Пример #1
0
//Replace the Entry(_enitty_id)'s EntityBitSet with _bitset
//Entry of _entity_id must exists    
bool 
VSTree::replaceEntry(int _entity_id, const EntityBitSet& _bitset)
{
    VNode* leafNodePtr = this->getLeafNodeByEntityID(_entity_id);

    if (leafNodePtr == NULL)
    {
        cerr << "error, can not find the mapping leaf node. @VSTree::replaceEntry" << endl;
        return false;
    }

    // find the mapping child entry, update it and refresh signature.
    int childNum = leafNodePtr->getChildNum();
    bool findFlag = false;
    for (int i = 0; i < childNum; i++)
    {
        const SigEntry& entry = leafNodePtr->getChildEntry(i);
        if (entry.getEntityId() == _entity_id)
        {
            SigEntry newEntry(EntitySig(_bitset), _entity_id);
            leafNodePtr->setChildEntry(i, newEntry);
            leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
            findFlag = true;
            break;
        }
    }

    if (!findFlag)
    {
        cerr << "error, can not find the mapping child entry in the leaf node. @VSTree::replaceEntry" << endl;
        return false;
    }

    return true;
}
Пример #2
0
//Replace the Entry(_enitty_id)'s EntityBitSet with _bitset
//Entry of _entity_id must exists    
bool 
VSTree::replaceEntry(int _entity_id, const EntityBitSet& _bitset)
{
	//cout<<"begin replaceEntry()"<<endl;
    VNode* leafNodePtr = this->getLeafNodeByEntityID(_entity_id);

    if (leafNodePtr == NULL)
    {
        cerr << "error, can not find the mapping leaf node. @VSTree::replaceEntry" << endl;
        return false;
    }

    // find the mapping child entry, update it and refresh signature.
    int childNum = leafNodePtr->getChildNum();
	//cout<<"get child num, now to loop"<<endl;
    bool findFlag = false;
    for (int i = 0; i < childNum; i++)
    {
        const SigEntry& entry = leafNodePtr->getChildEntry(i);
        if (entry.getEntityId() == _entity_id)
        {
			//cout<<"find the entityid in pos "<<i<<endl;
            SigEntry newEntry(EntitySig(_bitset), _entity_id);
            leafNodePtr->setChildEntry(i, newEntry);
            leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
            findFlag = true;
            break;
        }
    }

	//cout<<"root file line: "<<this->root_file_line<<"   "<<"max nid num: "<<this->max_nid_alloc<<endl;
	//cout<<"node num: "<<this->node_num<<"   "<<"file line: "<<leafNodePtr->getFileLine()<<"   "<<"child num: "<<childNum<<endl;
	//for(int j = 1; j < 4; ++j)
	//{
		//VNode* tmp = this->getNode(j);
		//for(int i = 0; i < tmp->getChildNum(); ++i)
		//{
			//const SigEntry& entry = tmp->getChildEntry(i);
			//cout << entry.getEntityId() << " ";
		//}
		//cout << endl;
	//}

    if (!findFlag)
    {
        cerr << "error, can not find the mapping child entry in the leaf node. @VSTree::replaceEntry" << endl;
        return false;
    }

    return true;
}
Пример #3
0
//Incrementally update bitset of _entity_id
//conduct OR operation on Entry(_entity_id)'s EntityBitSet with _bitset
//Entry of _entity_id must exists    
bool VSTree::updateEntry(int _entity_id, const EntityBitSet& _bitset)
{
    VNode* leafNodePtr = this->getLeafNodeByEntityID(_entity_id);

    if (leafNodePtr == NULL)
    {
        cerr << "error, can not find the mapping leaf node. @VSTree::updateEntry" << endl;
        return false;
    }

    // find the mapping child entry, update it and refresh signature.
    int childNum = leafNodePtr->getChildNum();
    bool findFlag = false;
    for (int i = 0; i < childNum; i++)
    {
        const SigEntry& entry = leafNodePtr->getChildEntry(i);

        if (entry.getEntityId() == _entity_id)
        {
            SigEntry newEntry = entry;
            newEntry |= SigEntry(EntitySig(_bitset), _entity_id);

            //debug
//            {
//                if (_entity_id == 10)
//                {
//                    stringstream _ss;
//                    _ss << "lead node line: " << leafNodePtr->getFileLine() << endl;
//                    _ss << "old entry:\n " << Signature::BitSet2str(entry.getEntitySig().entityBitSet) << endl;
//                    _ss << "new entry:\n " << Signature::BitSet2str(newEntry.getEntitySig().entityBitSet) << endl;
//                    Util::logging(_ss.str());
//                }
//            }

            leafNodePtr->setChildEntry(i, newEntry);
            leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
            findFlag = true;

            break;
        }
    }

    if (!findFlag)
    {
        cerr<< "error, can not find the mapping child entry in the leaf node. @VSTree::updateEntry" << endl;
        return false;
    }

    return true;
}
Пример #4
0
//remove an existed Entry(_entity_id) from VSTree 
bool 
VSTree::removeEntry(int _entity_id)
{
    VNode* leafNodePtr = this->getLeafNodeByEntityID(_entity_id);

    if (leafNodePtr == NULL)
    {
        cerr<< "error, can not find the mapping leaf node. @VSTree::removeEntry" << endl;
        return false;
    }

