Example #1
0
void parameters::Likelihood(const VectorXd & eff){
	 VectorXd loc;
	 loc.resize(m_proba.rows());
	 loc=(m_proba.rowwise().sum().array().log());
	 m_loglikelihood=eff.transpose()*loc;
	 m_bic=m_loglikelihood - 0.5*m_nbparam*log(eff.sum());
}
Example #2
0
File: DetR.cpp Project: cran/DetR
double unimcd_in(
		const VectorXd& m_resd,
		const int& h
	){
	const int n1=m_resd.size(),len=n1-h+1;
	double initmean=0.0,initcov=0.0,sumw=0.0;
	int minone;
	if(h==n1){
		initmean=m_resd.sum()/(double)h;
		initcov=(m_resd.array()-initmean).abs2().sum()/(double)(h-1);
		return(sqrt(initcov));
	}
	VectorXd y=m_resd;
	VectorXd ay(len);
	VectorXd ay2(len);
	VectorXd sq(len);
	VectorXd y2(n1);

	std::sort(y.data(),y.data()+y.size());
	ay(0)=y.head(h).sum();	
	for(int samp=1;samp<len;samp++) ay(samp)=ay(samp-1)-y(samp-1)+y(samp+h-1);
	ay2=ay.array().square()/(double)h;
	y2=y.array().square();
	sq(0)=y2.head(h).sum()-ay2(0);
	for(int samp=1;samp<len;samp++) sq(samp)=sq(samp-1)-y2(samp-1)+y2(samp+h-1)-ay2(samp)+ay2(samp-1);
	initcov=sq.minCoeff(&minone);
	initcov/=(double)(h-1);
	initmean=ay(minone)/(double)h;
	return(initmean);
}
SpMat make_C(SpMat chol_K_inv,VectorXd h2s, SpMat ZtZ){
  SpMat Ki = chol_K_inv.transpose() * chol_K_inv;
  SpMat C = ZtZ;
  C /= (1.0 - h2s.sum());
  C += Ki;
  return C;
}
Example #4
0
void LoadMatrices(MatrixXd &A, VectorXd &W, VectorXd &p, string weight_type) {

    A = MatrixXd::Zero(n_n, n_n);
    MatrixXd Apn = MatrixXd::Zero(n_p, n_n);
    MatrixXd abs_Apn = MatrixXd::Zero(n_p, n_n);
    VectorXd k = VectorXd::Zero(n_n);
    p = VectorXd::Zero(n_n);
    W = VectorXd::Zero(n_p);

    // Topological incidence matrix
    for (unsigned int j = 0; j < n_p; j++) {
        int idx_n1 = wds->agelemek.at(pipe_idx.at(j))->Get_Cspe_Index();
        int idx_n2 = wds->agelemek.at(pipe_idx.at(j))->Get_Cspv_Index();
        Apn(j, idx_n1)++;
        Apn(j, idx_n2)--;
        abs_Apn(j, idx_n1)++;
        abs_Apn(j, idx_n2)++;
    }

    A = Apn.transpose() * Apn;
    for (unsigned i = 0; i < n_n; i++) {
        A(i, i) = 0;
        for (unsigned int j = 0; j < n_n; j++) {
            if (A(i, j) != 0) {
                A(i, j) = 1.;
                // k(i)++;
            }
        }
    }

    if (0 == strcmp(weight_type.c_str(), "topology")) {
        for (unsigned int i = 0; i < W.size(); i++)
            W(i) = 1;
    }

    if (0 == strcmp(weight_type.c_str(), "dp")) {
        double dp, dp_max = -1., weight_min = 0.0001;
        for (unsigned int i = 0; i < W.size(); i++) {
            // dp = wds->agelemek.at(pipe_idx.at(i))->Get_dprop("mass_flow_rate");
            dp = wds->agelemek.at(pipe_idx.at(i))->Get_dprop("headloss");
            // dp = wds->agelemek.at(pipe_idx.at(i))->Get_dprop("length");
            W(i) = abs(dp);
            if (W(i) > dp_max)
                dp_max = W(i);
            //cout<<endl<<wds->agelemek.at(pipe_idx.at(i))->Get_nev()<<" dp="<<dp;
        }
        for (unsigned int i = 0; i < W.size(); i++) {
            W(i) /= dp_max;
            if (W(i) < weight_min)
                W(i) = weight_min;
            // cout<<endl<<wds->agelemek.at(pipe_idx.at(i))->Get_nev()<<" weight="<<W(i);
        }
    }

    // Final computations
    p = abs_Apn.transpose() * W;
    sumW = W.sum();

}
Example #5
0
double entropy(const VectorXd &values) {
  MatrixXd fy = values.array() / values.sum();
  double invlog = 1 / std::log(2);
  double epsilon = std::numeric_limits<double>::epsilon();
  // h = sum(fy * log2(fy+epsilon))
  double h =  (fy.array() * (fy.array() + epsilon).log().array() * invlog).sum();
  return (-1) * h;
}
VectorXd Zscores2Post(VectorXd& Zs){
    VectorXd post(Zs.size());
    VectorXd Zsq  = Zs.array().square();
    for(int i = 0; i < Zsq.size(); i ++){
        VectorXd Ztemp = (Zsq.array() - Zsq[i])/2;
        VectorXd Zexp = Ztemp.array().exp();
        post[i] = 1/Zexp.sum();
    }
    return(post);
}
SpMat make_Sigma(std::vector<SpMat> ZKZts, VectorXd h2s,double tol){
  int n = ZKZts[0].rows();
  int h = h2s.size();
  MatrixXd R(n,n);
  R.setZero();
  for(int i = 0; i < h; i++){
    R += h2s[i] * ZKZts[i];
  }
  R.diagonal().array() += (1.0-h2s.sum());
  return R.sparseView(0,tol);
}
Example #8
0
void PF::propagate(VectorXd &particles, VectorXd &weights, int t)
{
  for(int i = 0; i < N; i++) {
	double p = particles[i];
  	boost::normal_distribution<> f_rng(p, f_std); // sample from f = q
  	particles[i] = f_rng(rng); 
  	boost::math::normal g(p, g_std); 
        weights[i] *= pdf(g, y[t]);
  }
  weights /= weights.sum();  
}
Example #9
0
// exponentiates and normalizes a vector
void expAndNormalize(VectorXd& v)
{
    if (v.size() == 0) return;

