinition::AliasType::NoAlias)
                {
                    break;
                }

                // Make sure the instruction will still be the last use of one
                // of its inputs when moved up this far.
                for (size_t i = 0; i < lastUsedInputs.length(); ) {
                    bool found = false;
                    for (size_t j = 0; j < prev->numOperands(); j++) {
                        if (prev->getOperand(j) == lastUsedInputs[i]) {
                            found = true;
                            break;
                        }
                    }
                    if (found) {
                        lastUsedInputs[i] = lastUsedInputs.back();
                        lastUsedInputs.popBack();
                    } else {
                        i++;
                    }
                }
                if (lastUsedInputs.length() < 2)
                    break;

                // We can move the instruction before this one.
                target = prev;
            }

            iter++;
            MoveBefore(*block, target, ins);
        }

        if (block->isLoopBackedge())
            loopHeaders.popBack();
    }

    return true;
}
Example #3
0
bool
Sink(MIRGenerator* mir, MIRGraph& graph)
{
    TempAllocator& alloc = graph.alloc();
    bool sinkEnabled = mir->optimizationInfo().sinkEnabled();

    for (PostorderIterator block = graph.poBegin(); block != graph.poEnd(); block++) {
        if (mir->shouldCancel("Sink"))
            return false;

        for (MInstructionReverseIterator iter = block->rbegin(); iter != block->rend(); ) {
            MInstruction* ins = *iter++;

            // Only instructions which can be recovered on bailout can be moved
            // into the bailout paths.
            if (ins->isGuard() || ins->isGuardRangeBailouts() ||
                ins->isRecoveredOnBailout() || !ins->canRecoverOnBailout())
            {
                continue;
            }

            // Compute a common dominator for all uses of the current
            // instruction.
            bool hasLiveUses = false;
            bool hasUses = false;
            MBasicBlock* usesDominator = nullptr;
            for (MUseIterator i(ins->usesBegin()), e(ins->usesEnd()); i != e; i++) {
                hasUses = true;
                MNode* consumerNode = (*i)->consumer();
                if (consumerNode->isResumePoint())
                    continue;

                MDefinition* consumer = consumerNode->toDefinition();
                if (consumer->isRecoveredOnBailout())
                    continue;

                hasLiveUses = true;

                // If the instruction is a Phi, then we should dominate the
                // predecessor from which the value is coming from.
                MBasicBlock* consumerBlock = consumer->block();
                if (consumer->isPhi())
                    consumerBlock = consumerBlock->getPredecessor(consumer->indexOf(*i));

                usesDominator = CommonDominator(usesDominator, consumerBlock);
                if (usesDominator == *block)
                    break;
            }

            // Leave this instruction for DCE.
            if (!hasUses)
                continue;

            // We have no uses, so sink this instruction in all the bailout
            // paths.
            if (!hasLiveUses) {
                MOZ_ASSERT(!usesDominator);
                ins->setRecoveredOnBailout();
                JitSpewDef(JitSpew_Sink, "  No live uses, recover the instruction on bailout\n", ins);
                continue;
            }

            // This guard is temporarly moved here as the above code deals with
            // Dead Code elimination, which got moved into this Sink phase, as
            // the Dead Code elimination used to move instructions with no-live
            // uses to the bailout path.
            if (!sinkEnabled)
                continue;

            // To move an effectful instruction, we would have to verify that the
            // side-effect is not observed. In the mean time, we just inhibit
            // this optimization on effectful instructions.
            if (ins->isEffectful())
                continue;

            // If all the uses are under a loop, we might not want to work
            // against LICM by moving everything back into the loop, but if the
            // loop is it-self inside an if, then we still want to move the
            // computation under this if statement.
            while (block->loopDepth() < usesDominator->loopDepth()) {
                MOZ_ASSERT(usesDominator != usesDominator->immediateDominator());
                usesDominator = usesDominator->immediateDominator();
            }

            // Only move instructions if there is a branch between the dominator
            // of the uses and the original instruction. This prevent moving the
            // computation of the arguments into an inline function if there is
            // no major win.
            MBasicBlock* lastJoin = usesDominator;
            while (*block != lastJoin && lastJoin->numPredecessors() == 1) {
                MOZ_ASSERT(lastJoin != lastJoin->immediateDominator());
                MBasicBlock* next = lastJoin->immediateDominator();
                if (next->numSuccessors() > 1)
                    break;
                lastJoin = next;
            }
            if (*block == lastJoin)
                continue;

            // Skip to the next instruction if we cannot find a common dominator
            // for all the uses of this instruction, or if the common dominator
            // correspond to the block of the current instruction.
            if (!usesDominator || usesDominator == *block)
                continue;

            // Only instruction which can be recovered on bailout and which are
            // sinkable can be moved into blocks which are below while filling
            // the resume points with a clone which is recovered on bailout.

