示例#1
0
CPS_START_NAMESPACE


//------------------------------------------------------------------
/*!
  \param latt The lattice on which the HMC algorithm runs.
  \param c_arg The common argument structure for all algorithms.
  \param arg The algorithm parameters.
 */
//------------------------------------------------------------------
AlgHmcQPQ::AlgHmcQPQ(Lattice& latt,
                     CommonArg *c_arg,
                     HmdArg *arg) :
    AlgHmd(latt, c_arg, arg)
{
    int i, j;
    cname = "AlgHmcQPQ";
    char *fname = "AlgHmcQPQ(L&,CommonArg*,HmdArg*)";
    VRB.Func(cname,fname);
    int n_masses;


    // Initialize the number of dynamical fermion masses
    //----------------------------------------------------------------
    n_frm_masses = hmd_arg->n_frm_masses;
    if(n_frm_masses > MAX_HMD_MASSES) {
        ERR.General(cname,fname,
                    "hmd_arg->n_frm_masses = %d is larger than MAX_HMD_MASSES = %d\n",
                    n_frm_masses, MAX_HMD_MASSES);
    }


    // Initialize the number of dynamical boson masses
    //----------------------------------------------------------------
    n_bsn_masses = hmd_arg->n_bsn_masses;
    if(n_bsn_masses > MAX_HMD_MASSES) {
        ERR.General(cname,fname,
                    "hmd_arg->n_bsn_masses = %d is larger than MAX_HMD_MASSES = %d\n",
                    n_bsn_masses, MAX_HMD_MASSES);
    }

    // Calculate the fermion field size.
    //----------------------------------------------------------------
    f_size = GJP.VolNodeSites() * latt.FsiteSize() / (latt.FchkbEvl()+1);

    // Allocate memory for the fermion CG arguments.
    //----------------------------------------------------------------
    if(n_frm_masses != 0) {
        frm_cg_arg = (CgArg **) smalloc(n_frm_masses * sizeof(int));
        if(frm_cg_arg == 0)
            ERR.Pointer(cname,fname, "frm_cg_arg");
        VRB.Smalloc(cname,fname,
                    "frm_cg_arg",frm_cg_arg, n_frm_masses * sizeof(int));

        for(i=0; i<n_frm_masses; i++) {
            frm_cg_arg[i] = (CgArg *) smalloc(sizeof(CgArg));
            if(frm_cg_arg[i] == 0)
                ERR.Pointer(cname,fname, "frm_cg_arg[i]");
            VRB.Smalloc(cname,fname,
                        "frm_cg_arg[i]", frm_cg_arg[i], sizeof(CgArg));
        }
    }


    // Initialize the fermion CG arguments
    //----------------------------------------------------------------
    //??? Complete this
    for(i=0; i<n_frm_masses; i++) {
        frm_cg_arg[i]->mass = hmd_arg->frm_mass[i];
        frm_cg_arg[i]->max_num_iter = hmd_arg->max_num_iter[i];
        frm_cg_arg[i]->stop_rsd = hmd_arg->stop_rsd[i];
    }


    // Allocate memory for the boson CG arguments.
    //----------------------------------------------------------------
    if(n_bsn_masses != 0) {
        bsn_cg_arg = (CgArg **) smalloc(n_bsn_masses * sizeof(int));
        if(bsn_cg_arg == 0)
            ERR.Pointer(cname,fname, "bsn_cg_arg");
        VRB.Smalloc(cname,fname,
                    "bsn_cg_arg",bsn_cg_arg, n_bsn_masses * sizeof(int));

        for(i=0; i<n_bsn_masses; i++) {
            bsn_cg_arg[i] = (CgArg *) smalloc(sizeof(CgArg));
            if(bsn_cg_arg[i] == 0)
                ERR.Pointer(cname,fname, "bsn_cg_arg[i]");
            VRB.Smalloc(cname,fname,
                        "bsn_cg_arg[i]", bsn_cg_arg[i], sizeof(CgArg));
        }
    }


    // Initialize the boson CG arguments
    //----------------------------------------------------------------
    //??? Complete this
    for(i=0; i<n_bsn_masses; i++) {
        bsn_cg_arg[i]->mass = hmd_arg->bsn_mass[i];
        bsn_cg_arg[i]->max_num_iter = hmd_arg->max_num_iter[i];
        bsn_cg_arg[i]->stop_rsd = hmd_arg->stop_rsd[i];
    }


    // Allocate memory for the phi pseudo fermion field.
    //----------------------------------------------------------------
    if(n_frm_masses != 0) {
        phi = (Vector **) smalloc(n_frm_masses * sizeof(int));
        if(phi == 0)
            ERR.Pointer(cname,fname, "phi");
        VRB.Smalloc(cname,fname, "phi",phi, n_frm_masses * sizeof(int));
        for(i=0; i<n_frm_masses; i++) {
            phi[i] = (Vector *) smalloc(f_size * sizeof(Float));
            if(phi[i] == 0)
                ERR.Pointer(cname,fname, "phi[i]");
            VRB.Smalloc(cname,fname, "phi[i]", phi[i], f_size * sizeof(Float));
        }
    }


