Exemplo n.º 1
0
  void createBulletObject(Shape shape)
  {
    switch (shape) {
      case ConvexHull : {
        btConvexHullShape* bcs = new btConvexHullShape();
        for (size_t i=0; i<data.size(); i++) {
          glm::vec3& v = data[i].vertex;
          bcs->addPoint( glmvec3_to_btVector3(v) );
        }
        btScalar mass(ball_mass);
        btVector3 localInertia(0,0,0);
        //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
        // position and motion
        btTransform ballTransform;
        ballTransform.setIdentity();
        ballTransform.setOrigin(btVector3(0,ball_initial_height,0));
        btDefaultMotionState* bulletMotionState = new btDefaultMotionState(btTransform(ballTransform));
        // ball rigidbody info
        btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,bulletMotionState,bcs,localInertia);
        // tweak rigidbody info
        rbInfo.m_restitution = grestitution;
        rbInfo.m_friction = gfriction;
        // add ball to the world
        rigidbody = new btRigidBody(rbInfo);
        if(!rigidbody) std::cout << "bulletBallBody pointer null" << std::endl; 
        dynamicsWorld->addRigidBody(rigidbody);
        break;
      }
      case TriangleMesh : { 
        // Shape
        btBvhTriangleMeshShape* boardShape = new btBvhTriangleMeshShape( &bt_triangles, true );

        btScalar mass(board_mass);
        btVector3 localInertia(0,0,0);

        // transform : default position
        btTransform boardTransform;
        boardTransform.setIdentity();
        boardTransform.setOrigin(btVector3(0,0,0));
        btDefaultMotionState* bulletMotionState = new btDefaultMotionState(btTransform(boardTransform));
        btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,bulletMotionState,boardShape,localInertia);

        // tweak rigidbody properties
        rbInfo.m_restitution = grestitution;
        rbInfo.m_friction = gfriction;
        // add to the world
        rigidbody = new btRigidBody(rbInfo);
        if(!rigidbody) std::cout << "bulletBoardBody pointer null" << std::endl; 
        rigidbody->setActivationState(DISABLE_DEACTIVATION);
        dynamicsWorld->addRigidBody(rigidbody);
        break; 
      }
      case None : {
        break;
      }
    } // end switch
    
    

  }
Exemplo n.º 2
0
 void addPickingConstraint(const btVector3& rayFrom, const btVector3& rayTo) {
   if (!dynamicsWorld) {
     return;
   }
   removePickingConstraint();
   if (pickedObjectIndex <= 0 || pickedObjectIndex >= dynamicsWorld->getNumCollisionObjects()) {
     return;
   }
   pickedBody = btRigidBody::upcast(dynamicsWorld->getCollisionObjectArray()[pickedObjectIndex]);
   btVector3 pickPos = rayTo;
   btVector3 localPivot = pickedBody->getCenterOfMassTransform().inverse() * pickPos;
   pickConstraint = new btPoint2PointConstraint(*pickedBody,localPivot);
   pickedBody->setActivationState(DISABLE_DEACTIVATION);
   dynamicsWorld->addConstraint(pickConstraint,true);
   pickingDistance = (rayFrom-rayTo).length();
   pickConstraint->m_setting.m_impulseClamp = 3.0f;
   pickConstraint->m_setting.m_tau = 0.001f;
 }
Exemplo n.º 3
0
	bool	mouseButtonCallback(int button, int state, float x, float y)
	{

		if (state==1)
		{
			if(button==0)// && (m_data->m_altPressed==0 && m_data->m_controlPressed==0))
			{
				btVector3 camPos;
				m_glApp->m_instancingRenderer->getCameraPosition(camPos);

				btVector3 rayFrom = camPos;
				btVector3 rayTo = getRayTo(x,y);

				btCollisionWorld::ClosestRayResultCallback rayCallback(rayFrom,rayTo);
				m_dynamicsWorld->rayTest(rayFrom,rayTo,rayCallback);
				if (rayCallback.hasHit())
				{

