//bilateral constraint between two dynamic objects
void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1,
                      btRigidBody& body2, const btVector3& pos2,
                      btScalar distance, const btVector3& normal,btScalar& impulse ,btScalar timeStep)
{
	(void)timeStep;
	(void)distance;


	btScalar normalLenSqr = normal.length2();
	btAssert(btFabs(normalLenSqr) < btScalar(1.1));
	if (normalLenSqr > btScalar(1.1))
	{
		impulse = btScalar(0.);
		return;
	}
	btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition(); 
	btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
	//this jacobian entry could be re-used for all iterations
	
	btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
	btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
	btVector3 vel = vel1 - vel2;
	

	   btJacobianEntry jac(body1.getCenterOfMassTransform().getBasis().transpose(),
		body2.getCenterOfMassTransform().getBasis().transpose(),
		rel_pos1,rel_pos2,normal,body1.getInvInertiaDiagLocal(),body1.getInvMass(),
		body2.getInvInertiaDiagLocal(),body2.getInvMass());

	btScalar jacDiagAB = jac.getDiagonal();
	btScalar jacDiagABInv = btScalar(1.) / jacDiagAB;
	
	  btScalar rel_vel = jac.getRelativeVelocity(
		body1.getLinearVelocity(),
		body1.getCenterOfMassTransform().getBasis().transpose() * body1.getAngularVelocity(),
		body2.getLinearVelocity(),
		body2.getCenterOfMassTransform().getBasis().transpose() * body2.getAngularVelocity()); 
	btScalar a;
	a=jacDiagABInv;


	rel_vel = normal.dot(vel);
	
	//todo: move this into proper structure
	btScalar contactDamping = btScalar(0.2);

#ifdef ONLY_USE_LINEAR_MASS
	btScalar massTerm = btScalar(1.) / (body1.getInvMass() + body2.getInvMass());
	impulse = - contactDamping * rel_vel * massTerm;
#else	
	btScalar velocityImpulse = -contactDamping * rel_vel * jacDiagABInv;
	impulse = velocityImpulse;
#endif
}
Exemplo n.º 2
0
void	btWheelInfo::updateWheel(const btRigidBody& chassis,RaycastInfo& raycastInfo)
{
	(void)raycastInfo;

	
	if (m_raycastInfo.m_isInContact)

	{
		btScalar	project= m_raycastInfo.m_contactNormalWS.dot( m_raycastInfo.m_wheelDirectionWS );
		btVector3	 chassis_velocity_at_contactPoint;
		btVector3 relpos = m_raycastInfo.m_contactPointWS - chassis.getCenterOfMassPosition();
		chassis_velocity_at_contactPoint = chassis.getVelocityInLocalPoint( relpos );
		btScalar projVel = m_raycastInfo.m_contactNormalWS.dot( chassis_velocity_at_contactPoint );
		if ( project >= btScalar(-0.1))
		{
			m_suspensionRelativeVelocity = btScalar(0.0);
			m_clippedInvContactDotSuspension = btScalar(1.0) / btScalar(0.1);
		}
		else
		{
			btScalar inv = btScalar(-1.) / project;
			m_suspensionRelativeVelocity = projVel * inv;
			m_clippedInvContactDotSuspension = inv;
		}
		
	}

	else	// Not in contact : position wheel in a nice (rest length) position
	{
		m_raycastInfo.m_suspensionLength = this->getSuspensionRestLength();
		m_suspensionRelativeVelocity = btScalar(0.0);
		m_raycastInfo.m_contactNormalWS = -m_raycastInfo.m_wheelDirectionWS;
		m_clippedInvContactDotSuspension = btScalar(1.0);
	}
}
btScalar btTranslationalLimitMotor::solveLinearAxis(
	btScalar timeStep,
	btScalar jacDiagABInv,
	btRigidBody& body1,const btVector3 &pointInA,
	btRigidBody& body2,const btVector3 &pointInB,
	int limit_index,
	const btVector3 & axis_normal_on_a,
	const btVector3 & anchorPos)
{

	///find relative velocity
	//    btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition();
	//    btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition();
	btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition();
	btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition();

	btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
	btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
	btVector3 vel = vel1 - vel2;

	btScalar rel_vel = axis_normal_on_a.dot(vel);



	/// apply displacement correction

	//positional error (zeroth order error)
	btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a);
	btScalar	lo = btScalar(-BT_LARGE_FLOAT);
	btScalar	hi = btScalar(BT_LARGE_FLOAT);

	btScalar minLimit = m_lowerLimit[limit_index];
	btScalar maxLimit = m_upperLimit[limit_index];

	//handle the limits
	if (minLimit < maxLimit)
	{
		{
			if (depth > maxLimit)
			{
				depth -= maxLimit;
				lo = btScalar(0.);

			}
			else
			{
				if (depth < minLimit)
				{
					depth -= minLimit;
					hi = btScalar(0.);
				}
				else
				{
					return 0.0f;
				}
			}
		}
	}

	btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv;




	btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index];
	btScalar sum = oldNormalImpulse + normalImpulse;
	m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
	normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;

	btVector3 impulse_vector = axis_normal_on_a * normalImpulse;
	body1.applyImpulse( impulse_vector, rel_pos1);
	body2.applyImpulse(-impulse_vector, rel_pos2);