    double maxValue = v[0];
    for (int i = 1; i < v.size(); i++) {
        if (v[i] > maxValue)
	    maxValue = v[i];
    }

    v = (v.cwise() - maxValue).cwise().exp();
    double Z = v.sum();
    v /= Z;
}
Example #10
0
int argrand(const VectorXd &v)
{
    double cutoff = v.sum() * rand() / (double)RAND_MAX;
    double cumSum = 0.0;
    for (int i = 0; i < v.size(); i++) {
        cumSum += v[i];
        if (cumSum >= cutoff) {
            return i;
        }
    }

    SVL_LOG(SVL_LOG_FATAL, "bug");
    return -1;
}
Example #11
0
// If there are two draws and the first has two tiles and the second -- three tiles,
// then sizes = c(2,3) and array = c(m_{1t_1},m_{1t_2},m_{2t_1},m_{2t_2},m_{2t_3})
bool dlmcell(const string &filename, const VectorXd &sizes, const vector<double> &array) {
  bool error = false;
  if (array.size()!=sizes.sum()) { error = true; return(error); }
  ofstream out(filename.c_str(),ofstream::out);
  if (!out.is_open()) { error = true; return(error); }
  vector<double>::const_iterator it = array.begin();
  for ( int i = 0 ; i < sizes.size() ; i++ ) {
    for ( int j = 0 ; j < sizes(i) ; j++ ) {
      out << fixed << setprecision(6) << *it << " "; it++;
    }
    out << endl;
  }
  out.close( );
  return(error);
}
Example #12
0
/* The Variational Bayes Expectation step for each group.
 *
 *  mutable: Group assignment probabilities, qZj
 *  returns: The complete-data (X,Z) free energy E[log p(X,Z)/q(Z)] for group j.
 *  throws: invalid_argument rethrown from other functions.
 */
template <class W, class C> double vbexpectation (
    const MatrixXd& Xj,         // Observations in group J
    const W& weights,           // Group Weight parameter distribution
    const vector<C>& clusters,  // Cluster parameter distributions
    MatrixXd& qZj,              // Observations to group mixture assignments
    const bool sparse           // Do sparse updates to groups
    )
{
  const int K  = clusters.size(),
            Nj = Xj.rows();

  // Get log marginal weight likelihoods
  const ArrayXd E_logZ = weights.Elogweight();

  // Initialise and set K = 1 defaults for cluster counts
  ArrayXi Kful = ArrayXi::Zero(1), Kemp = ArrayXi::Zero(0);

  // Find empty clusters if sparse
  if ( (sparse == false) && (K > 1) )
    Kful = ArrayXi::LinSpaced(Sequential, K, 0, K-1);
  else if (sparse == true)
    arrfind((weights.getNk() >= ZEROCUTOFF), Kful, Kemp);

  const int nKful = Kful.size(),
            nKemp = Kemp.size();

  // Find Expectations of log joint observation probs -- allow sparse evaluation
  MatrixXd logqZj(Nj, nKful);

  for (int k = 0; k < nKful; ++k)
    logqZj.col(k) = E_logZ(Kful(k)) + clusters[Kful(k)].Eloglike(Xj).array();

  // Log normalisation constant of log observation likelihoods
  const VectorXd logZzj = logsumexp(logqZj);

  // Make sure qZ is the right size, this is a nop if it is
  qZj.resize(Nj, K);

  // Normalise and Compute Responsibilities -- again allow sparse evaluation
  for (int k = 0; k < nKful; ++k)
    qZj.col(Kful(k)) = ((logqZj.col(k) - logZzj).array().exp()).matrix();

  // Empty Cluster Responsabilities
  for (int k = 0; k < nKemp; ++k)
    qZj.col(Kemp(k)).setZero();

  return -logZzj.sum();
}
Example #13
0
GTEST_TEST(TestConvexHull, testRandomConvexCombinations) {
  // Generate a set of points, then find a random convex combination of those
  // points, and verify that it's correctly reported as being inside the
  // convex hull
  for (int i = 2; i < 50; ++i) {
    for (int j = 0; j < 500; ++j) {
      MatrixXd pts = MatrixXd::Random(2, i);
      VectorXd weights = VectorXd::Random(i);
      if (weights.minCoeff() < 0) {
        weights = weights.array() -
                  weights.minCoeff();  // make sure they're all nonnegative
      }
      weights = weights.array() / weights.sum();
      Vector2d q = pts * weights;
      EXPECT_TRUE(inConvexHull(pts, q, 1e-8));
    }
  }
}
Example #14
0
void  UpdaterMean::costsToWeights(const VectorXd& costs, string weighting_method, double eliteness, VectorXd& weights) const
{
  weights.resize(costs.size());
  if (weighting_method.compare("PI-BB")==0)
  {
    // PI^2 style weighting: continuous, cost exponention
    double h = eliteness; // In PI^2, eliteness parameter is known as "h"
    double range = costs.maxCoeff()-costs.minCoeff();
    if (range==0)
      weights.fill(1);
    else
      weights = (-h*(costs.array()-costs.minCoeff())/range).exp();
  } 
  else if (weighting_method.compare("CMA-ES")==0 || weighting_method.compare("CEM")==0 )
  {
    // CMA-ES and CEM are rank-based, so we must first sort the costs, and the assign a weight to 
    // each rank.
    VectorXd costs_sorted = costs; 
    std::sort(costs_sorted.data(), costs_sorted.data()+costs_sorted.size());
    // In Python this is more elegant because we have argsort.
    // indices = np.argsort(costs)
    // It is possible to do this with fancy lambda functions or std::pair in C++ too, but  I don't
    // mind writing two for loops instead ;-)
    
    weights.fill(0.0);
    int mu = eliteness; // In CMA-ES, eliteness parameter is known as "mu"
    assert(mu<costs.size());
    for (int ii=0; ii<mu; ii++)
    {
      double cur_cost = costs_sorted[ii];
      for (int jj=0; jj<costs.size(); jj++)
      {
        if (costs[jj] == cur_cost)
        {
          if (weighting_method.compare("CEM")==0)
            weights[jj] = 1.0/mu; // CEM
          else
            weights[jj] = log(mu+0.5) - log(ii+1); // CMA-ES
          break;
        }
      }
      
