PassRefPtr<JSONObject> LoggingCanvas::objectForSkRRect(const SkRRect& rrect)
{
    RefPtr<JSONObject> rrectItem = JSONObject::create();
    rrectItem->setString("type", rrectTypeName(rrect.type()));
    rrectItem->setNumber("left", rrect.rect().left());
    rrectItem->setNumber("top", rrect.rect().top());
    rrectItem->setNumber("right", rrect.rect().right());
    rrectItem->setNumber("bottom", rrect.rect().bottom());
    for (int i = 0; i < 4; ++i)
        rrectItem->setObject(radiusName((SkRRect::Corner) i), objectForRadius(rrect, (SkRRect::Corner) i));
    return rrectItem.release();
}
Example #2
0
GrFillRRectOp::GrFillRRectOp(
        GrAAType aaType, const SkRRect& rrect, Flags flags,
        const SkMatrix& totalShapeMatrix, GrPaint&& paint, const SkRect& devBounds)
        : GrDrawOp(ClassID())
        , fAAType(aaType)
        , fOriginalColor(paint.getColor4f())
        , fLocalRect(rrect.rect())
        , fFlags(flags)
        , fProcessors(std::move(paint)) {
    SkASSERT((fFlags & Flags::kHasPerspective) == totalShapeMatrix.hasPerspective());
    this->setBounds(devBounds, GrOp::HasAABloat::kYes, GrOp::IsZeroArea::kNo);

    // Write the matrix attribs.
    const SkMatrix& m = totalShapeMatrix;
    if (!(fFlags & Flags::kHasPerspective)) {
        // Affine 2D transformation (float2x2 plus float2 translate).
        SkASSERT(!m.hasPerspective());
        this->writeInstanceData(m.getScaleX(), m.getSkewX(), m.getSkewY(), m.getScaleY());
        this->writeInstanceData(m.getTranslateX(), m.getTranslateY());
    } else {
        // Perspective float3x3 transformation matrix.
        SkASSERT(m.hasPerspective());
        m.get9(this->appendInstanceData<float>(9));
    }

    // Convert the radii to [-1, -1, +1, +1] space and write their attribs.
    Sk4f radiiX, radiiY;
    Sk4f::Load2(SkRRectPriv::GetRadiiArray(rrect), &radiiX, &radiiY);
    (radiiX * (2/rrect.width())).store(this->appendInstanceData<float>(4));
    (radiiY * (2/rrect.height())).store(this->appendInstanceData<float>(4));

    // We will write the color and local rect attribs during finalize().
}
Example #3
0
Json::Value SkJSONCanvas::makeRRect(const SkRRect& rrect) {
    Json::Value result(Json::arrayValue);
    result.append(this->makeRect(rrect.rect()));
    result.append(this->makePoint(rrect.radii(SkRRect::kUpperLeft_Corner)));
    result.append(this->makePoint(rrect.radii(SkRRect::kUpperRight_Corner)));
    result.append(this->makePoint(rrect.radii(SkRRect::kLowerRight_Corner)));
    result.append(this->makePoint(rrect.radii(SkRRect::kLowerLeft_Corner)));
    return result;
}
Example #4
0
// Test out the cases when the RR degenerates to a rect
static void test_round_rect_rects(skiatest::Reporter* reporter) {
    SkRect r;

    //----
    SkRRect empty;

    empty.setEmpty();

    REPORTER_ASSERT(reporter, SkRRect::kEmpty_Type == empty.type());
    r = empty.rect();
    REPORTER_ASSERT(reporter, 0 == r.fLeft && 0 == r.fTop && 0 == r.fRight && 0 == r.fBottom);

    //----
    SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight);
    SkRRect rr1;
    rr1.setRectXY(rect, 0, 0);

    REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr1.type());
    r = rr1.rect();
    REPORTER_ASSERT(reporter, rect == r);

    //----
    SkPoint radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } };

    SkRRect rr2;
    rr2.setRectRadii(rect, radii);

    REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr2.type());
    r = rr2.rect();
    REPORTER_ASSERT(reporter, rect == r);

    //----
    SkPoint radii2[4] = { { 0, 0 }, { 20, 20 }, { 50, 50 }, { 20, 50 } };