    // seek the entry index of the leaf node.
    int entryIndex = -1;
    int childNum = leafNodePtr->getChildNum();
    for (int i=0;i<childNum;i++)
    {
        if (leafNodePtr->getChildEntry(i).getEntityId() == _entity_id)
        {
            entryIndex = i;
            break;
        }
    }

    if (entryIndex == -1)
    {
        cerr << "error, can not find the entry in leaf node. @VSTree::removeEntry" << endl;
        return false;
    }

    // remove the entry in this leaf node and refresh itself and its ancestors' signature.
    leafNodePtr->removeChild(entryIndex);
    leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
    this->entry_num --;

     //we do not consider the situation which the leaf node is to be empty by now...
	 //in a better way, if the leaf node is empty after removing entry, we should delete it. and recursively judge whether its
	 //father is empty, and delete its father node if true. to make the VSTree more balanced, we should combine two nodes if
	 //their child number are less than the MIN_CHILD_NUM. when deleting one node from the tree, we should also remove it from
	 //tree node file in hard disk by doing some operations on the node_buffer.

    return true;
}
Пример #5
0
void VNode::refreshAncestorSignature(LRUCache& _nodeBuffer)
{
    // refresh self node's signature.
    this->refreshSignature();

    // refresh father node's signature.
    VNode* fatherNodePtr = this->getFather(_nodeBuffer);
    if (fatherNodePtr == NULL)
    {
        if (!this->isRoot())
            cerr << "error, can not find father node. @VNode::refreshSignature" << endl;
        return;
    }

    int rank = this->getIndexInFatherNode(_nodeBuffer);
    if (fatherNodePtr->getChildEntry(rank).getEntitySig() != this->entry.getEntitySig())
    {
        fatherNodePtr->setChildEntry(rank, this->entry);
        fatherNodePtr->refreshAncestorSignature(_nodeBuffer);
    }
}
Пример #6
0
void 
VSTree::split(VNode* _p_node_being_split, const SigEntry& _insert_entry, VNode* _p_insert_node)
{
#ifdef DEBUG_VSTREE
		stringstream _ss;
		_ss << "**********************split happen at "
			<< _p_node_being_split->getFileLine() << endl;
		_ss << _p_node_being_split->to_str() << endl;
		Util::logging(_ss.str());
#endif
    // first, add the new child node(if not leaf) or child entry(if leaf) to the full node.
	bool just_insert_entry = (_p_insert_node == NULL);
    if(just_insert_entry)
    {
        _p_node_being_split->addChildEntry(_insert_entry, true);
    }
    else
    {
        _p_node_being_split->addChildNode(_p_insert_node, true);
    }

    SigEntry entryA, entryB;

	//BETTER: use hanming, xor result or the vector included angle to guess the distince.
	//And then also use the farest two as seeds.
	//
     //two seeds to generate two new nodes.
	 //seedA kernel: the SigEntry with the minimal count of signature.
	 //seedB kernel: the SigEntry with the maximal count of signature.
     

    int maxCount = 0; // record the minimal signature count.
    int entryA_index = 0; // record the seedA kernel index.
    for(int i = 0; i < VNode::MAX_CHILD_NUM; i++)
    {
        int currentCount = (int) _p_node_being_split->getChildEntry(i).getSigCount();
        if(maxCount < currentCount)
        {
            maxCount = currentCount;
            entryA_index = i;
        }
    }
    entryA = _p_node_being_split->getChildEntry(entryA_index);

	maxCount = 0;
    int entryB_index = 0; // record the seedB kernel index.
    for(int i = 0; i < VNode::MAX_CHILD_NUM; i++)
    {
		//NOTICE:I think xOR should be used here to choose the farest two
		int currentCount = entryA.xOR(_p_node_being_split->getChildEntry(i));
		//int currentCount = entryA.xEpsilen(_p_node_being_split->getChildEntry(i));
        if(i != entryA_index && maxCount <= currentCount)
        {
            maxCount = currentCount;
            entryB_index = i;
        }
    }
    entryB = _p_node_being_split->getChildEntry(entryB_index);

    // AEntryIndex: the entry index near seedA.
    // BEntryIndex: the entry index near seedB.
    std::vector<int> entryIndex_nearA, entryIndex_nearB;
    entryIndex_nearA.clear();
    entryIndex_nearB.clear();
    entryIndex_nearA.push_back(entryA_index);
    entryIndex_nearB.push_back(entryB_index);

    int nearA_max_size, nearB_max_size;
    bool nearA_tooSmall, nearB_tooSmall;

    for(int i = 0; i < VNode::MAX_CHILD_NUM; i++)
    {
        if(i == entryA_index || i == entryB_index) continue;

		//should guarantee that each new node has at least MIN_CHILD_NUM children. 
        nearA_max_size = VNode::MAX_CHILD_NUM - entryIndex_nearB.size();
        nearA_tooSmall = (nearA_max_size <= VNode::MIN_CHILD_NUM);

        if(nearA_tooSmall)
        {
            for(; i < VNode::MAX_CHILD_NUM; i++)
            {
                if (i == entryA_index || i == entryB_index) continue;
                entryIndex_nearA.push_back(i);
            }
            break;
        }

        nearB_max_size = VNode::MAX_CHILD_NUM - entryIndex_nearA.size();
        nearB_tooSmall = (nearB_max_size <= VNode::MIN_CHILD_NUM);
        if(nearB_tooSmall)
        {
            for(; i < VNode::MAX_CHILD_NUM; i++)
            {
                if(i == entryA_index || i == entryB_index) continue;
                entryIndex_nearB.push_back(i);
            }
            break;
        }

         //calculate the distance from
         //the i-th child entry signature to seedA(or seedB).