    }
    // For debugging
    //MatrixXd print_mat(3,costs.size());
    //print_mat.row(0) = costs_sorted;
    //print_mat.row(1) = costs;
    //print_mat.row(2) = weights;
    //cout << print_mat << endl;
  }
  else
  {
    cout << __FILE__ << ":" << __LINE__ << ":WARNING: Unknown weighting method '" << weighting_method << "'. Calling with PI-BB weighting." << endl; 
    costsToWeights(costs, "PI-BB", eliteness, weights);
    return;
  }
  
  // Relative standard deviation of total costs
  double mean = weights.mean();
  double std = sqrt((weights.array()-mean).pow(2).mean());
  double rel_std = std/mean;
  if (rel_std<1e-10)
  {
      // Special case: all costs are the same
      // Set same weights for all.
      weights.fill(1);
  }

  // Normalize weights
  weights = weights/weights.sum();

}
Example #15
0
double ave(VectorXd y) {
    const double n(y.size());    
    const double ySum(y.sum());
    const double yAve(ySum/n);
    return(yAve);
}
double CalcEuclidean(VectorXd &vec1 , VectorXd &vec2){
    VectorXd diff = vec1 - vec2;
    VectorXd sq = diff.array().square();
    return(sq.sum());
}
Matrix3d msac( const Eigen::Matrix2Xd& pointsFrom, const Eigen::Matrix2Xd& pointsTo,
    int maxNumTrials, double confidence, double maxDistance ) {
  double threshold = maxDistance;
  int numPts = pointsFrom.cols();
  int idxTrial = 1;
  int numTrials = maxNumTrials;
  double maxDis = threshold * numPts;
  double bestDist = maxDis;
  Matrix3d bestT;
  bestT << 1, 0, 0,   0, 1, 0,  0, 0, 1;

  int index1;
  int index2;
  // Get two random, different numbers in [0:pointsFrom.cols()-1]
  std::uniform_int_distribution<int> distribution1( 0, pointsFrom.cols()-1 );
  std::uniform_int_distribution<int> distribution2( 0, pointsFrom.cols()-2 );
  while ( idxTrial <= numTrials ) {
    // Get two random, different numbers in [0:pointsFrom.cols()-1]
    index1 = distribution1( msacGenerator );
    index2 = distribution2( msacGenerator );
    if ( index2 >= index1 )
      index2++;
    Vector2d indices( index1, index2 );

    /*std::cout << "indices: " << indices.transpose()
    << " pointsFrom.cols: " << pointsFrom.cols()
    << " pointsTo.cols: " << pointsTo.cols() << std::endl;*/

    // Get T form Calculated from this set of points
    Matrix3d T = computeTform( pointsFrom, pointsTo, indices );

    VectorXd dis = evaluateTform( pointsFrom, pointsTo, T, threshold );

    double accDis = dis.sum();

    if ( accDis < bestDist ) {
      bestDist = accDis;
      bestT = T;
    }
    idxTrial++;
  }

  VectorXd dis = evaluateTform( pointsFrom, pointsTo, bestT, threshold );
  threshold *= dis.mean();
  int numInliers = 0;
  for ( int i = 0; i < dis.rows(); i++ ){
    if ( dis(i) < threshold )
      numInliers++;
  }
  VectorXd inliers( numInliers );
  int j = 0;
  for ( int i = 0; i < dis.rows(); i++ ){
    if ( dis(i) < threshold )
      inliers(j++) = i;
  }

  Matrix3d T;
  if ( numInliers >= 2 )
    T = computeTform( pointsFrom, pointsTo, inliers );
  else
    T << 1, 0, 0,  0, 1, 0,  0, 0, 1;

  return T;
}
Example #18
0
double gini(const VectorXd &values) {
  double sum = values.sum();
  VectorXd fy = values / sum;
  double g = 1 - fy.array().square().sum();
  return g;
}
Example #19
0
int main(int argc, char *argv[])
{
  using namespace Eigen;
  using namespace std;

  // Load a mesh in OFF format
  igl::readOFF("../shared/cow.off", V, F);

  // Compute Laplace-Beltrami operator: #V by #V
  igl::cotmatrix(V,F,L);

  // Alternative construction of same Laplacian
  SparseMatrix<double> G,K;
  // Gradient/Divergence
  igl::grad(V,F,G);
  // Diagonal per-triangle "mass matrix"
  VectorXd dblA;
  igl::doublearea(V,F,dblA);
  // Place areas along diagonal #dim times
  const auto & T = 1.*(dblA.replicate(3,1)*0.5).asDiagonal();
  // Laplacian K built as discrete divergence of gradient or equivalently
  // discrete Dirichelet energy Hessian
  K = -G.transpose() * T * G;
  cout<<"|K-L|: "<<(K-L).norm()<<endl;

  const auto &key_down = [](igl::Viewer &viewer,unsigned char key,int mod)->bool
  {
    switch(key)
    {
      case 'r':
      case 'R':
        U = V;
        break;
      case ' ':
      {
        // Recompute just mass matrix on each step
        SparseMatrix<double> M;
        igl::massmatrix(U,F,igl::MASSMATRIX_TYPE_BARYCENTRIC,M);
        // Solve (M-delta*L) U = M*U
        const auto & S = (M - 0.001*L);
        Eigen::SimplicialLLT<Eigen::SparseMatrix<double > > solver(S);
        assert(solver.info() == Eigen::Success);
        U = solver.solve(M*U).eval();
        // Compute centroid and subtract (also important for numerics)
        VectorXd dblA;
        igl::doublearea(U,F,dblA);
        double area = 0.5*dblA.sum();
        MatrixXd BC;
        igl::barycenter(U,F,BC);
        RowVector3d centroid(0,0,0);
        for(int i = 0;i<BC.rows();i++)
        {
          centroid += 0.5*dblA(i)/area*BC.row(i);
        }
        U.rowwise() -= centroid;
        // Normalize to unit surface area (important for numerics)
        U.array() /= sqrt(area);
        break;
      }
      default:
        return false;
    }
    // Send new positions, update normals, recenter
    viewer.data.set_vertices(U);
    viewer.data.compute_normals();
    viewer.core.align_camera_center(U,F);
    return true;
  };