    SkRRect rr3;
    rr3.setRectRadii(rect, radii2);
    REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr3.type());
}
Example #5
0
static void test_9patch_rrect(skiatest::Reporter* reporter,
                              const SkRect& rect,
                              SkScalar l, SkScalar t, SkScalar r, SkScalar b,
                              bool checkRadii) {
    SkRRect rr;
    rr.setNinePatch(rect, l, t, r, b);

    REPORTER_ASSERT(reporter, SkRRect::kNinePatch_Type == rr.type());
    REPORTER_ASSERT(reporter, rr.rect() == rect);

    if (checkRadii) {
        // This test doesn't hold if the radii will be rescaled by SkRRect
        SkRect ninePatchRadii = { l, t, r, b };
        SkPoint rquad[4];
        ninePatchRadii.toQuad(rquad);
        for (int i = 0; i < 4; ++i) {
            REPORTER_ASSERT(reporter, rquad[i] == rr.radii((SkRRect::Corner) i));
        }
    }
    SkRRect rr2; // construct the same RR using the most general set function
    SkVector radii[4] = { { l, t }, { r, t }, { r, b }, { l, b } };
    rr2.setRectRadii(rect, radii);
    REPORTER_ASSERT(reporter, rr2 == rr && rr2.getType() == rr.getType());
}
Example #6
0
// Test out the basic API entry points
static void test_round_rect_basic(skiatest::Reporter* reporter) {
    // Test out initialization methods
    SkPoint zeroPt = { 0, 0 };
    SkRRect empty;

    empty.setEmpty();

    REPORTER_ASSERT(reporter, SkRRect::kEmpty_Type == empty.type());
    REPORTER_ASSERT(reporter, empty.rect().isEmpty());

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, zeroPt == empty.radii((SkRRect::Corner) i));
    }

    //----
    SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight);

    SkRRect rr1;
    rr1.setRect(rect);

    REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr1.type());
    REPORTER_ASSERT(reporter, rr1.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, zeroPt == rr1.radii((SkRRect::Corner) i));
    }

    //----
    SkPoint halfPoint = { SkScalarHalf(kWidth), SkScalarHalf(kHeight) };
    SkRRect rr2;
    rr2.setOval(rect);

    REPORTER_ASSERT(reporter, SkRRect::kOval_Type == rr2.type());
    REPORTER_ASSERT(reporter, rr2.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter,
                        rr2.radii((SkRRect::Corner) i).equalsWithinTolerance(halfPoint));
    }

    //----
    SkPoint p = { 5, 5 };
    SkRRect rr3;
    rr3.setRectXY(rect, p.fX, p.fY);

    REPORTER_ASSERT(reporter, SkRRect::kSimple_Type == rr3.type());
    REPORTER_ASSERT(reporter, rr3.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, p == rr3.radii((SkRRect::Corner) i));
    }

    //----
    SkPoint radii[4] = { { 5, 5 }, { 5, 5 }, { 5, 5 }, { 5, 5 } };

    SkRRect rr4;
    rr4.setRectRadii(rect, radii);

    REPORTER_ASSERT(reporter, SkRRect::kSimple_Type == rr4.type());
    REPORTER_ASSERT(reporter, rr4.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, radii[i] == rr4.radii((SkRRect::Corner) i));
    }

    //----
    SkPoint radii2[4] = { { 0, 0 }, { 0, 0 }, { 50, 50 }, { 20, 50 } };

    SkRRect rr5;
    rr5.setRectRadii(rect, radii2);

    REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr5.type());
    REPORTER_ASSERT(reporter, rr5.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, radii2[i] == rr5.radii((SkRRect::Corner) i));
    }