            // If the instruction has live uses and if it is clonable, then we
            // can clone the instruction for all non-dominated uses and move the
            // instruction into the block which is dominating all live uses.
            if (!ins->canClone())
                continue;

            // If the block is a split-edge block, which is created for folding
            // test conditions, then the block has no resume point and has
            // multiple predecessors.  In such case, we cannot safely move
            // bailing instruction to these blocks as we have no way to bailout.
            if (!usesDominator->entryResumePoint() && usesDominator->numPredecessors() != 1)
                continue;

            JitSpewDef(JitSpew_Sink, "  Can Clone & Recover, sink instruction\n", ins);
            JitSpew(JitSpew_Sink, "  into Block %u", usesDominator->id());

            // Copy the arguments and clone the instruction.
            MDefinitionVector operands(alloc);
            for (size_t i = 0, end = ins->numOperands(); i < end; i++) {
                if (!operands.append(ins->getOperand(i)))
                    return false;
            }

            MInstruction* clone = ins->clone(alloc, operands);
            ins->block()->insertBefore(ins, clone);
            clone->setRecoveredOnBailout();

            // We should not update the producer of the entry resume point, as
            // it cannot refer to any instruction within the basic block excepts
            // for Phi nodes.
            MResumePoint* entry = usesDominator->entryResumePoint();

            // Replace the instruction by its clone in all the resume points /
            // recovered-on-bailout instructions which are not in blocks which
            // are dominated by the usesDominator block.
            for (MUseIterator i(ins->usesBegin()), e(ins->usesEnd()); i != e; ) {
                MUse* use = *i++;
                MNode* consumer = use->consumer();

                // If the consumer is a Phi, then we look for the index of the
                // use to find the corresponding predecessor block, which is
                // then used as the consumer block.
                MBasicBlock* consumerBlock = consumer->block();
                if (consumer->isDefinition() && consumer->toDefinition()->isPhi()) {
                    consumerBlock = consumerBlock->getPredecessor(
                        consumer->toDefinition()->toPhi()->indexOf(use));
                }

                // Keep the current instruction for all dominated uses, except
                // for the entry resume point of the block in which the
                // instruction would be moved into.
                if (usesDominator->dominates(consumerBlock) &&
                    (!consumer->isResumePoint() || consumer->toResumePoint() != entry))
                {
                    continue;
                }

                use->replaceProducer(clone);
            }

            // As we move this instruction in a different block, we should
            // verify that we do not carry over a resume point which would refer
            // to an outdated state of the control flow.
            if (ins->resumePoint())
                ins->clearResumePoint();

            // Now, that all uses which are not dominated by usesDominator are
            // using the cloned instruction, we can safely move the instruction
            // into the usesDominator block.
            MInstruction* at = usesDominator->safeInsertTop(nullptr, MBasicBlock::IgnoreRecover);
            block->moveBefore(at, ins);
        }
    }

    return true;
}
static void
AnalyzeLsh(MBasicBlock *block, MLsh *lsh)
{
    if (lsh->specialization() != MIRType_Int32)
        return;

    MDefinition *index = lsh->lhs();
    JS_ASSERT(index->type() == MIRType_Int32);

    MDefinition *shift = lsh->rhs();
    if (!shift->isConstant())
        return;

    Value shiftValue = shift->toConstant()->value();
    if (!shiftValue.isInt32() || !IsShiftInScaleRange(shiftValue.toInt32()))
        return;

    Scale scale = ShiftToScale(shiftValue.toInt32());

    int32_t displacement = 0;
    MInstruction *last = lsh;
    MDefinition *base = nullptr;
    while (true) {
        if (!last->hasOneUse())
            break;

        MUseIterator use = last->usesBegin();
        if (!use->consumer()->isDefinition() || !use->consumer()->toDefinition()->isAdd())
            break;

        MAdd *add = use->consumer()->toDefinition()->toAdd();
        if (add->specialization() != MIRType_Int32 || !add->isTruncated())
            break;

        MDefinition *other = add->getOperand(1 - use->index());

        if (other->isConstant()) {
            displacement += other->toConstant()->value().toInt32();
        } else {
            if (base)
                break;
            base = other;
        }

        last = add;
    }

    if (!base) {
        uint32_t elemSize = 1 << ScaleToShift(scale);
        if (displacement % elemSize != 0)
            return;

        if (!last->hasOneUse())
            return;

        MUseIterator use = last->usesBegin();
        if (!use->consumer()->isDefinition() || !use->consumer()->toDefinition()->isBitAnd())
            return;

        MBitAnd *bitAnd = use->consumer()->toDefinition()->toBitAnd();
        MDefinition *other = bitAnd->getOperand(1 - use->index());
        if (!other->isConstant() || !other->toConstant()->value().isInt32())
            return;

        uint32_t bitsClearedByShift = elemSize - 1;
        uint32_t bitsClearedByMask = ~uint32_t(other->toConstant()->value().toInt32());
        if ((bitsClearedByShift & bitsClearedByMask) != bitsClearedByMask)
            return;

        bitAnd->replaceAllUsesWith(last);
        return;
    }

    MEffectiveAddress *eaddr = MEffectiveAddress::New(base, index, scale, displacement);
    last->replaceAllUsesWith(eaddr);
    block->insertAfter(last, eaddr);
}