  // Use original normals as pseudo-colors
  MatrixXd N;
  igl::per_vertex_normals(V,F,N);
  MatrixXd C = N.rowwise().normalized().array()*0.5+0.5;

  // Initialize smoothing with base mesh
  U = V;
  viewer.data.set_mesh(U, F);
  viewer.data.set_colors(C);
  viewer.callback_key_down = key_down;

  cout<<"Press [space] to smooth."<<endl;;
  cout<<"Press [r] to reset."<<endl;;
  return viewer.launch();
}
Example #20
0
void CLBPInference::infer(CGraph &graph,
                          map<size_t,VectorXd> &nodeBeliefs,
                          map<size_t,MatrixXd> &edgeBeliefs,
                          double &logZ)
{
    //
    //  Algorithm workflow:
    //  1. Compute the messages passed
    //  2. Compute node beliefs
    //  3. Compute edge beliefs
    //  4. Compute logZ
    //

    nodeBeliefs.clear();
    edgeBeliefs.clear();

    const vector<CNodePtr> nodes = graph.getNodes();
    const vector<CEdgePtr> edges = graph.getEdges();
    multimap<size_t,CEdgePtr> edges_f = graph.getEdgesF();

    size_t N_nodes = nodes.size();
    size_t N_edges = edges.size();

    //
    // 1. Compute the messages passed
    //

    vector<vector<VectorXd> >   messages;
    bool                        maximize = false;

    messagesLBP( graph, m_options, messages, maximize );

    //
    // 2. Compute node beliefs
    //

    for ( size_t nodeIndex = 0; nodeIndex < N_nodes; nodeIndex++ )
    {
        const CNodePtr nodePtr = graph.getNode( nodeIndex );
        size_t         nodeID  = nodePtr->getID();
        VectorXd       nodePotPlusIncMsg = nodePtr->getPotentials( m_options.considerNodeFixedValues );

        NEIGHBORS_IT neighbors = edges_f.equal_range(nodeID);

        //
        // Get the messages for all the neighbors, and multiply them with the node potential
        //
        for ( multimap<size_t,CEdgePtr>::iterator itNeigbhor = neighbors.first;
              itNeigbhor != neighbors.second;
              itNeigbhor++ )
        {
            CEdgePtr edgePtr( (*itNeigbhor).second );
            size_t edgeIndex = graph.getEdgeIndex( edgePtr->getID() );

            if ( !edgePtr->getNodePosition( nodeID ) ) // nodeID is the first node in the edge
                nodePotPlusIncMsg = nodePotPlusIncMsg.cwiseProduct(messages[ edgeIndex ][ 1 ]);
            else // nodeID is the second node in the dege
                nodePotPlusIncMsg = nodePotPlusIncMsg.cwiseProduct(messages[ edgeIndex ][ 0 ]);
        }

        // Normalize
        nodePotPlusIncMsg = nodePotPlusIncMsg / nodePotPlusIncMsg.sum();

        nodeBeliefs[ nodeID ] = nodePotPlusIncMsg;

        //cout << "Beliefs of node " << nodeIndex << endl << nodePotPlusIncMsg << endl;
    }

    //
    // 3. Compute edge beliefs
    //

    for ( size_t edgeIndex = 0; edgeIndex < N_edges; edgeIndex++ )
    {
        CEdgePtr edgePtr = edges[edgeIndex];
        size_t   edgeID  = edgePtr->getID();

        size_t ID1, ID2;
        edgePtr->getNodesID( ID1, ID2 );

        MatrixXd edgePotentials = edgePtr->getPotentials();
        MatrixXd edgeBelief = edgePotentials;

        VectorXd &message1To2 = messages[edgeIndex][0];
        VectorXd &message2To1 = messages[edgeIndex][1];

        //cout << "----------------------" << endl;
        //cout << nodeBeliefs[ ID1 ] << endl;
        //cout << "----------------------" << endl;
        //cout << message2To1 << endl;

        VectorXd node1Belief = nodeBeliefs[ ID1 ].cwiseQuotient( message2To1 );
        VectorXd node2Belief = nodeBeliefs[ ID2 ].cwiseQuotient( message1To2 );

        //cout << "----------------------" << endl;

        MatrixXd node1BeliefMatrix ( edgePotentials.rows(), edgePotentials.cols() );
        for ( size_t row = 0; row < edgePotentials.rows(); row++ )
            for ( size_t col = 0; col < edgePotentials.cols(); col++ )
                node1BeliefMatrix(row,col) = node1Belief(row);

        //cout << "Node 1 belief matrix: " << endl << node1BeliefMatrix << endl;

        edgeBelief = edgeBelief.cwiseProduct( node1BeliefMatrix );

        MatrixXd node2BeliefMatrix ( edgePotentials.rows(), edgePotentials.cols() );
        for ( size_t row = 0; row < edgePotentials.rows(); row++ )
            for ( size_t col = 0; col < edgePotentials.cols(); col++ )
                node2BeliefMatrix(row,col) = node2Belief(col);

        //cout << "Node 2 belief matrix: " << endl << node2BeliefMatrix << endl;

        edgeBelief = edgeBelief.cwiseProduct( node2BeliefMatrix );