    // Test out == & !=
    REPORTER_ASSERT(reporter, empty != rr3);
    REPORTER_ASSERT(reporter, rr3 == rr4);
    REPORTER_ASSERT(reporter, rr4 != rr5);
}
Example #7
0
// Test out the cases when the RR degenerates to a rect
static void test_round_rect_rects(skiatest::Reporter* reporter) {
    SkRect r;
    static const SkPoint pts[] = {
        // Upper Left
        { -SK_Scalar1, -SK_Scalar1 },               // out
        { SK_Scalar1, SK_Scalar1 },                 // in
        // Upper Right
        { SkIntToScalar(101), -SK_Scalar1},         // out
        { SkIntToScalar(99), SK_Scalar1 },          // in
        // Lower Right
        { SkIntToScalar(101), SkIntToScalar(101) }, // out
        { SkIntToScalar(99), SkIntToScalar(99) },   // in
        // Lower Left
        { -SK_Scalar1, SkIntToScalar(101) },        // out
        { SK_Scalar1, SkIntToScalar(99) },          // in
        // Middle
        { SkIntToScalar(50), SkIntToScalar(50) }    // in
    };
    static const bool isIn[] = { false, true, false, true, false, true, false, true, true };

    SkASSERT(SK_ARRAY_COUNT(pts) == SK_ARRAY_COUNT(isIn));

    //----
    SkRRect empty;

    empty.setEmpty();

    REPORTER_ASSERT(reporter, SkRRect::kEmpty_Type == empty.type());
    r = empty.rect();
    REPORTER_ASSERT(reporter, 0 == r.fLeft && 0 == r.fTop && 0 == r.fRight && 0 == r.fBottom);

    //----
    SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight);
    SkRRect rr1;
    rr1.setRectXY(rect, 0, 0);

    REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr1.type());
    r = rr1.rect();
    REPORTER_ASSERT(reporter, rect == r);
    for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) {
        REPORTER_ASSERT(reporter, isIn[i] == rr1.contains(pts[i].fX, pts[i].fY));
    }

    //----
    SkPoint radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } };

    SkRRect rr2;
    rr2.setRectRadii(rect, radii);

    REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr2.type());
    r = rr2.rect();
    REPORTER_ASSERT(reporter, rect == r);
    for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) {
        REPORTER_ASSERT(reporter, isIn[i] == rr2.contains(pts[i].fX, pts[i].fY));
    }

    //----
    SkPoint radii2[4] = { { 0, 0 }, { 20, 20 }, { 50, 50 }, { 20, 50 } };

    SkRRect rr3;
    rr3.setRectRadii(rect, radii2);
    REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr3.type());
}
Example #8
0
// Called to test various transforms on a single SkRRect.
static void test_transform_helper(skiatest::Reporter* reporter, const SkRRect& orig) {
    SkRRect dst;
    dst.setEmpty();

    // The identity matrix will duplicate the rrect.
    bool success = orig.transform(SkMatrix::I(), &dst);
    REPORTER_ASSERT(reporter, success);
    REPORTER_ASSERT(reporter, orig == dst);

    // Skew and Perspective make transform fail.
    SkMatrix matrix;
    matrix.reset();
    matrix.setSkewX(SkIntToScalar(2));
    assert_transform_failure(reporter, orig, matrix);

    matrix.reset();
    matrix.setSkewY(SkIntToScalar(3));
    assert_transform_failure(reporter, orig, matrix);

    matrix.reset();
    matrix.setPerspX(4);
    assert_transform_failure(reporter, orig, matrix);

    matrix.reset();
    matrix.setPerspY(5);
    assert_transform_failure(reporter, orig, matrix);

    // Rotation fails.
    matrix.reset();
    matrix.setRotate(SkIntToScalar(90));
    assert_transform_failure(reporter, orig, matrix);
    matrix.setRotate(SkIntToScalar(37));
    assert_transform_failure(reporter, orig, matrix);

    // Translate will keep the rect moved, but otherwise the same.
    matrix.reset();
    SkScalar translateX = SkIntToScalar(32);
    SkScalar translateY = SkIntToScalar(15);
    matrix.setTranslateX(translateX);
    matrix.setTranslateY(translateY);
    dst.setEmpty();
    success = orig.transform(matrix, &dst);
    REPORTER_ASSERT(reporter, success);
    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter,
                orig.radii((SkRRect::Corner) i) == dst.radii((SkRRect::Corner) i));
    }
    REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width());
    REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height());
    REPORTER_ASSERT(reporter, dst.rect().left() == orig.rect().left() + translateX);
    REPORTER_ASSERT(reporter, dst.rect().top() == orig.rect().top() + translateY);