		//NOTICE:we should expect that the candidate can be almost contained!
		//However, the precondition there are not too many 1s
        int disToSeedA = entryA.xEpsilen(_p_node_being_split->getChildEntry(i));
        int disToSeedB = entryB.xEpsilen(_p_node_being_split->getChildEntry(i));
        // choose the near one seed to add into
        if(disToSeedA <= disToSeedB)
        {
			 entryIndex_nearA.push_back(i);
        }
        else
        {
			 entryIndex_nearB.push_back(i);
        }
    }

    // then create a new node to act as BEntryIndex's father.
    VNode* newNodePtr = this->createNode();

#ifdef DEBUG_VSTREE
		stringstream _ss2;
		_ss2 << "new Node is :[" << newNodePtr->getFileLine() << "]" << endl;
		Util::logging(_ss2.str());
#endif
    // the old one acts as AEntryIndex's father.
    VNode* oldNodePtr = _p_node_being_split;

    // if the old node is leaf, set the new node as a leaf.
    if(oldNodePtr->isLeaf())
    {
        newNodePtr->setAsLeaf(true);
    }

	 //add all the entries in BEntryIndex into the new node child entry array,
	//and calculate the new node's entry.
    for(unsigned i = 0; i < entryIndex_nearB.size(); i++)
    {
        if(oldNodePtr->isLeaf())
        {
            newNodePtr->addChildEntry(oldNodePtr->getChildEntry(entryIndex_nearB[i]), false);
        }
        else
        {
			 //debug target 2
        	VNode* childPtr = oldNodePtr->getChild(entryIndex_nearB[i], *(this->node_buffer));
            newNodePtr->addChildNode(childPtr);
        }
    }
    newNodePtr->refreshSignature();

     //label the child being removed with -1,
     //and update the old node's entry.
    sort(entryIndex_nearA.begin(), entryIndex_nearA.end(), less<int>());

#ifdef DEBUG_VSTREE
    	stringstream _ss1;
    	{
    		_ss1 << "nearA: ";
    		for(unsigned i = 0; i < entryIndex_nearA.size(); i++)
    		{
    			_ss1 << entryIndex_nearA[i] << " ";
    		}
    		_ss1 << endl;

    		_ss1 << "nearB: ";
    		for(unsigned i = 0; i < entryIndex_nearB.size(); i++)
    		{
    			_ss1 << entryIndex_nearB[i] << " ";
    		}
    		_ss1 << endl;
    	}
    	Util::logging(_ss1.str());
#endif

    for(unsigned i = 0; i < entryIndex_nearA.size(); i++)
    {
        oldNodePtr->setChildEntry(i, oldNodePtr->getChildEntry(entryIndex_nearA[i]));
        oldNodePtr->setChildFileLine(i, oldNodePtr->getChildFileLine(entryIndex_nearA[i]));
    }
    oldNodePtr->setChildNum(entryIndex_nearA.size());
    oldNodePtr->refreshSignature();

    int oldNode_index = oldNodePtr->getIndexInFatherNode(*(this->node_buffer));
    // full node's father pointer.
    VNode* oldNodeFatherPtr = oldNodePtr->getFather(*(this->node_buffer));
    if(oldNodePtr->isRoot())
    {
         //if the old node is root,
		 //split the root, create a new root,
         //and the tree height will be increased.
        VNode* RootNewPtr = this->createNode();

         //change the old root node to not-root node,
         //and set the RootNew to root node.
        oldNodePtr->setAsRoot(false);
        RootNewPtr->setAsRoot(true);

         //set the split two node(old node and new node) as the new root's child,
         //and update signatures.
        RootNewPtr->addChildNode(oldNodePtr);
        RootNewPtr->addChildNode(newNodePtr);
        RootNewPtr->refreshSignature();

        //debug
//        {
//            stringstream _ss;
//            _ss << "create new root:" << endl;
//            _ss << "before swap file line, two sons are: " << oldNodePtr->getFileLine() << " " << newNodePtr->getFileLine() << endl;
//            Util::logging(_ss.str());
//        }

         //should keep the root node always being
         //at the first line(line zero) of the tree node file.
        this->swapNodeFileLine(RootNewPtr, oldNodePtr);
        this->height++;