        //cout << "Edge potentials" << endl << edgePotentials << endl;
        //cout << "Edge beliefs" << endl << edgeBelief << endl;

        // Normalize
        edgeBelief = edgeBelief / edgeBelief.sum();



        edgeBeliefs[ edgeID ] = edgeBelief;
    }

    //
    // 4. Compute logZ
    //

    double energyNodes  = 0;
    double energyEdges  = 0;
    double entropyNodes = 0;
    double entropyEdges = 0;

    // Compute energy and entropy from nodes

    for ( size_t nodeIndex = 0; nodeIndex < nodes.size(); nodeIndex++ )
    {
        CNodePtr nodePtr     = nodes[ nodeIndex ];
        size_t   nodeID      = nodePtr->getID();
        size_t   N_Neighbors = graph.getNumberOfNodeNeighbors( nodeID );

        // Useful computations and shorcuts
        VectorXd &nodeBelief        = nodeBeliefs[nodeID];
        VectorXd logNodeBelief      = nodeBeliefs[nodeID].array().log();
        VectorXd nodePotentials    = nodePtr->getPotentials( m_options.considerNodeFixedValues );
        VectorXd logNodePotentials = nodePotentials.array().log();

        // Entropy from the node
        energyNodes += N_Neighbors*( nodeBelief.cwiseProduct( logNodeBelief ).sum() );

        // Energy from the node
        entropyNodes += N_Neighbors*( nodeBelief.cwiseProduct( logNodePotentials ).sum() );
    }

    // Compute energy and entropy from nodes

    for ( size_t edgeIndex = 0; edgeIndex < N_edges; edgeIndex++ )
    {
        CEdgePtr edgePtr = edges[ edgeIndex ];
        size_t   edgeID  = edgePtr->getID();

        // Useful computations and shorcuts
        MatrixXd &edgeBelief       = edgeBeliefs[ edgeID ];
        MatrixXd logEdgeBelief     = edgeBelief.array().log();
        MatrixXd &edgePotentials   = edgePtr->getPotentials();
        MatrixXd logEdgePotentials = edgePotentials.array().log();

        // Entropy from the edge
        energyEdges += edgeBelief.cwiseProduct( logEdgeBelief ).sum();

        // Energy from the edge
        entropyEdges += edgeBelief.cwiseProduct( logEdgePotentials ).sum();

    }

    // Final Bethe free energy

    double BethefreeEnergy = ( energyNodes - energyEdges ) - ( entropyNodes - entropyEdges );

    // Compute logZ

    logZ = - BethefreeEnergy;

}
Example #21
0
size_t UPGMpp::messagesLBP(CGraph &graph,
                            TInferenceOptions &options,
                            vector<vector<VectorXd> > &messages ,
                            bool maximize,                            
                            const vector<size_t> &tree)
{

    const vector<CNodePtr> nodes = graph.getNodes();
    const vector<CEdgePtr> edges = graph.getEdges();
    multimap<size_t,CEdgePtr> edges_f = graph.getEdgesF();

    size_t N_nodes = nodes.size();
    size_t N_edges = edges.size();

    bool is_tree = (tree.size()>0) ? true : false;

    //graph.computePotentials();

    //
    // Build the messages structure
    //

    double totalSumOfMsgs = 0;

    if ( !messages.size() )
        messages.resize( N_edges);

    for ( size_t i = 0; i < N_edges; i++ )
    {
        if ( !messages[i].size() )
        {
            messages[i].resize(2);

            size_t ID1, ID2;
            edges[i]->getNodesID(ID1,ID2);

            // Messages from first node of the edge to the second one, so the size of
            // the message has to be the same as the number of classes of the second node.
            double N_classes = graph.getNodeWithID( ID2 )->getPotentials( options.considerNodeFixedValues ).rows();
            messages[i][0].resize( N_classes );
            messages[i][0].fill(1.0/N_classes);
            // Just the opposite as before.
            N_classes = graph.getNodeWithID( ID1 )->getPotentials( options.considerNodeFixedValues ).rows();
            messages[i][1].resize( N_classes );
            messages[i][1].fill(1.0/N_classes);
        }

        totalSumOfMsgs += messages[i][0].rows() + messages[i][1].rows();

    }

//    cout << "Initial Messages:" << endl;

//    for ( size_t i=0; i < messages.size(); i++)
//        for ( size_t j=0; j < messages[i].size(); j++)
//            for ( size_t k=0; k < messages[i][j].size(); k++ )
//                cout << messages[i][j][k] << " ";

    vector<vector<VectorXd> > previousMessages;

    if ( options.particularS["order"] == "RBP" )
    {
        previousMessages = messages;
        for ( size_t i = 0; i < previousMessages.size(); i++ )
        {
            previousMessages[i][0].fill(0);
            previousMessages[i][1].fill(0);
        }
    }

    //
    // Iterate until convergence or a certain maximum number of iterations is reached
    //

    size_t iteration;
//    cout << endl;

    for ( iteration = 0; iteration < options.maxIterations; iteration++ )
    {
//        cout << "Messages " << iteration << ":" << endl;

//        for ( size_t i=0; i < messages.size(); i++)
//            for ( size_t j=0; j < messages[i].size(); j++)
//                for ( size_t k=0; k < messages[i][j].size(); k++ )
//                    cout << messages[i][j][k] << " ";

//        cout << endl;

        // Variables used by Residual Belief Propagation
        int edgeWithMaxDiffIndex = -1;
        VectorXd associatedMessage;
        bool from1to2;
        double maxDifference = -1;

        //
        // Iterate over all the nodes
        //
        for ( size_t nodeIndex = 0; nodeIndex < N_nodes; nodeIndex++ )
        {
            const CNodePtr nodePtr = graph.getNode( nodeIndex );
            size_t nodeID          = nodePtr->getID();

            // Check if we are calibrating a tree, and so if the node is not member of the tree,
            // so we dont have to update its messages
            if ( is_tree && ( std::find(tree.begin(), tree.end(), nodeID ) == tree.end() ) )
                continue;