    // Keeping the translation, but adding skew will make transform fail.
    matrix.setSkewY(SkIntToScalar(7));
    assert_transform_failure(reporter, orig, matrix);

    // Scaling in -x will flip the round rect horizontally.
    matrix.reset();
    matrix.setScaleX(SkIntToScalar(-1));
    dst.setEmpty();
    success = orig.transform(matrix, &dst);
    REPORTER_ASSERT(reporter, success);
    {
        GET_RADII;
        // Radii have swapped in x.
        REPORTER_ASSERT(reporter, origUL == dstUR);
        REPORTER_ASSERT(reporter, origUR == dstUL);
        REPORTER_ASSERT(reporter, origLR == dstLL);
        REPORTER_ASSERT(reporter, origLL == dstLR);
    }
    // Width and height remain the same.
    REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width());
    REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height());
    // Right and left have swapped (sort of)
    REPORTER_ASSERT(reporter, orig.rect().right() == -dst.rect().left());
    // Top has stayed the same.
    REPORTER_ASSERT(reporter, orig.rect().top() == dst.rect().top());

    // Keeping the scale, but adding a persp will make transform fail.
    matrix.setPerspX(7);
    assert_transform_failure(reporter, orig, matrix);

    // Scaling in -y will flip the round rect vertically.
    matrix.reset();
    matrix.setScaleY(SkIntToScalar(-1));
    dst.setEmpty();
    success = orig.transform(matrix, &dst);
    REPORTER_ASSERT(reporter, success);
    {
        GET_RADII;
        // Radii have swapped in y.
        REPORTER_ASSERT(reporter, origUL == dstLL);
        REPORTER_ASSERT(reporter, origUR == dstLR);
        REPORTER_ASSERT(reporter, origLR == dstUR);
        REPORTER_ASSERT(reporter, origLL == dstUL);
    }
    // Width and height remain the same.
    REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width());
    REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height());
    // Top and bottom have swapped (sort of)
    REPORTER_ASSERT(reporter, orig.rect().top() == -dst.rect().bottom());
    // Left has stayed the same.
    REPORTER_ASSERT(reporter, orig.rect().left() == dst.rect().left());

    // Scaling in -x and -y will swap in both directions.
    matrix.reset();
    matrix.setScaleY(SkIntToScalar(-1));
    matrix.setScaleX(SkIntToScalar(-1));
    dst.setEmpty();
    success = orig.transform(matrix, &dst);
    REPORTER_ASSERT(reporter, success);
    {
        GET_RADII;
        REPORTER_ASSERT(reporter, origUL == dstLR);
        REPORTER_ASSERT(reporter, origUR == dstLL);
        REPORTER_ASSERT(reporter, origLR == dstUL);
        REPORTER_ASSERT(reporter, origLL == dstUR);
    }
    // Width and height remain the same.
    REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width());
    REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height());
    REPORTER_ASSERT(reporter, orig.rect().top() == -dst.rect().bottom());
    REPORTER_ASSERT(reporter, orig.rect().right() == -dst.rect().left());

    // Scale in both directions.
    SkScalar xScale = SkIntToScalar(3);
    SkScalar yScale = 3.2f;
    matrix.reset();
    matrix.setScaleX(xScale);
    matrix.setScaleY(yScale);
    dst.setEmpty();
    success = orig.transform(matrix, &dst);
    REPORTER_ASSERT(reporter, success);
    // Radii are scaled.
    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.radii((SkRRect::Corner) i).fX,
                                    SkScalarMul(orig.radii((SkRRect::Corner) i).fX, xScale)));
        REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.radii((SkRRect::Corner) i).fY,
                                    SkScalarMul(orig.radii((SkRRect::Corner) i).fY, yScale)));
    }
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().width(),
                                                  SkScalarMul(orig.rect().width(), xScale)));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().height(),
                                                  SkScalarMul(orig.rect().height(), yScale)));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().left(),
                                                  SkScalarMul(orig.rect().left(), xScale)));
    REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().top(),
                                                  SkScalarMul(orig.rect().top(), yScale)));
}
Example #9
0
// Test out the basic API entry points
static void test_round_rect_basic(skiatest::Reporter* reporter) {
    // Test out initialization methods
    SkPoint zeroPt = { 0, 0 };
    SkRRect empty;

    empty.setEmpty();