        //debug
//        {
//            stringstream _ss;
//            _ss << "create new root:" << endl;
//            _ss << "two sons are: " << oldNodePtr->getFileLine() << " " << newNodePtr->getFileLine() << endl;
//            _ss << Signature::BitSet2str(oldNodePtr->getEntry().getEntitySig().entityBitSet) << endl;
//            _ss << RootNewPtr->to_str() << endl;
//            Util::logging(_ss.str());
//        }
    }
    else
    {
         //if the (OldNode) is not Root,
         //change the old node's signature to A's signature.
    	oldNodeFatherPtr->setChildEntry(oldNode_index, oldNodePtr->getEntry());


        if(oldNodeFatherPtr->isFull())
        {
        	oldNodeFatherPtr->refreshAncestorSignature(*(this->node_buffer));
            this->split(oldNodeFatherPtr, newNodePtr->getEntry(), newNodePtr);
        }
        else
        {
        	oldNodeFatherPtr->addChildNode(newNodePtr);
        	oldNodeFatherPtr->refreshAncestorSignature(*(this->node_buffer));
        }
    }

    //debug
//    if (!oldNodePtr->checkState())
//    {
//        stringstream _ss;
//        _ss << "node " << oldNodePtr->getFileLine() << " childFileLine error. oldNode when split" << endl;
//        Util::logging(_ss.str());
//    }
//    if (!newNodePtr->checkState())
//    {
//        stringstream _ss;
//        _ss << "node " << newNodePtr->getFileLine() << " childFileLine error. newNode when split" << endl;
//        Util::logging(_ss.str());
//    }

    // update the entityID2FileLineMap by these two nodes.
    this->updateEntityID2FileLineMap(oldNodePtr);
    this->updateEntityID2FileLineMap(newNodePtr);
}
Пример #7
0
//retrieve the candidate entity ID which signature can cover the _entity_bit_set, and add them to the  _p_id_list. 
void 
VSTree::retrieveEntity(const EntityBitSet& _entity_bit_set, IDList* _p_id_list)
{
	Util::logging("IN retrieveEntity");
    EntitySig filterSig(_entity_bit_set);
#ifdef DEBUG_VSTREE
	cerr << "the filter signature: " << filterSig.to_str() << endl;
#endif
    queue<int> nodeQueue; //searching node file line queue.

    //debug
    {
        stringstream _ss;
        _ss << "filterSig=" << Signature::BitSet2str(filterSig.entityBitSet) << endl;
        Util::logging(_ss.str());
    }

    const SigEntry& root_entry = (this->getRoot())->getEntry();
    Util::logging("Get Root Entry");

    if(root_entry.cover(filterSig))
    {
        nodeQueue.push(this->getRoot()->getFileLine());
    	Util::logging("root cover the filter_sig");
    }
    else
    {
    	Util::logging("warning: root is not cover the filter_sig");
    }

    //debug
//    {
//    	Util::logging(this->getRoot()->to_str());
//    	Util::logging("Before BFS");
//    }

	//using BFS algorithm to traverse the VSTree and retrieve the entry.
    while (!nodeQueue.empty())
    {
        int currentNodeFileLine = nodeQueue.front();
        nodeQueue.pop();
        VNode* currentNodePtr = this->getNode(currentNodeFileLine);

        int childNum = currentNodePtr->getChildNum();

        //debug
//        {
//        	std::stringstream _ss;
//        	_ss << "childNum of ["
//        		<< currentNodePtr->getFileLine()
//        		<< "] is " << childNum << endl;
//
//        	for (int i=0;i<childNum;i++)
//        	{
//        	    _ss << currentNodePtr->getChildFileLine(i) << " ";
//        	}
//        	_ss << endl;
//
//        	Util::logging(_ss.str());
//        }

		int valid = 0;
        for (int i = 0; i < childNum; i++)
        {
            const SigEntry& entry = currentNodePtr->getChildEntry(i);

#ifdef DEBUG_VSTREE
			//cerr << "current entry: " << entry.to_str() << endl;
#endif

            if (entry.cover(filterSig))
            {
				valid++;
                if (currentNodePtr->isLeaf())
                {
                    // if leaf node, add the satisfying entries' entity id to result list.
                    _p_id_list->addID(entry.getEntityId());

                    //debug
//                    {
//                    stringstream _ss;
//                    _ss << "child_" << i << " cover filter sig" << endl;
//                    _ss << Signature::BitSet2str(entry.getEntitySig().entityBitSet)<< endl;
//                    Util::logging(_ss.str());
//                    }
                }
                else
                {
                    // if non-leaf node, add the child node pointer to the searching queue.
                	//VNode* childPtr = currentNodePtr->getChild(i, *(this->node_buffer));
                    // if non-leaf node, add the child node file line to the searching queue.
                	int childNodeFileLine = currentNodePtr->getChildFileLine(i);
                	nodeQueue.push(childNodeFileLine);

                    //debug
//                    {
//                        stringstream _ss;
//                        _ss << "child[" << childPtr->getFileLine() << "] cover filter sig" << endl;
//                        Util::logging(_ss.str());
//                    }
                }
            }
        }
#ifdef DEBUG_VSTREE
		//cerr << "child num: " << childNum << "   valid num: " << valid << endl;
#endif
    }
    Util::logging("OUT retrieveEntity");
}
Пример #8
0
//the _entry_index in _child is to be removed.
//node can only be deleted in this function.
void 
VSTree::coalesce(VNode* _child, int _entry_index)
{
#ifdef DEBUG
	cout << "coalesce happen" <<endl;
#endif