            NEIGHBORS_IT neighbors;

            neighbors = edges_f.equal_range(nodeID);

            //cout << "  Sending messages ... " << endl;

            //
            // Send a message to each neighbor
            //
            for ( multimap<size_t,CEdgePtr>::iterator itNeigbhor = neighbors.first;
                  itNeigbhor != neighbors.second;
                  itNeigbhor++ )
            {
//                cout << "sending msg to neighbor..." << endl;
                VectorXd nodePotPlusIncMsg = nodePtr->getPotentials( options.considerNodeFixedValues );
//                cout << "nodePotPlusIncMsg Orig: " << nodePotPlusIncMsg.transpose() << endl;
                size_t neighborID;
                size_t ID1, ID2;
                CEdgePtr edgePtr( (*itNeigbhor).second );
                edgePtr->getNodesID(ID1,ID2);
                ( ID1 == nodeID ) ? neighborID = ID2 : neighborID = ID1;

//                cout << "all ready" << endl;

                // Check if we are calibrating a tree, and so if the neighbor node
                // is not member of the tree, so we dont have to update its messages
                if ( is_tree && ( std::find(tree.begin(), tree.end(), neighborID ) == tree.end() ))
                    continue;

                //
                // Compute the message from current node as a product of all the
                // incoming messages less the one from the current neighbor
                // plus the node potential of the current node.
                //
                for ( multimap<size_t,CEdgePtr>::iterator itNeigbhor2 = neighbors.first;
                      itNeigbhor2 != neighbors.second;
                      itNeigbhor2++ )
                {
                    size_t ID11, ID12;
                    CEdgePtr edgePtr2( (*itNeigbhor2).second );
                    edgePtr2->getNodesID(ID11,ID12);
                    size_t edgeIndex = graph.getEdgeIndex( edgePtr2->getID() );
//                    cout << "Edge index: " << edgeIndex << endl << "node pot" <<  nodePotPlusIncMsg << endl;
//                    cout << "Node ID: " << nodeID << " node11 " << ID11 << " node12 " << ID12 << endl;
                    CNodePtr n1,n2;
                    edgePtr2->getNodes(n1,n2);
//                    cout << "Node 1 type: " << n1->getType()->getID() << " label " << n1->getType()->getLabel() << endl;
//                    cout << "Node 2 type: " << n2->getType()->getID() << " label " << n2->getType()->getLabel() << endl;
                    // Check if the current neighbor appears in the edge
                    if ( ( neighborID != ID11 ) && ( neighborID != ID12 ) )
                    {
                        if ( nodeID == ID11 )
                        {
//                            cout << "nodePotPlusIncMsg Prod: " << messages[ edgeIndex ][ 1 ].transpose() << endl;
//                            cout << "nodePotPlusIncMsg Bis : " << messages[ edgeIndex ][ 0 ].transpose() << endl;
                            nodePotPlusIncMsg =
                                    nodePotPlusIncMsg.cwiseProduct(messages[ edgeIndex ][ 1 ]);
//                            cout << "nodePotPlusIncMsg Prod2: " << nodePotPlusIncMsg.transpose() << endl;
                        }
                        else // nodeID == ID2
                        {
//                            cout << "nodePotPlusIncMsg Prod: " << messages[ edgeIndex ][ 0 ].transpose() << endl;
//                            cout << "nodePotPlusIncMsg Bis : " << messages[ edgeIndex ][ 1 ].transpose() << endl;
                            nodePotPlusIncMsg =
                                    nodePotPlusIncMsg.cwiseProduct(messages[ edgeIndex ][ 0 ]);
//                            cout << "nodePotPlusIncMsg Prod2: " << nodePotPlusIncMsg.transpose() << endl;
                        }
                    }
                }

//                cout << "Node pot" << endl;

                //cout << "Node pot" << nodePotPlusIncMsg << endl;

                //
                // Take also the potential between the two nodes
                //
                MatrixXd edgePotentials;

                if ( nodeID != ID1 )
                    edgePotentials = edgePtr->getPotentials();
                else
                    edgePotentials = edgePtr->getPotentials().transpose();

                VectorXd newMessage;
                size_t edgeIndex = graph.getEdgeIndex( edgePtr->getID() );

//                cout << "get new message" << endl;

                if ( !maximize )
                {
                    // Multiply both, and update the potential

//                    cout << "Edge potentials:" << edgePotentials.transpose() << endl;
//                    cout << "nodePotPlusIncMsg:" << nodePotPlusIncMsg.transpose() << endl;
                    newMessage = edgePotentials * nodePotPlusIncMsg;

                    // Normalize new message
                    if (newMessage.sum())
                        newMessage = newMessage / newMessage.sum();

                    //cout << "New message 3:" << newMessage.transpose() << endl;
                }
                else
                {
                    if ( nodeID == ID1 )
                        newMessage.resize(messages[ edgeIndex ][0].rows());
                    else
                        newMessage.resize(messages[ edgeIndex ][1].rows());

                    for ( size_t row = 0; row < edgePotentials.rows(); row++ )
                    {
                        double maxRowValue = std::numeric_limits<double>::min();

                        for ( size_t col = 0; col < edgePotentials.cols(); col++ )
                        {
                            double value = edgePotentials(row,col)*nodePotPlusIncMsg(col);
                            if ( value > maxRowValue )
                                maxRowValue = value;
                        }
                        newMessage(row) = maxRowValue;
                    }

                    // Normalize new message
                    if (newMessage.sum())
                        newMessage = newMessage / newMessage.sum();

                    //cout << "New message: " << endl << newMessage << endl;
                }

                //
                // Set the message!
                //

                VectorXd smoothedOldMessage(newMessage.rows());
                smoothedOldMessage.setZero();

                double smoothing = options.particularD["smoothing"];

                if ( smoothing != 0 )
                    if ( nodeID == ID1 )
                        newMessage = newMessage + (1-smoothing) * messages[ edgeIndex ][0];
                    else
                        newMessage = newMessage + (1-smoothing) * messages[ edgeIndex ][1];