					btVector3 pickPos = rayCallback.m_hitPointWorld;
					btRigidBody* body = (btRigidBody*)btRigidBody::upcast(rayCallback.m_collisionObject);
					if (body)
					{
						//other exclusions?
						if (!(body->isStaticObject() || body->isKinematicObject()))
						{
							m_pickedBody = body;
							m_pickedBody->setActivationState(DISABLE_DEACTIVATION);
							//printf("pickPos=%f,%f,%f\n",pickPos.getX(),pickPos.getY(),pickPos.getZ());
							btVector3 localPivot = body->getCenterOfMassTransform().inverse() * pickPos;
							btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*body,localPivot);
							m_dynamicsWorld->addConstraint(p2p,true);
							m_pickedConstraint = p2p;
							btScalar mousePickClamping = 30.f;
							p2p->m_setting.m_impulseClamp = mousePickClamping;
							//very weak constraint for picking
							p2p->m_setting.m_tau = 0.001f;
						}
					} else
					{
						btMultiBodyLinkCollider* multiCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(rayCallback.m_collisionObject);
						if (multiCol && multiCol->m_multiBody)
						{
							multiCol->m_multiBody->setCanSleep(false);

							btVector3 pivotInA = multiCol->m_multiBody->worldPosToLocal(multiCol->m_link, pickPos);

							btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(multiCol->m_multiBody,multiCol->m_link,0,pivotInA,pickPos);
							//if you add too much energy to the system, causing high angular velocities, simulation 'explodes'
							//see also http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=949
							//so we try to avoid it by clamping the maximum impulse (force) that the mouse pick can apply
							//it is not satisfying, hopefully we find a better solution (higher order integrator, using joint friction using a zero-velocity target motor with limited force etc?)

							p2p->setMaxAppliedImpulse(20*scaling);
		
							btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_dynamicsWorld;
							world->addMultiBodyConstraint(p2p);
							m_pickingMultiBodyPoint2Point =p2p; 
						}
					}


//					pickObject(pickPos, rayCallback.m_collisionObject);
					m_oldPickingPos = rayTo;
					m_hitPos = pickPos;
					m_oldPickingDist  = (pickPos-rayFrom).length();
//					printf("hit !\n");
				//add p2p
				}
				
			}
		} else
		{
			if (button==0)
			{
				if (m_pickedConstraint)
				{
					m_dynamicsWorld->removeConstraint(m_pickedConstraint);
					delete m_pickedConstraint;
					m_pickedConstraint=0;
					m_pickedBody = 0;
				}

				if (m_pickingMultiBodyPoint2Point)
				{
					m_pickingMultiBodyPoint2Point->getMultiBodyA()->setCanSleep(true);
					btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_dynamicsWorld;
					world->removeMultiBodyConstraint(m_pickingMultiBodyPoint2Point);
					delete m_pickingMultiBodyPoint2Point;
					m_pickingMultiBodyPoint2Point = 0;
				}
				//remove p2p
			}
		}

		//printf("button=%d, state=%d\n",button,state);
		return false;
	}
Exemplo n.º 4
0
void ForkLiftDemo::initPhysics()
{

	
	
	int upAxis = 1;	

	m_guiHelper->setUpAxis(upAxis);

	btVector3 groundExtents(50,50,50);
	groundExtents[upAxis]=3;
	btCollisionShape* groundShape = new btBoxShape(groundExtents);
	m_collisionShapes.push_back(groundShape);
	m_collisionConfiguration = new btDefaultCollisionConfiguration();
	m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
	btVector3 worldMin(-1000,-1000,-1000);
	btVector3 worldMax(1000,1000,1000);
	m_overlappingPairCache = new btAxisSweep3(worldMin,worldMax);
	if (useMCLPSolver)
	{
		btDantzigSolver* mlcp = new btDantzigSolver();
		//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
		btMLCPSolver* sol = new btMLCPSolver(mlcp);
		m_constraintSolver = sol;
	} else
	{
		m_constraintSolver = new btSequentialImpulseConstraintSolver();
	}
	m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_overlappingPairCache,m_constraintSolver,m_collisionConfiguration);
	if (useMCLPSolver)
	{
		m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 1;//for direct solver it is better to have a small A matrix
	} else
	{
		m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 128;//for direct solver, it is better to solve multiple objects together, small batches have high overhead
	}
	m_dynamicsWorld->getSolverInfo().m_globalCfm = 0.00001;