	//found the father and index
	VNode* _father = _child->getFather(*(this->node_buffer));
	int cn = _child->getChildNum();
	
	if(_father == NULL) //this is already root
	{
		//NOTICE:when root is leaf, at least one key, otherwise the tree is empty
		//But when root is internal, at least two key, if one key then shrink
		//(1-key internal root is not permitted)
		//
		//Notice that leaf-root case has been discussed in upper function removeEntry()
		//so here the root must be internal node
		_child->removeChild(_entry_index);
		if(cn == 2)
		{
			//only one key after remove, shrink root
			VNode* newRoot = _child->getChild(0, *(this->node_buffer));
			newRoot->setAsRoot(true);
			cout<<"shrink root in coalesce() -- to swap node file"<<endl;
			this->swapNodeFileLine(newRoot, _child);
			this->root_file_line = newRoot->getFileLine();
			this->height--;
			this->removeNode(_child);
		}
		return;
	}

	if(cn > VNode::MIN_CHILD_NUM)
	{
		cout<<"no need to move or union in coalesce()"<<endl;
		_child->removeChild(_entry_index);
		_child->refreshAncestorSignature(*(this->node_buffer));
		return;
	}

    int fn = _father->getChildNum();
	int i, _child_index = -1;

	for (i = 0; i < fn; ++i)
	{
		if (_father->getChildFileLine(i) == _child->getFileLine())
		{
			break;
		}
	}
	if(i == fn)
	{
		cerr << "not found the leaf node in VSTree::coalesce()" << endl;
		return;
	}
	else
	{
		_child_index = i;
	}

	//_child->removeChild(_entry_index);
	//_child->setChildNum(cn);

	//NOTICE:we do not consider the efficiency here, so just ensure the operation is right
	//BETTER:find good way to ensure signatures are separated(maybe similar ones together)
	int ccase = 0;
	VNode* p = NULL;
	int n = 0;

	if(_child_index < fn - 1)
	{
		p = _father->getChild(_child_index+1, *(this->node_buffer));
		n = p->getChildNum();
		if(n > VNode::MIN_CHILD_NUM)
		{
			ccase = 2;
		}
		else
		{
			ccase = 1;
		}
	}

	if(_child_index > 0)
	{
		VNode* tp = _father->getChild(_child_index-1, *(this->node_buffer));
		int tn = tp->getChildNum();
		if(ccase < 2)
		{
			if(ccase == 0)
				ccase = 3;
			if(tn > VNode::MIN_CHILD_NUM)
				ccase = 4;
		}
		if(ccase > 2)
		{
			p = tp;
			n = tn;
		}
	}

	VNode* tmp = NULL;
	int child_no = _child->getFileLine();
	int father_no = _father->getFileLine();

#ifdef DEBUG
	if(ccase == 1 || ccase == 3)
	{
		cout << "union happened" << endl;
	}
	else if(ccase == 2 || ccase == 4)
	{
		cout << "move happened" << endl;
	}
	cout<< "father num: "<<fn<<"   child num: "<<cn<<"   neighbor num: "<<n<<endl;
	cout<<"child file line "<<child_no<<endl;
	cout<<"neighbor file line "<<p->getFileLine()<<endl;
#endif

	switch(ccase)
	{
	case 1:    //union right to this
		if(_child->isLeaf())
		{
			_child->setChildFileLine(_entry_index, p->getChildFileLine(0));
			_child->setChildEntry(_entry_index, p->getChildEntry(0));
			for(int i = 1; i < n; ++i)
			{
				_child->setChildFileLine(cn+i-1, p->getChildFileLine(i));
				_child->addChildEntry(p->getChildEntry(i));
			}
		}
		else
		{
			_child->setChildFileLine(_entry_index, p->getChildFileLine(0));
			_child->setChildEntry(_entry_index, p->getChildEntry(0));
			tmp = p->getChild(0, *(this->node_buffer));
			tmp->setFatherFileLine(child_no);
			for(int i = 1; i < n; ++i)
			{
				tmp = p->getChild(i, *(this->node_buffer));
				//cout<<i<<"   "<<_child->getChildNum()<<endl;
				_child->addChildNode(tmp);
				//_child->setChildNum(cn+i);
				//tmp->setFatherFileLine(child_no);
			}
		}
		this->removeNode(p);
		_child->refreshSignature();
		//recursive:to remove child index+1 in father
		this->coalesce(_father, _child_index+1);
		break;

	case 2:    //move one from right
		_child->setChildFileLine(_entry_index, p->getChildFileLine(n-1));
		_child->setChildEntry(_entry_index, p->getChildEntry(n-1));
		_child->refreshSignature();
		if(!_child->isLeaf())
		{
			tmp = p->getChild(n-1, *(this->node_buffer));
			tmp->setFatherFileLine(child_no);
		}
		p->removeChild(n-1);
		p->refreshSignature();
		_father->setChildEntry(_child_index, _child->getEntry());
		_father->setChildEntry(_child_index+1, p->getEntry());
		_father->refreshAncestorSignature(*(this->node_buffer));
		break;