                //cout << "New message:" << endl << newMessage << endl << "Smoothed" << endl << smoothedOldMessage << endl;

                // If residual belief propagation is activated, just check if the
                // newMessage is the one with the higest residual till the
                // moment. Otherwise, set the new message as the current one
                if ( options.particularS["order"] == "RBP" )
                {                    
                    if ( nodeID == ID1 )
                    {
                        VectorXd differences = messages[edgeIndex][0] - newMessage;
                        double difference = differences.cwiseAbs().sum();

                        if ( difference > maxDifference )
                        {
                            from1to2 = true;
                            edgeWithMaxDiffIndex = edgeIndex;
                            maxDifference = difference;
                            associatedMessage = newMessage;
                        }
                    }
                    else
                    {
                        VectorXd differences = messages[edgeIndex][1] - newMessage;
                        double difference = differences.cwiseAbs().sum();

                        if ( difference > maxDifference )
                        {
                            from1to2 = false;
                            edgeWithMaxDiffIndex = edgeIndex;
                            maxDifference = difference;
                            associatedMessage = newMessage;
                        }
                    }
                }
                else
                {
//                    cout << newMessage.cols() << " " << newMessage.rows() << endl;
//                    cout << "edgeIndex" << edgeIndex << endl;
                    if ( nodeID == ID1 )
                    {
//                        cout << messages[ edgeIndex ][0].cols() << " " << messages[ edgeIndex ][0].rows() << endl;
                        messages[ edgeIndex ][0] = newMessage;
                    }
                    else
                    {
//                        cout << messages[ edgeIndex ][1].cols() << " " << messages[ edgeIndex ][1].rows() << endl;
                        messages[ edgeIndex ][1] = newMessage;
                    }

//                        cout << "Wop " << endl;
                }
            }

        } // Nodes

        if ( options.particularS["order"] == "RBP" && ( edgeWithMaxDiffIndex =! -1 ))
        {
            if ( from1to2 )
                messages[ edgeWithMaxDiffIndex ][0] = associatedMessage;
            else
                messages[ edgeWithMaxDiffIndex ][1] = associatedMessage;
        }

        //
        // Check convergency!!
        //

        double newTotalSumOfMsgs = 0;
        for ( size_t i = 0; i < N_edges; i++ )
        {
            newTotalSumOfMsgs += messages[i][0].sum() + messages[i][1].sum();
        }

        //printf("%4.10f\n",std::abs( totalSumOfMsgs - newTotalSumOfMsgs ));

        if ( std::abs( totalSumOfMsgs - newTotalSumOfMsgs ) <
             options.convergency )
            break;

        totalSumOfMsgs = newTotalSumOfMsgs;

        // Show messages
        /*cout << "Iteration:" << iteration << endl;

        for ( size_t i = 0; i < messages.size(); i++ )
        {
            cout <<  messages[i][0] << " " << messages[i][1] << endl;
        }*/

    } // Iterations

    return 1;
}
Example #22
0
double Sampler::fullIntegrate( const VectorXd &distribution, double delta)
{
	return distribution.sum()*delta;

}
Example #23
0
void CTRPBPInference::infer(CGraph &graph,
                          map<size_t,VectorXd> &nodeBeliefs,
                          map<size_t,MatrixXd> &edgeBeliefs,
                          double &logZ)
{
    //
    //  Algorithm workflow:
    //  1. Compute the messages passed
    //  2. Compute node beliefs
    //  3. Compute edge beliefs
    //  4. Compute logZ
    //

    nodeBeliefs.clear();
    edgeBeliefs.clear();

    const vector<CNodePtr> nodes = graph.getNodes();
    const vector<CEdgePtr> edges = graph.getEdges();
    multimap<size_t,CEdgePtr> edges_f = graph.getEdgesF();

    size_t N_nodes = nodes.size();
    size_t N_edges = edges.size();

    //
    // 1. Create spanning trees
    //

    bool allNodesAdded = false;
    vector<vector<size_t > > v_trees;
    vector<bool> v_addedNodes(N_nodes,false);
    map<size_t,size_t> addedNodesMap;

    for (size_t i = 0; i < N_nodes; i++)
        addedNodesMap[ nodes[i]->getID() ] = i;

    while (!allNodesAdded)
    {
        allNodesAdded = true;

        vector<size_t> tree;
        getSpanningTree( graph, tree );

        // Check that the tree is not empty
        if ( tree.size() )
            v_trees.push_back( tree );

        cout << "Tree: ";

        for ( size_t i_node = 0; i_node < tree.size(); i_node++ )
        {
            v_addedNodes[ addedNodesMap[tree[i_node]] ] = true;
            cout << tree[i_node] << " ";
        }

        cout << endl;

        for ( size_t i_node = 0; i_node < N_nodes; i_node++ )
            if ( !v_addedNodes[i_node] )
            {
                allNodesAdded = false;
                break;
            }

    }


    //
    // 1. Compute messages passed in each tree until convergence
    //

    vector<vector<VectorXd> >   messages;
    bool                        maximize = false;

    double totalSumOfMsgs = std::numeric_limits<double>::max();

    size_t iteration;

    for ( iteration = 0; iteration < m_options.maxIterations; iteration++ )
    {

        for ( size_t i_tree=0; i_tree < v_trees.size(); i_tree++ )
            messagesLBP( graph, m_options, messages, maximize, v_trees[i_tree] );

        double newTotalSumOfMsgs = 0;
        for ( size_t i = 0; i < N_edges; i++ )
        {
            newTotalSumOfMsgs += messages[i][0].sum() + messages[i][1].sum();
        }

        if ( std::abs( totalSumOfMsgs - newTotalSumOfMsgs ) <
             m_options.convergency )
            break;

        totalSumOfMsgs = newTotalSumOfMsgs;

    }

    //
    // 2. Compute node beliefs
    //

    for ( size_t nodeIndex = 0; nodeIndex < N_nodes; nodeIndex++ )
    {
        const CNodePtr nodePtr = graph.getNode( nodeIndex );
        size_t         nodeID  = nodePtr->getID();
        VectorXd       nodePotPlusIncMsg = nodePtr->getPotentials( m_options.considerNodeFixedValues );