	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
	

	//m_dynamicsWorld->setGravity(btVector3(0,0,0));
btTransform tr;
tr.setIdentity();
tr.setOrigin(btVector3(0,-3,0));

//either use heightfield or triangle mesh


	//create ground object
	localCreateRigidBody(0,tr,groundShape);

	btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,0.5f,2.f));
	m_collisionShapes.push_back(chassisShape);

	btCompoundShape* compound = new btCompoundShape();
	m_collisionShapes.push_back(compound);
	btTransform localTrans;
	localTrans.setIdentity();
	//localTrans effectively shifts the center of mass with respect to the chassis
	localTrans.setOrigin(btVector3(0,1,0));

	compound->addChildShape(localTrans,chassisShape);

	{
		btCollisionShape* suppShape = new btBoxShape(btVector3(0.5f,0.1f,0.5f));
		btTransform suppLocalTrans;
		suppLocalTrans.setIdentity();
		//localTrans effectively shifts the center of mass with respect to the chassis
		suppLocalTrans.setOrigin(btVector3(0,1.0,2.5));
		compound->addChildShape(suppLocalTrans, suppShape);
	}

	tr.setOrigin(btVector3(0,0.f,0));

	m_carChassis = localCreateRigidBody(800,tr,compound);//chassisShape);
	//m_carChassis->setDamping(0.2,0.2);
	
	m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth,wheelRadius,wheelRadius));

	m_guiHelper->createCollisionShapeGraphicsObject(m_wheelShape);
	int wheelGraphicsIndex = m_wheelShape->getUserIndex();

	const float position[4]={0,10,10,0};
	const float quaternion[4]={0,0,0,1};
	const float color[4]={0,1,0,1};
	const float scaling[4] = {1,1,1,1};

	for (int i=0;i<4;i++)
	{
		m_wheelInstances[i] = m_guiHelper->registerGraphicsInstance(wheelGraphicsIndex, position, quaternion, color, scaling);
	}



	{
		btCollisionShape* liftShape = new btBoxShape(btVector3(0.5f,2.0f,0.05f));
		m_collisionShapes.push_back(liftShape);
		btTransform liftTrans;
		m_liftStartPos = btVector3(0.0f, 2.5f, 3.05f);
		liftTrans.setIdentity();
		liftTrans.setOrigin(m_liftStartPos);
		m_liftBody = localCreateRigidBody(10,liftTrans, liftShape);

		btTransform localA, localB;
		localA.setIdentity();
		localB.setIdentity();
		localA.getBasis().setEulerZYX(0, M_PI_2, 0);
		localA.setOrigin(btVector3(0.0, 1.0, 3.05));
		localB.getBasis().setEulerZYX(0, M_PI_2, 0);
		localB.setOrigin(btVector3(0.0, -1.5, -0.05));
		m_liftHinge = new btHingeConstraint(*m_carChassis,*m_liftBody, localA, localB);
//		m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
		m_liftHinge->setLimit(0.0f, 0.0f);
		m_dynamicsWorld->addConstraint(m_liftHinge, true);

		btCollisionShape* forkShapeA = new btBoxShape(btVector3(1.0f,0.1f,0.1f));
		m_collisionShapes.push_back(forkShapeA);
		btCompoundShape* forkCompound = new btCompoundShape();
		m_collisionShapes.push_back(forkCompound);
		btTransform forkLocalTrans;
		forkLocalTrans.setIdentity();
		forkCompound->addChildShape(forkLocalTrans, forkShapeA);

		btCollisionShape* forkShapeB = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
		m_collisionShapes.push_back(forkShapeB);
		forkLocalTrans.setIdentity();
		forkLocalTrans.setOrigin(btVector3(-0.9f, -0.08f, 0.7f));
		forkCompound->addChildShape(forkLocalTrans, forkShapeB);