	case 3:    //union left to this
		if(_child->isLeaf())
		{
			_child->setChildFileLine(_entry_index, p->getChildFileLine(0));
			_child->setChildEntry(_entry_index, p->getChildEntry(0));
			for(int i = 1; i < n; ++i)
			{
				_child->setChildFileLine(cn+i-1, p->getChildFileLine(i));
				_child->addChildEntry(p->getChildEntry(i));
			}
		}
		else
		{
			_child->setChildFileLine(_entry_index, p->getChildFileLine(0));
			_child->setChildEntry(_entry_index, p->getChildEntry(0));
			tmp = p->getChild(0, *(this->node_buffer));
			tmp->setFatherFileLine(child_no);
			for(int i = 1; i < n; ++i)
			{
				tmp = p->getChild(i, *(this->node_buffer));
				//cout<<i<<"   "<<_child->getChildNum()<<endl;
				_child->addChildNode(tmp);
				//_child->setChildNum(cn+i);
				//tmp->setFatherFileLine(child_no);
			}
		}
		this->removeNode(p);
		_child->refreshSignature();
		//recursive:to remove child index-1 in father
		this->coalesce(_father, _child_index-1);
		break;

	case 4:    //move one from left
		_child->setChildFileLine(_entry_index, p->getChildFileLine(n-1));
		_child->setChildEntry(_entry_index, p->getChildEntry(n-1));
		_child->refreshSignature();
		if(!_child->isLeaf())
		{
			VNode* tmp = p->getChild(n-1, *(this->node_buffer));
			tmp->setFatherFileLine(child_no);
		}
		p->removeChild(n-1);
		p->refreshSignature();
		_father->setChildEntry(_child_index, _child->getEntry());
		_father->setChildEntry(_child_index-1, p->getEntry());
		_father->refreshAncestorSignature(*(this->node_buffer));
		break;

	default:
		cout << "error in coalesce: Invalid case!";
		break;
	}

	//BETTER:this maybe very costly because many entity no need to update
	if(_child->isLeaf())
	{
		this->updateEntityID2FileLineMap(_child);
		if(ccase == 2 || ccase == 4)
		{
			this->updateEntityID2FileLineMap(p);
		}
	}	
}
Пример #9
0
//remove an existed Entry(_entity_id) from VSTree 
bool 
VSTree::removeEntry(int _entity_id)
{
    VNode* leafNodePtr = this->getLeafNodeByEntityID(_entity_id);

    if (leafNodePtr == NULL)
    {
        cerr<< "error, can not find the mapping leaf node. @VSTree::removeEntry" << endl;
        return false;
    }

    // seek the entry index of the leaf node.
    int entryIndex = -1;
    int childNum = leafNodePtr->getChildNum();

	//cout<<"root file line: "<<this->root_file_line<<"   "<<"max nid num: "<<this->max_nid_alloc<<endl;
	//cout<<"node num: "<<this->node_num<<"   "<<"file line: "<<leafNodePtr->getFileLine()<<"   "<<"child num: "<<childNum<<endl;

    for(int i = 0; i < childNum; i++)
    {
        if(leafNodePtr->getChildEntry(i).getEntityId() == _entity_id)
        {
            entryIndex = i;
            break;
        }
    }

    if(entryIndex == -1)
    {
        cerr << "error, can not find the entry in leaf node. @VSTree::removeEntry" << endl;
        return false;
    }

	//BETTER?:consider up->bopttom to deal, not find leaf and recursively
	if(leafNodePtr->isRoot())
	{
		if(childNum == 1)
		{   //the tree is empty now
			leafNodePtr->removeChild(entryIndex);
			leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
			this->removeNode(leafNodePtr);
			this->root_file_line = -1;
			this->height = 0;
			this->entry_num = 0;
			this->node_num = 0;
		}
		else
		{
			leafNodePtr->removeChild(entryIndex);
			leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
		}
	}
	else
	{
		if(childNum <= VNode::MIN_CHILD_NUM)
		{
			//cerr << "In VSTree::remove() -- the node is invalid" << endl;
			//TODO+BETTER:this may search again, too costly
			//VNode* fatherNodePtr = leafNodePtr->getFather(*(this->node_buffer));
			////int index = leafNodePtr->getIndexInFatherNode(*(this->node_buffer));
			//int n = fatherNodePtr->getChildNum();
			//for (int i = 0; i < n; ++i)
			//{
				//if (fatherNodePtr->getChildFileLine(i) == leafNodePtr->getFileLine())
				//{
					//this->coalesce(fatherNodePtr, i, leafNodePtr, entryIndex);
					//break;
				//}
			//}
			//return false;
			this->coalesce(leafNodePtr, entryIndex);
		}
		else
		{
			leafNodePtr->removeChild(entryIndex);
			leafNodePtr->refreshAncestorSignature(*(this->node_buffer));
		}
	}


	this->entry_num--;
	this->entityID2FileLineMap.erase(_entity_id);