        NEIGHBORS_IT neighbors = edges_f.equal_range(nodeID);

        //
        // Get the messages for all the neighbors, and multiply them with the node potential
        //
        for ( multimap<size_t,CEdgePtr>::iterator itNeigbhor = neighbors.first;
              itNeigbhor != neighbors.second;
              itNeigbhor++ )
        {
            CEdgePtr edgePtr( (*itNeigbhor).second );
            size_t edgeIndex = graph.getEdgeIndex( edgePtr->getID() );

            if ( !edgePtr->getNodePosition( nodeID ) ) // nodeID is the first node in the edge
                nodePotPlusIncMsg = nodePotPlusIncMsg.cwiseProduct(messages[ edgeIndex ][ 1 ]);
            else // nodeID is the second node in the dege
                nodePotPlusIncMsg = nodePotPlusIncMsg.cwiseProduct(messages[ edgeIndex ][ 0 ]);
        }

        // Normalize
        nodePotPlusIncMsg = nodePotPlusIncMsg / nodePotPlusIncMsg.sum();

        nodeBeliefs[ nodeID ] = nodePotPlusIncMsg;

        //cout << "Beliefs of node " << nodeIndex << endl << nodePotPlusIncMsg << endl;
    }

    //
    // 3. Compute edge beliefs
    //

    for ( size_t edgeIndex = 0; edgeIndex < N_edges; edgeIndex++ )
    {
        CEdgePtr edgePtr = edges[edgeIndex];
        size_t   edgeID  = edgePtr->getID();

        size_t ID1, ID2;
        edgePtr->getNodesID( ID1, ID2 );

        MatrixXd edgePotentials = edgePtr->getPotentials();
        MatrixXd edgeBelief = edgePotentials;

        VectorXd &message1To2 = messages[edgeIndex][0];
        VectorXd &message2To1 = messages[edgeIndex][1];

        //cout << "----------------------" << endl;
        //cout << nodeBeliefs[ ID1 ] << endl;
        //cout << "----------------------" << endl;
        //cout << message2To1 << endl;

        VectorXd node1Belief = nodeBeliefs[ ID1 ].cwiseQuotient( message2To1 );
        VectorXd node2Belief = nodeBeliefs[ ID2 ].cwiseQuotient( message1To2 );

        //cout << "----------------------" << endl;

        MatrixXd node1BeliefMatrix ( edgePotentials.rows(), edgePotentials.cols() );
        for ( size_t row = 0; row < edgePotentials.rows(); row++ )
            for ( size_t col = 0; col < edgePotentials.cols(); col++ )
                node1BeliefMatrix(row,col) = node1Belief(row);

        //cout << "Node 1 belief matrix: " << endl << node1BeliefMatrix << endl;

        edgeBelief = edgeBelief.cwiseProduct( node1BeliefMatrix );

        MatrixXd node2BeliefMatrix ( edgePotentials.rows(), edgePotentials.cols() );
        for ( size_t row = 0; row < edgePotentials.rows(); row++ )
            for ( size_t col = 0; col < edgePotentials.cols(); col++ )
                node2BeliefMatrix(row,col) = node2Belief(col);

        //cout << "Node 2 belief matrix: " << endl << node2BeliefMatrix << endl;

        edgeBelief = edgeBelief.cwiseProduct( node2BeliefMatrix );

        //cout << "Edge potentials" << endl << edgePotentials << endl;
        //cout << "Edge beliefs" << endl << edgeBelief << endl;

        // Normalize
        edgeBelief = edgeBelief / edgeBelief.sum();



        edgeBeliefs[ edgeID ] = edgeBelief;
    }

    //
    // 4. Compute logZ
    //

    double energyNodes  = 0;
    double energyEdges  = 0;
    double entropyNodes = 0;
    double entropyEdges = 0;

    // Compute energy and entropy from nodes

    for ( size_t nodeIndex = 0; nodeIndex < nodes.size(); nodeIndex++ )
    {
        CNodePtr nodePtr     = nodes[ nodeIndex ];
        size_t   nodeID      = nodePtr->getID();
        size_t   N_Neighbors = graph.getNumberOfNodeNeighbors( nodeID );

        // Useful computations and shorcuts
        VectorXd &nodeBelief        = nodeBeliefs[nodeID];
        VectorXd logNodeBelief      = nodeBeliefs[nodeID].array().log();
        VectorXd nodePotentials    = nodePtr->getPotentials( m_options.considerNodeFixedValues );
        VectorXd logNodePotentials = nodePotentials.array().log();

        // Entropy from the node
        energyNodes += N_Neighbors*( nodeBelief.cwiseProduct( logNodeBelief ).sum() );

        // Energy from the node
        entropyNodes += N_Neighbors*( nodeBelief.cwiseProduct( logNodePotentials ).sum() );
    }

    // Compute energy and entropy from nodes

    for ( size_t edgeIndex = 0; edgeIndex < N_edges; edgeIndex++ )
    {
        CEdgePtr edgePtr = edges[ edgeIndex ];
        size_t   edgeID  = edgePtr->getID();

        // Useful computations and shorcuts
        MatrixXd &edgeBelief       = edgeBeliefs[ edgeID ];
        MatrixXd logEdgeBelief     = edgeBelief.array().log();
        MatrixXd &edgePotentials   = edgePtr->getPotentials();
        MatrixXd logEdgePotentials = edgePotentials.array().log();

        // Entropy from the edge
        energyEdges += edgeBelief.cwiseProduct( logEdgeBelief ).sum();

        // Energy from the edge
        entropyEdges += edgeBelief.cwiseProduct( logEdgePotentials ).sum();

    }

    // Final Bethe free energy

    double BethefreeEnergy = ( energyNodes - energyEdges ) - ( entropyNodes - entropyEdges );

    // Compute logZ

    logZ = - BethefreeEnergy;

}