Exemplo n.º 1
0
//
//测试行列式是否计算正确;
void Matrix::TestDet()
{
    int test_sum=0;
    //
    /*/输入;
    char * ssb = "  \
    4               \
    1 1             \
    5               \
    4 4             \
    1 1 1 1         \
    1 2 4 8         \
    1 3 9 27        \
    1 4 16 64       \
    3 3             \
    2 0 1           \
    1 -4 -1         \
    -1 8 3          \
    4 4             \
    4 1 2 4         \
    1 2 0 2         \
    10 5 2 0        \
    0 1 1 7         \
    ";
    strstream sst(ssb,strlen(ssb));
    cin = sst;//*/
    //答案;
    double ans[] = {5,12,-4,0};
    //
    cin >> test_sum;
    for(int count=0;count<test_sum;count++)
    {
        int n,m;
        cin >> n >> m;
        //
        Matrix mat;
        mat.NewMatrix(n,m);
        mat.ReadStd();
        int swp = mat.RowSimplify();
        //
        if(Equal(mat.Det(swp),ans[count]))
            cout << count << ".DetRight" << endl;
        else
            cout << count << ".DetWrong" << endl;
        //
        mat.DeleteMatrix();
    }
    cout << endl;
}
Exemplo n.º 2
0
Arquivo: main.cpp Projeto: CCJY/coliru
	T Det(){
		T res(0);
		if (n == 2){
			res.SetVal(res.sub(res.mul((mx[0])[0], (mx[1])[1]), res.mul((mx[1])[0], (mx[0])[1])));
			return res;
		}
		for (int j = 0; j < m; j++){
			Matrix<T> sm = GetTruncated(0, j);	
			T a = sm.Det();
			a.SetVal(a.mul(a, (mx[0])[j]));
			a.SetVal(a.mul(a, a.up(j)));
			res.SetVal(res.add(res, a));
		}
		return res;
	}
Exemplo n.º 3
0
// The affine parameters can be calculated by:
//
//		|xf|  =  |a11	a12|  *  |xm|   +   |xt|
//		|yf|     |a21	a22|     |ym|		|yt|	
//
//	Construct in the form of Gauss Markov Model as
//
//		|xf| = |xm ym  0  0  1  0| * |a11|
//		|yf|   |0  0   xm ym 0  1|   |a12|
//									 |a21|
//									 |a22|
//									 |xt |
//									 |yt |
//		y = AX
//		
//		X = inv(AT A) (AT y)
//
//
bool CFMDoc::CalculateAffineParameters()
{
	if (m_bCalculatedAffine == true)
		return true;

	int pID;
	ITER_MATCHED iter;
	MATCHING_RESULT point;
	bool bCreateDlgLocal = false;

	// Construct matrix for Least Square calculation.
	Matrix A(MAX_MATCHING*2,6);	// Construct the A matrix with size (16*6)
	Matrix y(MAX_MATCHING*2,1);	// Construct the y matrix with size (16*1)
	Matrix X;					// Construct the X matrix as a result, with size (6*1)

	// Matrix A is constructed from the matching results.

	// If less than 8 matching points found, exit.
	if (m_mapMatchingPoints.size() < MAX_MATCHING)
	{
		MessageBox(NULL, 
			"Failed to calculate the affine parameters.\nThe application failed to locate eight matching points.", 
			"Notification", 
			MB_ICONINFORMATION|MB_OK);
		
		return false;
	}

	// Matrix y is constructed from the fiducial data.

	if (NULL == m_pCalibrationDlg)
	{
		m_pCalibrationDlg = new CCalibrationDlg;

		// Set flag if it is created for this purpose.
		bCreateDlgLocal = true;
	}

	// If failed to optain the calibration data, exit.
	if (false == m_pCalibrationDlg->ReadCalibrationData())
	{
		MessageBox(NULL, 
			"Failed to calculate the affine parameters.\nThe application failed to obtain the calibration data.", 
			"Notification", 
			MB_ICONINFORMATION|MB_OK);
		
		return false;
	}

	for (iter = m_mapMatchingPoints.begin(); iter != m_mapMatchingPoints.end(); iter++)
	{
		// Get the value of the matched point.
		pID = (*iter).first;
		point = (*iter).second;
		
		// Assign the value to the matrix.
		//	[	xm	ym	0	0	1	0;	<-- row (pID-1)*2
		//		0	0	xm	ym	0	1]	<-- row (pID-1)*2 + 1

		// Set the value for the first row of each point
		A.Set( (pID-1)*2, 0, point.fX);	
		A.Set( (pID-1)*2, 1, point.fY);
		A.Set( (pID-1)*2, 2, 0);
		A.Set( (pID-1)*2, 3, 0);
		A.Set( (pID-1)*2, 4, 1);
		A.Set( (pID-1)*2, 5, 0);

		// Set the value for the second row of each point
		A.Set( (pID-1)*2 +1, 0, 0);	
		A.Set( (pID-1)*2 +1, 1, 0);
		A.Set( (pID-1)*2 +1, 2, point.fX);
		A.Set( (pID-1)*2 +1, 3, point.fY);
		A.Set( (pID-1)*2 +1, 4, 0);
		A.Set( (pID-1)*2 +1, 5, 1);

		//	Assign the value to the matrix y.
		//	[	xf;				<-- row (pID-1)*2
		//		yf	]			<-- row (pID-1)*2 + 1
		y.Set( (pID-1)*2,		0,	m_pCalibrationDlg->m_FC[(pID-1)].fX);
		y.Set( (pID-1)*2 +1,	0,	m_pCalibrationDlg->m_FC[(pID-1)].fY);
	}

	// Calculate the results as "X = inv(AT A) (AT y)"
	Matrix N = A.Trans() * A;

	// Check if N inverse exist.
	double det = N.Det();
	if(det == 0.0 || det <= 1e-10) 
	{
		MessageBox(NULL, 
			"Failed to calculate the affine parameters.\nThe coordinates are not in a good condition.", 
			"Notification", 
			MB_ICONINFORMATION|MB_OK);
		
		return false;
	}

	// Find the X matrix.
	X = N.Inv() * A.Trans() * y;

	// Then obtain the affine transformation parameters.
	m_a11	=	X.Get(0, 0);	
	m_a12	=	X.Get(1, 0);
	m_a21	=	X.Get(2, 0);
	m_a22	=	X.Get(3, 0);
	m_xt	=	X.Get(4, 0);
	m_yt	=	X.Get(5, 0);

	// Delete the object since it is no longer used.
	if (true == bCreateDlgLocal)
	{
		delete m_pCalibrationDlg;
		m_pCalibrationDlg = NULL;
	}

	m_bCalculatedAffine = true;

	return true;
}