    // Allocate memory for the chronological inverter.
    //----------------------------------------------------------------
    if(n_frm_masses != 0) {
        cg_sol = (Vector ***) smalloc(n_frm_masses * sizeof(Vector**));
        if(cg_sol == 0) ERR.Pointer(cname,fname, "cg_sol_prev");
        VRB.Smalloc(cname,fname, "cg_sol", cg_sol, n_frm_masses * sizeof(Vector**));

        if (hmd_arg->chrono > 0) {
            vm = (Vector ***) smalloc(n_frm_masses * sizeof(Vector**));
            if(vm == 0) ERR.Pointer(cname,fname, "vm");
            VRB.Smalloc(cname,fname, "vm", vm, n_frm_masses * sizeof(Vector**));

            cg_sol_prev = (Vector **) smalloc(hmd_arg->chrono * sizeof(Vector*));
            if(cg_sol_prev == 0) ERR.Pointer(cname,fname, "cg_sol_prev");
            VRB.Smalloc(cname,fname, "cg_sol_prev", cg_sol_prev, hmd_arg->chrono * sizeof(Vector**));

            for(i=0; i<n_frm_masses; i++) {
                cg_sol[i] = (Vector **) smalloc(hmd_arg->chrono * sizeof(Vector*));
                if(cg_sol[i] == 0) ERR.Pointer(cname,fname, "cg_sol[i]");
                VRB.Smalloc(cname,fname, "cg_sol[i]", cg_sol[i], hmd_arg->chrono * sizeof(Vector*));

                vm[i] = (Vector **) smalloc(hmd_arg->chrono * sizeof(Vector*));
                if(vm[i] == 0) ERR.Pointer(cname,fname, "vm[i]");
                VRB.Smalloc(cname,fname, "vm[i]", vm[i], hmd_arg->chrono * sizeof(Vector*));

                for(j=0; j<hmd_arg->chrono; j++) {
                    cg_sol[i][j] = (Vector *) smalloc(f_size * sizeof(Float));
                    if(cg_sol[i][j] == 0) ERR.Pointer(cname,fname, "cg_sol[i][j]");
                    VRB.Smalloc(cname,fname, "cg_sol[i][j]", cg_sol[i][j], f_size * sizeof(Float));

                    vm[i][j] = (Vector *) smalloc(f_size * sizeof(Float));
                    if(vm[i][j] == 0) ERR.Pointer(cname,fname, "vm[i][j]");
                    VRB.Smalloc(cname,fname, "vm[i][j]", vm[i][j], f_size * sizeof(Float));
                }
            }
        } else if (hmd_arg->chrono == 0) {
            for(i=0; i<n_frm_masses; i++) {
                cg_sol[i] = (Vector **) smalloc(sizeof(Vector*));
                if(cg_sol[i] == 0) ERR.Pointer(cname,fname, "cg_sol[i]");
                VRB.Smalloc(cname,fname, "cg_sol[i]", cg_sol[i], sizeof(Vector*));

                cg_sol[i][0] = (Vector *) smalloc(f_size * sizeof(Float));
                if(cg_sol[i][0] == 0) ERR.Pointer(cname,fname, "cg_sol[i][0]");
                VRB.Smalloc(cname,fname, "cg_sol[i][0]", cg_sol[i][0], f_size * sizeof(Float));
            }
        }

    }


    // Allocate memory for the boson field bsn.
    //----------------------------------------------------------------
    if(n_bsn_masses != 0) {
        bsn = (Vector **) smalloc(n_bsn_masses * sizeof(int));
        if(bsn == 0)
            ERR.Pointer(cname,fname, "bsn");
        VRB.Smalloc(cname,fname, "bsn",bsn, n_bsn_masses * sizeof(int));
        for(i=0; i<n_bsn_masses; i++) {
            bsn[i] = (Vector *) smalloc(f_size * sizeof(Float));
            if(bsn[i] == 0)
                ERR.Pointer(cname,fname, "bsn[i]");
            VRB.Smalloc(cname,fname, "bsn[i]", bsn[i], f_size * sizeof(Float));
        }
    }


    // Allocate memory for the initial gauge field.
    //----------------------------------------------------------------
    gauge_field_init = (Matrix *) smalloc(g_size * sizeof(Float));
    if(gauge_field_init == 0)
        ERR.Pointer(cname,fname, "gauge_field_init");
    VRB.Smalloc(cname,fname,
                "gauge_field_init",gauge_field_init,
                g_size * sizeof(Float));


    // Allocate memory for 2 general purpose fermion/boson field
    // arrays (frm1,frm2).
    //----------------------------------------------------------------
    n_masses = n_frm_masses;
    if(n_bsn_masses > n_frm_masses)
        n_masses = n_bsn_masses;

    if(n_masses != 0) {
        frm1 = (Vector **) smalloc(n_masses * sizeof(int));
        if(frm1 == 0)
            ERR.Pointer(cname,fname, "frm1");
        VRB.Smalloc(cname,fname, "frm1",frm1, n_masses * sizeof(int));
        frm2 = (Vector **) smalloc(n_masses * sizeof(int));
        if(frm2 == 0)
            ERR.Pointer(cname,fname, "frm2");
        VRB.Smalloc(cname,fname, "frm2",frm2, n_masses * sizeof(int));
        for(i=0; i<n_masses; i++) {
            frm1[i] = (Vector *) smalloc(f_size * sizeof(Float));
            if(frm1[i] == 0)
                ERR.Pointer(cname,fname, "frm1[i]");
            VRB.Smalloc(cname,fname, "frm1[i]", frm1[i], f_size * sizeof(Float));
            frm2[i] = (Vector *) smalloc(f_size * sizeof(Float));
            if(frm2[i] == 0)
                ERR.Pointer(cname,fname, "frm2[i]");
            VRB.Smalloc(cname,fname, "frm2[i]", frm2[i], f_size * sizeof(Float));
        }
    }


}