     //NOTICE:insert is costly but can keep balance.
	 //However, remove is not too costly but can not keep balance at all.
	 //And remove maybe error if without coalesce!
	 //If remove and insert are both wonderful, update/replace can both be balanced using delete and insert again.
	 //(not care the balance now, if insert/delete many times, rebuilding is suggested)

	 //we do not consider the situation which the leaf node is to be empty by now...
	 //in a better way, if the leaf node is empty after removing entry, we should delete it. and recursively judge whether its
	 //father is empty, and delete its father node if true. to make the VSTree more balanced, we should combine two nodes if
	 //their child number are less than the MIN_CHILD_NUM. when deleting one node from the tree, we should also remove it from
	 //tree node file in hard disk by doing some operations on the node_buffer.

    return true;
}
Пример #10
0
void VSTree::split(VNode* _p_node_being_split, const SigEntry& _insert_entry, VNode* _p_insert_node)
{
    //debug
//	{
//		stringstream _ss;
//		_ss << "**********************split happen at "
//			<< _p_node_being_split->getFileLine() << endl;
//		_ss << _p_node_being_split->to_str() << endl;
//		Util::logging(_ss.str());
//	}
    // first, add the new child node(if not leaf) or child entry(if leaf) to the full node.
	bool just_insert_entry = (_p_insert_node == NULL);
    if (just_insert_entry)
    {
        _p_node_being_split->addChildEntry(_insert_entry, true);
    }
    else
    {
        _p_node_being_split->addChildNode(_p_insert_node, true);
    }

    SigEntry entryA, entryB;
    /* two seeds to generate two new nodes.
     * seedA kernel: the SigEntry with the minimal count of signature.
     * seedB kernel: the SigEntry with the second minimal count of signature.
     * */

    int minCount = 0; // record the minimal signature count.
    int entryA_index = 0; // record the seedA kernel index.
    for (int i=0;i<VNode::MAX_CHILD_NUM;i++)
    {
        int currentCount = (int) _p_node_being_split->getChildEntry(i).getSigCount();
        if (minCount < currentCount)
        {
            minCount = currentCount;
            entryA_index = i;
        }
    }
    entryA = _p_node_being_split->getChildEntry(entryA_index);

    minCount = 0;
    int entryB_index = 0; // record the seedB kernel index.
    for (int i=0;i<VNode::MAX_CHILD_NUM;i++)
    {
        int currentCount = entryA.xEpsilen(_p_node_being_split->getChildEntry(i));
        if (i != entryA_index && minCount <= currentCount)
        {
            minCount = currentCount;
            entryB_index = i;
        }
    }
    entryB = _p_node_being_split->getChildEntry(entryB_index);

    // AEntryIndex: the entry index near seedA.
    // BEntryIndex: the entry index near seedB.
    std::vector<int> entryIndex_nearA, entryIndex_nearB;
    entryIndex_nearA.clear();
    entryIndex_nearB.clear();
    entryIndex_nearA.push_back(entryA_index);
    entryIndex_nearB.push_back(entryB_index);

    /* just tmp variables, for more readibility */
    int nearA_max_size, nearB_max_size;
    bool nearA_tooSmall, nearB_tooSmall;

    for (int i=0;i<VNode::MAX_CHILD_NUM;i++)
    {
        if (i == entryA_index || i == entryB_index) continue;

        /* should guarantee that each new node has at least MIN_CHILD_NUM children. */
        nearA_max_size = VNode::MAX_CHILD_NUM - entryIndex_nearB.size();
        nearA_tooSmall = (nearA_max_size <= VNode::MIN_CHILD_NUM);

        if (nearA_tooSmall)
        {
            for (;i<VNode::MAX_CHILD_NUM;i++)
            {
                if (i == entryA_index || i == entryB_index) continue;
                entryIndex_nearA.push_back(i);
            }
            break;
        }

        nearB_max_size = VNode::MAX_CHILD_NUM - entryIndex_nearA.size();
        nearB_tooSmall = (nearB_max_size <= VNode::MIN_CHILD_NUM);
        if (nearB_tooSmall)
        {
            for (;i<VNode::MAX_CHILD_NUM;i++)
            {
                if (i == entryA_index || i == entryB_index) continue;
                entryIndex_nearB.push_back(i);
            }
            break;
        }

        /* calculate the distance from
         * the i-th child entry signature to seedA(or seedB).*/

        /*debug target 1*/
        int disToSeedA = entryA.xEpsilen(_p_node_being_split->getChildEntry(i));
        int disToSeedB = entryB.xEpsilen(_p_node_being_split->getChildEntry(i));
        // choose the near one seed to add into
        if (disToSeedA <= disToSeedB)
        {
        	 entryIndex_nearA.push_back(i);
        }
        else
        {
        	 entryIndex_nearB.push_back(i);
        }
    }

    // then create a new node to act as BEntryIndex's father.
    VNode* newNodePtr = this->createNode();

    //debug
//    {
//    	stringstream _ss;
//    	_ss << "new Node is :[" << newNodePtr->getFileLine() << "]" << endl;
//    	Util::logging(_ss.str());
//    }
    // the old one acts as AEntryIndex's father.
    VNode* oldNodePtr = _p_node_being_split;