	

	return normalImpulse;
}
Exemplo n.º 4
0
void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
{
    int i;
    // linear
    btVector3 velA = rbA.getVelocityInLocalPoint(m_relPosA);
    btVector3 velB = rbB.getVelocityInLocalPoint(m_relPosB);
    btVector3 vel = velA - velB;
	for(i = 0; i < 3; i++)
    {
		const btVector3& normal = m_jacLin[i].m_linearJointAxis;
		btScalar rel_vel = normal.dot(vel);
		// calculate positional error
		btScalar depth = m_depth[i];
		// get parameters
		btScalar softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin);
		btScalar restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin);
		btScalar damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin);
		// calcutate and apply impulse
		btScalar normalImpulse = softness * (restitution * depth / m_timeStep - damping * rel_vel) * m_jacLinDiagABInv[i];
		btVector3 impulse_vector = normal * normalImpulse;
		rbA.applyImpulse( impulse_vector, m_relPosA);
		rbB.applyImpulse(-impulse_vector, m_relPosB);
		if(m_poweredLinMotor && (!i))
		{ // apply linear motor
			if(m_accumulatedLinMotorImpulse < m_maxLinMotorForce)
			{
				btScalar desiredMotorVel = m_targetLinMotorVelocity;
				btScalar motor_relvel = desiredMotorVel + rel_vel;
				normalImpulse = -motor_relvel * m_jacLinDiagABInv[i];
				// clamp accumulated impulse
				btScalar new_acc = m_accumulatedLinMotorImpulse + btFabs(normalImpulse);
				if(new_acc  > m_maxLinMotorForce)
				{
					new_acc = m_maxLinMotorForce;
				}
				btScalar del = new_acc  - m_accumulatedLinMotorImpulse;
				if(normalImpulse < btScalar(0.0))
				{
					normalImpulse = -del;
				}
				else
				{
					normalImpulse = del;
				}
				m_accumulatedLinMotorImpulse = new_acc;
				// apply clamped impulse
				impulse_vector = normal * normalImpulse;
				rbA.applyImpulse( impulse_vector, m_relPosA);
				rbB.applyImpulse(-impulse_vector, m_relPosB);
			}
		}
    }
	// angular 
	// get axes in world space
	btVector3 axisA =  m_calculatedTransformA.getBasis().getColumn(0);
	btVector3 axisB =  m_calculatedTransformB.getBasis().getColumn(0);

	const btVector3& angVelA = rbA.getAngularVelocity();
	const btVector3& angVelB = rbB.getAngularVelocity();

	btVector3 angVelAroundAxisA = axisA * axisA.dot(angVelA);
	btVector3 angVelAroundAxisB = axisB * axisB.dot(angVelB);

	btVector3 angAorthog = angVelA - angVelAroundAxisA;
	btVector3 angBorthog = angVelB - angVelAroundAxisB;
	btVector3 velrelOrthog = angAorthog-angBorthog;
	//solve orthogonal angular velocity correction
	btScalar len = velrelOrthog.length();
	if (len > btScalar(0.00001))
	{
		btVector3 normal = velrelOrthog.normalized();
		btScalar denom = rbA.computeAngularImpulseDenominator(normal) + rbB.computeAngularImpulseDenominator(normal);
		velrelOrthog *= (btScalar(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng;
	}
	//solve angular positional correction
	btVector3 angularError = axisA.cross(axisB) *(btScalar(1.)/m_timeStep);
	btScalar len2 = angularError.length();
	if (len2>btScalar(0.00001))
	{
		btVector3 normal2 = angularError.normalized();
		btScalar denom2 = rbA.computeAngularImpulseDenominator(normal2) + rbB.computeAngularImpulseDenominator(normal2);
		angularError *= (btScalar(1.)/denom2) * m_restitutionOrthoAng * m_softnessOrthoAng;
	}
	// apply impulse
	rbA.applyTorqueImpulse(-velrelOrthog+angularError);
	rbB.applyTorqueImpulse(velrelOrthog-angularError);
	btScalar impulseMag;
	//solve angular limits
	if(m_solveAngLim)
	{
		impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / m_timeStep;
		impulseMag *= m_kAngle * m_softnessLimAng;
	}
	else
	{
		impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / m_timeStep;
		impulseMag *= m_kAngle * m_softnessDirAng;
	}
	btVector3 impulse = axisA * impulseMag;
	rbA.applyTorqueImpulse(impulse);
	rbB.applyTorqueImpulse(-impulse);
	//apply angular motor
	if(m_poweredAngMotor) 
	{
		if(m_accumulatedAngMotorImpulse < m_maxAngMotorForce)
		{
			btVector3 velrel = angVelAroundAxisA - angVelAroundAxisB;
			btScalar projRelVel = velrel.dot(axisA);

			btScalar desiredMotorVel = m_targetAngMotorVelocity;
			btScalar motor_relvel = desiredMotorVel - projRelVel;

			btScalar angImpulse = m_kAngle * motor_relvel;
			// clamp accumulated impulse
			btScalar new_acc = m_accumulatedAngMotorImpulse + btFabs(angImpulse);
			if(new_acc  > m_maxAngMotorForce)
			{
				new_acc = m_maxAngMotorForce;
			}
			btScalar del = new_acc  - m_accumulatedAngMotorImpulse;
			if(angImpulse < btScalar(0.0))
			{
				angImpulse = -del;
			}
			else
			{
				angImpulse = del;
			}
			m_accumulatedAngMotorImpulse = new_acc;
			// apply clamped impulse
			btVector3 motorImp = angImpulse * axisA;
			m_rbA.applyTorqueImpulse(motorImp);
			m_rbB.applyTorqueImpulse(-motorImp);
		}
	}
} // btSliderConstraint::solveConstraint()