    REPORTER_ASSERT(reporter, SkRRect::kEmpty_Type == empty.type());
    REPORTER_ASSERT(reporter, empty.rect().isEmpty());

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, zeroPt == empty.radii((SkRRect::Corner) i));
    }

    //----
    SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight);

    SkRRect rr1;
    rr1.setRect(rect);

    REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr1.type());
    REPORTER_ASSERT(reporter, rr1.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, zeroPt == rr1.radii((SkRRect::Corner) i));
    }
    SkRRect rr1_2; // construct the same RR using the most general set function
    SkVector rr1_2_radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } };
    rr1_2.setRectRadii(rect, rr1_2_radii);
    REPORTER_ASSERT(reporter, rr1_2 == rr1 && rr1_2.getType() == rr1.getType());
    SkRRect rr1_3;  // construct the same RR using the nine patch set function
    rr1_3.setNinePatch(rect, 0, 0, 0, 0);
    REPORTER_ASSERT(reporter, rr1_3 == rr1 && rr1_3.getType() == rr1.getType());

    //----
    SkPoint halfPoint = { SkScalarHalf(kWidth), SkScalarHalf(kHeight) };
    SkRRect rr2;
    rr2.setOval(rect);

    REPORTER_ASSERT(reporter, SkRRect::kOval_Type == rr2.type());
    REPORTER_ASSERT(reporter, rr2.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter,
                        rr2.radii((SkRRect::Corner) i).equalsWithinTolerance(halfPoint));
    }
    SkRRect rr2_2;  // construct the same RR using the most general set function
    SkVector rr2_2_radii[4] = { { halfPoint.fX, halfPoint.fY }, { halfPoint.fX, halfPoint.fY },
                                { halfPoint.fX, halfPoint.fY }, { halfPoint.fX, halfPoint.fY } };
    rr2_2.setRectRadii(rect, rr2_2_radii);
    REPORTER_ASSERT(reporter, rr2_2 == rr2 && rr2_2.getType() == rr2.getType());
    SkRRect rr2_3;  // construct the same RR using the nine patch set function
    rr2_3.setNinePatch(rect, halfPoint.fX, halfPoint.fY, halfPoint.fX, halfPoint.fY);
    REPORTER_ASSERT(reporter, rr2_3 == rr2 && rr2_3.getType() == rr2.getType());

    //----
    SkPoint p = { 5, 5 };
    SkRRect rr3;
    rr3.setRectXY(rect, p.fX, p.fY);

    REPORTER_ASSERT(reporter, SkRRect::kSimple_Type == rr3.type());
    REPORTER_ASSERT(reporter, rr3.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, p == rr3.radii((SkRRect::Corner) i));
    }
    SkRRect rr3_2; // construct the same RR using the most general set function
    SkVector rr3_2_radii[4] = { { 5, 5 }, { 5, 5 }, { 5, 5 }, { 5, 5 } };
    rr3_2.setRectRadii(rect, rr3_2_radii);
    REPORTER_ASSERT(reporter, rr3_2 == rr3 && rr3_2.getType() == rr3.getType());
    SkRRect rr3_3;  // construct the same RR using the nine patch set function
    rr3_3.setNinePatch(rect, 5, 5, 5, 5);
    REPORTER_ASSERT(reporter, rr3_3 == rr3 && rr3_3.getType() == rr3.getType());

    //----
    test_9patch_rrect(reporter, rect, 10, 9, 8, 7, true);

    {
        // Test out the rrect from skia:3466
        SkRect rect2 = SkRect::MakeLTRB(0.358211994f, 0.755430222f, 0.872866154f, 0.806214333f);

        test_9patch_rrect(reporter,
                          rect2,
                          0.926942348f, 0.642850280f, 0.529063463f, 0.587844372f,
                          false);
    }

    //----
    SkPoint radii2[4] = { { 0, 0 }, { 0, 0 }, { 50, 50 }, { 20, 50 } };

    SkRRect rr5;
    rr5.setRectRadii(rect, radii2);

    REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr5.type());
    REPORTER_ASSERT(reporter, rr5.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, radii2[i] == rr5.radii((SkRRect::Corner) i));
    }