    // if the old node is leaf, set the new node as a leaf.
    if (oldNodePtr->isLeaf())
    {
        newNodePtr->setAsLeaf(true);
    }

    /* add all the entries in BEntryIndex into the new node child entry array,
    and calculate the new node's entry.*/
    for (unsigned i=0;i<entryIndex_nearB.size();i++)
    {
        if (oldNodePtr->isLeaf())
        {
            newNodePtr->addChildEntry(oldNodePtr->getChildEntry(entryIndex_nearB[i]), false);
        }
        else
        {
        	 /*debug target 2*/
        	VNode* childPtr = oldNodePtr->getChild(entryIndex_nearB[i], *(this->node_buffer));
            newNodePtr->addChildNode(childPtr);
        }
    }
    newNodePtr->refreshSignature();

    /* label the child being removed with -1,
     * and update the old node's entry.*/
    std::sort(entryIndex_nearA.begin(), entryIndex_nearA.end(), less<int>());

    //debug
//    {
//    	stringstream _ss;
//    	{
//    		_ss << "nearA: ";
//    		for(int i = 0; i < entryIndex_nearA.size(); i ++)
//    		{
//    			_ss << entryIndex_nearA[i] << " ";
//    		}
//    		_ss << endl;
//
//    		_ss << "nearB: ";
//    		for(int i = 0; i < entryIndex_nearB.size(); i ++)
//    		{
//    			_ss << entryIndex_nearB[i] << " ";
//    		}
//    		_ss << endl;
//    	}
//    	Util::logging(_ss.str());
//    }

    for (unsigned i=0;i<entryIndex_nearA.size();i++)
    {
        oldNodePtr->setChildEntry(i, oldNodePtr->getChildEntry(entryIndex_nearA[i]));
        oldNodePtr->setChildFileLine(i, oldNodePtr->getChildFileLine(entryIndex_nearA[i]));
    }
    oldNodePtr->setChildNum(entryIndex_nearA.size());
    oldNodePtr->refreshSignature();

    int oldNode_index = oldNodePtr->getIndexInFatherNode(*(this->node_buffer));
    // full node's father pointer.
    VNode* oldNodeFatherPtr = oldNodePtr->getFather(*(this->node_buffer));
    if (oldNodePtr->isRoot())
    {
        /* if the old node is root,
         * split the root, create a new root,
         * and the tree height will be increased.*/
        VNode* RootNewPtr = this->createNode();

        /* change the old root node to not-root node,
         * and set the RootNew to root node.*/
        oldNodePtr->setAsRoot(false);
        RootNewPtr->setAsRoot(true);

        /* set the split two node(old node and new node) as the new root's child,
         * and update signatures.*/
        RootNewPtr->addChildNode(oldNodePtr);
        RootNewPtr->addChildNode(newNodePtr);
        RootNewPtr->refreshSignature();

        //debug
//        {
//            stringstream _ss;
//            _ss << "create new root:" << endl;
//            _ss << "before swap file line, two sons are: " << oldNodePtr->getFileLine() << " " << newNodePtr->getFileLine() << endl;
//            Util::logging(_ss.str());
//        }

        /* should keep the root node always being
         * at the first line(line zero) of the tree node file.*/
        this->swapNodeFileLine(RootNewPtr, oldNodePtr);
        this->height ++;

        //debug
//        {
//            stringstream _ss;
//            _ss << "create new root:" << endl;
//            _ss << "two sons are: " << oldNodePtr->getFileLine() << " " << newNodePtr->getFileLine() << endl;
//            _ss << Signature::BitSet2str(oldNodePtr->getEntry().getEntitySig().entityBitSet) << endl;
//            _ss << RootNewPtr->to_str() << endl;
//            Util::logging(_ss.str());
//        }
    }
    else
    {
        /* if the (OldNode) is not Root,
         * change the old node's signature to A's signature.*/
    	oldNodeFatherPtr->setChildEntry(oldNode_index, oldNodePtr->getEntry());


        if (oldNodeFatherPtr->isFull())
        {
        	oldNodeFatherPtr->refreshAncestorSignature(*(this->node_buffer));
            this->split(oldNodeFatherPtr, newNodePtr->getEntry(), newNodePtr);
        }
        else
        {
        	oldNodeFatherPtr->addChildNode(newNodePtr);
        	oldNodeFatherPtr->refreshAncestorSignature(*(this->node_buffer));
        }
    }

    //debug
//    if (!oldNodePtr->checkState())
//    {
//        stringstream _ss;
//        _ss << "node " << oldNodePtr->getFileLine() << " childFileLine error. oldNode when split" << endl;
//        Util::logging(_ss.str());
//    }
//    if (!newNodePtr->checkState())
//    {
//        stringstream _ss;
//        _ss << "node " << newNodePtr->getFileLine() << " childFileLine error. newNode when split" << endl;
//        Util::logging(_ss.str());
//    }

    // update the entityID2FileLineMap by these two nodes.
    this->updateEntityID2FileLineMap(oldNodePtr);
    this->updateEntityID2FileLineMap(newNodePtr);
}