		btCollisionShape* forkShapeC = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
		m_collisionShapes.push_back(forkShapeC);
		forkLocalTrans.setIdentity();
		forkLocalTrans.setOrigin(btVector3(0.9f, -0.08f, 0.7f));
		forkCompound->addChildShape(forkLocalTrans, forkShapeC);

		btTransform forkTrans;
		m_forkStartPos = btVector3(0.0f, 0.6f, 3.2f);
		forkTrans.setIdentity();
		forkTrans.setOrigin(m_forkStartPos);
		m_forkBody = localCreateRigidBody(5, forkTrans, forkCompound);

		localA.setIdentity();
		localB.setIdentity();
		localA.getBasis().setEulerZYX(0, 0, M_PI_2);
		localA.setOrigin(btVector3(0.0f, -1.9f, 0.05f));
		localB.getBasis().setEulerZYX(0, 0, M_PI_2);
		localB.setOrigin(btVector3(0.0, 0.0, -0.1));
		m_forkSlider = new btSliderConstraint(*m_liftBody, *m_forkBody, localA, localB, true);
		m_forkSlider->setLowerLinLimit(0.1f);
		m_forkSlider->setUpperLinLimit(0.1f);
//		m_forkSlider->setLowerAngLimit(-LIFT_EPS);
//		m_forkSlider->setUpperAngLimit(LIFT_EPS);
		m_forkSlider->setLowerAngLimit(0.0f);
		m_forkSlider->setUpperAngLimit(0.0f);
		m_dynamicsWorld->addConstraint(m_forkSlider, true);


		btCompoundShape* loadCompound = new btCompoundShape();
		m_collisionShapes.push_back(loadCompound);
		btCollisionShape* loadShapeA = new btBoxShape(btVector3(2.0f,0.5f,0.5f));
		m_collisionShapes.push_back(loadShapeA);
		btTransform loadTrans;
		loadTrans.setIdentity();
		loadCompound->addChildShape(loadTrans, loadShapeA);
		btCollisionShape* loadShapeB = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
		m_collisionShapes.push_back(loadShapeB);
		loadTrans.setIdentity();
		loadTrans.setOrigin(btVector3(2.1f, 0.0f, 0.0f));
		loadCompound->addChildShape(loadTrans, loadShapeB);
		btCollisionShape* loadShapeC = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
		m_collisionShapes.push_back(loadShapeC);
		loadTrans.setIdentity();
		loadTrans.setOrigin(btVector3(-2.1f, 0.0f, 0.0f));
		loadCompound->addChildShape(loadTrans, loadShapeC);
		loadTrans.setIdentity();
		m_loadStartPos = btVector3(0.0f, 3.5f, 7.0f);
		loadTrans.setOrigin(m_loadStartPos);
		m_loadBody  = localCreateRigidBody(loadMass, loadTrans, loadCompound);
	}



	
	
	/// create vehicle
	{
		
		m_vehicleRayCaster = new btDefaultVehicleRaycaster(m_dynamicsWorld);
		m_vehicle = new btRaycastVehicle(m_tuning,m_carChassis,m_vehicleRayCaster);
		
		///never deactivate the vehicle
		m_carChassis->setActivationState(DISABLE_DEACTIVATION);

		m_dynamicsWorld->addVehicle(m_vehicle);

		float connectionHeight = 1.2f;

	
		bool isFrontWheel=true;

		//choose coordinate system
		m_vehicle->setCoordinateSystem(rightIndex,upIndex,forwardIndex);

		btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);

		m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
		connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);

		m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
		connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
		isFrontWheel = false;
		m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
		connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
		m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
		
		for (int i=0;i<m_vehicle->getNumWheels();i++)
		{
			btWheelInfo& wheel = m_vehicle->getWheelInfo(i);
			wheel.m_suspensionStiffness = suspensionStiffness;
			wheel.m_wheelsDampingRelaxation = suspensionDamping;
			wheel.m_wheelsDampingCompression = suspensionCompression;
			wheel.m_frictionSlip = wheelFriction;
			wheel.m_rollInfluence = rollInfluence;
		}
	}

	resetForklift();
	
//	setCameraDistance(26.f);

	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}