    // Test out == & !=
    REPORTER_ASSERT(reporter, empty != rr3);
    REPORTER_ASSERT(reporter, rr3 != rr5);
}
Example #10
0
void SkBBoxRecord::onDrawDRRect(const SkRRect& outer, const SkRRect& inner,
                                const SkPaint& paint) {
    if (this->transformBounds(outer.rect(), &paint)) {
        this->INHERITED::onDrawDRRect(outer, inner, paint);
    }
}
Example #11
0
void SkBBoxRecord::drawRRect(const SkRRect& rrect, const SkPaint& paint) {
    if (this->transformBounds(rrect.rect(), &paint)) {
        INHERITED::drawRRect(rrect, paint);
    }
}
Example #12
0
std::unique_ptr<GrFillRRectOp> GrFillRRectOp::Make(
        GrRecordingContext* ctx, GrAAType aaType, const SkMatrix& viewMatrix, const SkRRect& rrect,
        const GrCaps& caps, GrPaint&& paint) {
    if (!caps.instanceAttribSupport()) {
        return nullptr;
    }

    Flags flags = Flags::kNone;
    if (GrAAType::kCoverage == aaType) {
        // TODO: Support perspective in a follow-on CL. This shouldn't be difficult, since we
        // already use HW derivatives. The only trick will be adjusting the AA outset to account for
        // perspective. (i.e., outset = 0.5 * z.)
        if (viewMatrix.hasPerspective()) {
            return nullptr;
        }
        if (can_use_hw_derivatives_with_coverage(*caps.shaderCaps(), viewMatrix, rrect)) {
            // HW derivatives (more specifically, fwidth()) are consistently faster on all platforms
            // in coverage mode. We use them as long as the approximation will be accurate enough.
            flags |= Flags::kUseHWDerivatives;
        }
    } else {
        if (GrAAType::kMSAA == aaType) {
            if (!caps.sampleLocationsSupport() || !caps.shaderCaps()->sampleVariablesSupport()) {
                return nullptr;
            }
        }
        if (viewMatrix.hasPerspective()) {
            // HW derivatives are consistently slower on all platforms in sample mask mode. We
            // therefore only use them when there is perspective, since then we can't interpolate
            // the symbolic screen-space gradient.
            flags |= Flags::kUseHWDerivatives | Flags::kHasPerspective;
        }
    }

    // Produce a matrix that draws the round rect from normalized [-1, -1, +1, +1] space.
    float l = rrect.rect().left(), r = rrect.rect().right(),
          t = rrect.rect().top(), b = rrect.rect().bottom();
    SkMatrix m;
    // Unmap the normalized rect [-1, -1, +1, +1] back to [l, t, r, b].
    m.setScaleTranslate((r - l)/2, (b - t)/2, (l + r)/2, (t + b)/2);
    // Map to device space.
    m.postConcat(viewMatrix);

    SkRect devBounds;
    if (!(flags & Flags::kHasPerspective)) {
        // Since m is an affine matrix that maps the rect [-1, -1, +1, +1] into the shape's
        // device-space quad, it's quite simple to find the bounding rectangle:
        devBounds = SkRect::MakeXYWH(m.getTranslateX(), m.getTranslateY(), 0, 0);
        devBounds.outset(SkScalarAbs(m.getScaleX()) + SkScalarAbs(m.getSkewX()),
                         SkScalarAbs(m.getSkewY()) + SkScalarAbs(m.getScaleY()));
    } else {
        viewMatrix.mapRect(&devBounds, rrect.rect());
    }

    if (GrAAType::kMSAA == aaType && caps.preferTrianglesOverSampleMask()) {
        // We are on a platform that prefers fine triangles instead of using the sample mask. See if
        // the round rect is large enough that it will be faster for us to send it off to the
        // default path renderer instead. The 200x200 threshold was arrived at using the
        // "shapes_rrect" benchmark on an ARM Galaxy S9.
        if (devBounds.height() * devBounds.width() > 200 * 200) {
            return nullptr;
        }
    }

    GrOpMemoryPool* pool = ctx->priv().opMemoryPool();
    return pool->allocate<GrFillRRectOp>(aaType, rrect, flags, m, std::move(paint), devBounds);
}