VectorXd operator()(const VectorXd& x) const { m_config->SetDOFValues(toDblVec(x.topRows(m_nDof))); OR::Vector ptWorldA, ptWorldB, nWorldA, nWorldB; CalcWorldPoints(x, ptWorldA, ptWorldB); return toVector3d(ptWorldA - ptWorldB); }
VectorXd LinearizedControlError::operator()(const VectorXd& a) const { Vector6d x1 = a.topRows(6); Vector6d x2 = a.middleRows(6,6); double phi = a(12), Delta = a(13), curvature = a(14); double phi_ref = cfg0->phi, Delta_ref = cfg0->Delta, curvature_ref = cfg0->curvature; MatrixXd F = MatrixXd::Zero(6,6); F.topLeftCorner(3, 3) = -rotMat(Vector3d(Delta_ref*curvature_ref, 0, phi_ref)); F.topRightCorner(3, 3) = -rotMat(Vector3d(0, 0, Delta_ref)); F.bottomRightCorner(3, 3) = -rotMat(Vector3d(Delta_ref*curvature_ref, 0, phi_ref)); MatrixXd G = MatrixXd::Zero(6,6); G(2, 0) = 1; G(3, 2) = 1; G(5, 1) = 1; MatrixXd A = F.exp(); MatrixXd halfF = 0.5*F; MatrixXd B = (1/6.0) * (G + 4.0*(halfF.exp()*G) + A*G); Vector3d u; u << Delta - Delta_ref, phi - phi_ref, Delta*curvature - Delta_ref*curvature_ref; return x2 - A * x1 - B * u; }
void FaceContactConstraint::Plot(const DblVec& xvec, OR::EnvironmentBase& env, std::vector<OR::GraphHandlePtr>& handles) { FaceContactErrorCalculator* calc = static_cast<FaceContactErrorCalculator*>(f_.get()); OR::Vector ptA, ptB; VectorXd x = getVec(xvec, vars_); calc->m_config->SetDOFValues(toDblVec(x.topRows(calc->m_nDof))); calc->CalcWorldPoints(x, ptA, ptB); handles.push_back(env.drawarrow(ptA, ptB, .001, OR::Vector(1, 0, 1, 1))); }
VectorXd ControlError::operator()(const VectorXd& a) const { Matrix4d pose1 = cfg0->pose * expUp(a.topRows(6)); Matrix4d pose2 = cfg1->pose * expUp(a.middleRows(6,6)); double phi = a(12), Delta = a(13), curvature = a(14); return logDown(helper->TransformPose(pose1, phi, Delta, curvature).inverse() * pose2); }
VectorXd ControlErrorFirstFixed::operator()(const VectorXd& a) const { Matrix4d pose1 = cfg0->pose; Matrix4d pose2 = cfg1->pose * expUp(a.topRows(6)); double phi = a(6), Delta = a(7), curvature = a(8); return logDown(helper->TransformPose(pose1, phi, Delta, curvature).inverse() * pose2); }
VectorXd PoseError::operator()(const VectorXd& a) const { Matrix4d pose1 = cfg0->pose * expUp(a.topRows(6)); Matrix4d pose2 = cfg1->pose * expUp(a.middleRows(6,6)); double Delta = a(12); double curvature = a(13); double theta = Delta * curvature; Vector6d v; v << 0, 0, Delta, theta, 0, 0; return logDown((pose1 * expUp(v)).inverse() * pose2); }
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { int error; if (nrhs<1) mexErrMsgTxt("usage: ptr = QPControllermex(0,control_obj,robot_obj,...); alpha=QPControllermex(ptr,...,...)"); if (nlhs<1) mexErrMsgTxt("take at least one output... please."); struct QPControllerData* pdata; mxArray* pm; double* pr; int i,j; if (mxGetScalar(prhs[0])==0) { // then construct the data object and return pdata = new struct QPControllerData; // get control object properties const mxArray* pobj = prhs[1]; pm = myGetProperty(pobj,"slack_limit"); pdata->slack_limit = mxGetScalar(pm); pm = myGetProperty(pobj,"W_kdot"); assert(mxGetM(pm)==3); assert(mxGetN(pm)==3); pdata->W_kdot.resize(mxGetM(pm),mxGetN(pm)); memcpy(pdata->W_kdot.data(),mxGetPr(pm),sizeof(double)*mxGetM(pm)*mxGetN(pm)); pm= myGetProperty(pobj,"w_grf"); pdata->w_grf = mxGetScalar(pm); pm= myGetProperty(pobj,"w_slack"); pdata->w_slack = mxGetScalar(pm); pm = myGetProperty(pobj,"Kp_ang"); pdata->Kp_ang = mxGetScalar(pm); pm = myGetProperty(pobj,"Kp_accel"); pdata->Kp_accel = mxGetScalar(pm); pm= myGetProperty(pobj,"n_body_accel_inputs"); pdata->n_body_accel_inputs = (int) mxGetScalar(pm); pm= myGetProperty(pobj,"n_body_accel_bounds"); pdata->n_body_accel_bounds = (int) mxGetScalar(pm); mxArray* body_accel_bounds = myGetProperty(pobj,"body_accel_bounds"); Vector6d vecbound; for (int i=0; i<pdata->n_body_accel_bounds; i++) { pdata->accel_bound_body_idx.push_back((int) mxGetScalar(mxGetField(body_accel_bounds,i,"body_idx"))-1); pm = mxGetField(body_accel_bounds,i,"min_acceleration"); assert(mxGetM(pm)==6); assert(mxGetN(pm)==1); memcpy(vecbound.data(),mxGetPr(pm),sizeof(double)*6); pdata->min_body_acceleration.push_back(vecbound); pm = mxGetField(body_accel_bounds,i,"max_acceleration"); assert(mxGetM(pm)==6); assert(mxGetN(pm)==1); memcpy(vecbound.data(),mxGetPr(pm),sizeof(double)*6); pdata->max_body_acceleration.push_back(vecbound); } pm = myGetProperty(pobj,"body_accel_input_weights"); pdata->body_accel_input_weights.resize(pdata->n_body_accel_inputs); memcpy(pdata->body_accel_input_weights.data(),mxGetPr(pm),sizeof(double)*pdata->n_body_accel_inputs); pdata->n_body_accel_eq_constraints = 0; for (int i=0; i<pdata->n_body_accel_inputs; i++) { if (pdata->body_accel_input_weights(i) < 0) pdata->n_body_accel_eq_constraints++; } // get robot mex model ptr if (!mxIsNumeric(prhs[2]) || mxGetNumberOfElements(prhs[2])!=1) mexErrMsgIdAndTxt("Drake:QPControllermex:BadInputs","the third argument should be the robot mex ptr"); memcpy(&(pdata->r),mxGetData(prhs[2]),sizeof(pdata->r)); pdata->B.resize(mxGetM(prhs[3]),mxGetN(prhs[3])); memcpy(pdata->B.data(),mxGetPr(prhs[3]),sizeof(double)*mxGetM(prhs[3])*mxGetN(prhs[3])); int nq = pdata->r->num_dof, nu = pdata->B.cols(); pm = myGetProperty(pobj,"w_qdd"); pdata->w_qdd.resize(nq); memcpy(pdata->w_qdd.data(),mxGetPr(pm),sizeof(double)*nq); pdata->umin.resize(nu); pdata->umax.resize(nu); memcpy(pdata->umin.data(),mxGetPr(prhs[4]),sizeof(double)*nu); memcpy(pdata->umax.data(),mxGetPr(prhs[5]),sizeof(double)*nu); pdata->B_act.resize(nu,nu); pdata->B_act = pdata->B.bottomRows(nu); // get the map ptr back from matlab if (!mxIsNumeric(prhs[6]) || mxGetNumberOfElements(prhs[6])!=1) mexErrMsgIdAndTxt("Drake:QPControllermex:BadInputs","the seventh argument should be the map ptr"); memcpy(&pdata->map_ptr,mxGetPr(prhs[6]),sizeof(pdata->map_ptr)); // pdata->map_ptr = NULL; if (!pdata->map_ptr) mexWarnMsgTxt("Map ptr is NULL. Assuming flat terrain at z=0"); // create gurobi environment error = GRBloadenv(&(pdata->env),NULL); // set solver params (http://www.gurobi.com/documentation/5.5/reference-manual/node798#sec:Parameters) mxArray* psolveropts = myGetProperty(pobj,"gurobi_options"); int method = (int) mxGetScalar(myGetField(psolveropts,"method")); CGE ( GRBsetintparam(pdata->env,"outputflag",0), pdata->env ); CGE ( GRBsetintparam(pdata->env,"method",method), pdata->env ); // CGE ( GRBsetintparam(pdata->env,"method",method), pdata->env ); CGE ( GRBsetintparam(pdata->env,"presolve",0), pdata->env ); if (method==2) { CGE ( GRBsetintparam(pdata->env,"bariterlimit",20), pdata->env ); CGE ( GRBsetintparam(pdata->env,"barhomogeneous",0), pdata->env ); CGE ( GRBsetdblparam(pdata->env,"barconvtol",0.0005), pdata->env ); } mxClassID cid; if (sizeof(pdata)==4) cid = mxUINT32_CLASS; else if (sizeof(pdata)==8) cid = mxUINT64_CLASS; else mexErrMsgIdAndTxt("Drake:constructModelmex:PointerSize","Are you on a 32-bit machine or 64-bit machine??"); plhs[0] = mxCreateNumericMatrix(1,1,cid,mxREAL); memcpy(mxGetData(plhs[0]),&pdata,sizeof(pdata)); // preallocate some memory pdata->H.resize(nq,nq); pdata->H_float.resize(6,nq); pdata->H_act.resize(nu,nq); pdata->C.resize(nq); pdata->C_float.resize(6); pdata->C_act.resize(nu); pdata->J.resize(3,nq); pdata->Jdot.resize(3,nq); pdata->J_xy.resize(2,nq); pdata->Jdot_xy.resize(2,nq); pdata->Hqp.resize(nq,nq); pdata->fqp.resize(nq); pdata->Ag.resize(6,nq); pdata->Agdot.resize(6,nq); pdata->Ak.resize(3,nq); pdata->Akdot.resize(3,nq); pdata->vbasis_len = 0; pdata->cbasis_len = 0; pdata->vbasis = NULL; pdata->cbasis = NULL; return; } // first get the ptr back from matlab if (!mxIsNumeric(prhs[0]) || mxGetNumberOfElements(prhs[0])!=1) mexErrMsgIdAndTxt("Drake:QPControllermex:BadInputs","the first argument should be the ptr"); memcpy(&pdata,mxGetData(prhs[0]),sizeof(pdata)); // for (i=0; i<pdata->r->num_bodies; i++) // mexPrintf("body %d (%s) has %d contact points\n", i, pdata->r->bodies[i].linkname.c_str(), pdata->r->bodies[i].contact_pts.cols()); int nu = pdata->B.cols(), nq = pdata->r->num_dof; const int dim = 3, // 3D nd = 2*m_surface_tangents; // for friction cone approx, hard coded for now assert(nu+6 == nq); int narg=1; int use_fast_qp = (int) mxGetScalar(prhs[narg++]); Map< VectorXd > qddot_des(mxGetPr(prhs[narg++]),nq); double *q = mxGetPr(prhs[narg++]); double *qd = &q[nq]; vector<VectorXd,aligned_allocator<VectorXd>> body_accel_inputs; for (int i=0; i<pdata->n_body_accel_inputs; i++) { assert(mxGetM(prhs[narg])==7); assert(mxGetN(prhs[narg])==1); VectorXd v = VectorXd::Zero(7,1); memcpy(v.data(),mxGetPr(prhs[narg++]),sizeof(double)*7); body_accel_inputs.push_back(v); } int num_condof; VectorXd condof; if (!mxIsEmpty(prhs[narg])) { assert(mxGetN(prhs[narg])==1); num_condof=mxGetM(prhs[narg]); condof = VectorXd::Zero(num_condof); memcpy(condof.data(),mxGetPr(prhs[narg++]),sizeof(double)*num_condof); } else { num_condof=0; narg++; // skip over empty vector } int desired_support_argid = narg++; Map<MatrixXd> A_ls(mxGetPr(prhs[narg]),mxGetM(prhs[narg]),mxGetN(prhs[narg])); narg++; Map<MatrixXd> B_ls(mxGetPr(prhs[narg]),mxGetM(prhs[narg]),mxGetN(prhs[narg])); narg++; Map<MatrixXd> Qy (mxGetPr(prhs[narg]),mxGetM(prhs[narg]),mxGetN(prhs[narg])); narg++; Map<MatrixXd> R_ls(mxGetPr(prhs[narg]),mxGetM(prhs[narg]),mxGetN(prhs[narg])); narg++; Map<MatrixXd> C_ls(mxGetPr(prhs[narg]),mxGetM(prhs[narg]),mxGetN(prhs[narg])); narg++; Map<MatrixXd> D_ls(mxGetPr(prhs[narg]),mxGetM(prhs[narg]),mxGetN(prhs[narg])); narg++; Map<MatrixXd> S (mxGetPr(prhs[narg]),mxGetM(prhs[narg]),mxGetN(prhs[narg])); narg++; Map<VectorXd> s1(mxGetPr(prhs[narg]),mxGetM(prhs[narg])); narg++; Map<VectorXd> s1dot(mxGetPr(prhs[narg]),mxGetM(prhs[narg])); narg++; double s2dot = mxGetScalar(prhs[narg++]); Map<VectorXd> x0(mxGetPr(prhs[narg]),mxGetM(prhs[narg])); narg++; Map<VectorXd> u0(mxGetPr(prhs[narg]),mxGetM(prhs[narg])); narg++; Map<VectorXd> y0(mxGetPr(prhs[narg]),mxGetM(prhs[narg])); narg++; Map<VectorXd> qdd_lb(mxGetPr(prhs[narg]),mxGetM(prhs[narg])); narg++; Map<VectorXd> qdd_ub(mxGetPr(prhs[narg]),mxGetM(prhs[narg])); narg++; memcpy(pdata->w_qdd.data(),mxGetPr(prhs[narg++]),sizeof(double)*nq); double mu = mxGetScalar(prhs[narg++]); double terrain_height = mxGetScalar(prhs[narg++]); // nonzero if we're using DRCFlatTerrainMap MatrixXd R_DQyD_ls = R_ls + D_ls.transpose()*Qy*D_ls; pdata->r->doKinematics(q,false,qd); //--------------------------------------------------------------------- // Compute active support from desired supports ----------------------- vector<SupportStateElement> active_supports; set<int> contact_bodies; // redundant, clean up later int num_active_contact_pts=0; if (!mxIsEmpty(prhs[desired_support_argid])) { VectorXd phi; mxArray* mxBodies = myGetField(prhs[desired_support_argid],"bodies"); if (!mxBodies) mexErrMsgTxt("couldn't get bodies"); double* pBodies = mxGetPr(mxBodies); mxArray* mxContactPts = myGetField(prhs[desired_support_argid],"contact_pts"); if (!mxContactPts) mexErrMsgTxt("couldn't get contact points"); mxArray* mxContactSurfaces = myGetField(prhs[desired_support_argid],"contact_surfaces"); if (!mxContactSurfaces) mexErrMsgTxt("couldn't get contact surfaces"); double* pContactSurfaces = mxGetPr(mxContactSurfaces); for (i=0; i<mxGetNumberOfElements(mxBodies);i++) { mxArray* mxBodyContactPts = mxGetCell(mxContactPts,i); int nc = mxGetNumberOfElements(mxBodyContactPts); if (nc<1) continue; SupportStateElement se; se.body_idx = (int) pBodies[i]-1; pr = mxGetPr(mxBodyContactPts); for (j=0; j<nc; j++) { se.contact_pt_inds.insert((int)pr[j]-1); } se.contact_surface = (int) pContactSurfaces[i]-1; active_supports.push_back(se); num_active_contact_pts += nc; contact_bodies.insert((int)se.body_idx); } } pdata->r->HandC(q,qd,(MatrixXd*)NULL,pdata->H,pdata->C,(MatrixXd*)NULL,(MatrixXd*)NULL,(MatrixXd*)NULL); pdata->H_float = pdata->H.topRows(6); pdata->H_act = pdata->H.bottomRows(nu); pdata->C_float = pdata->C.head(6); pdata->C_act = pdata->C.tail(nu); bool include_angular_momentum = (pdata->W_kdot.array().maxCoeff() > 1e-10); if (include_angular_momentum) { pdata->r->getCMM(q,qd,pdata->Ag,pdata->Agdot); pdata->Ak = pdata->Ag.topRows(3); pdata->Akdot = pdata->Agdot.topRows(3); } Vector3d xcom; // consider making all J's into row-major pdata->r->getCOM(xcom); pdata->r->getCOMJac(pdata->J); pdata->r->getCOMJacDot(pdata->Jdot); pdata->J_xy = pdata->J.topRows(2); pdata->Jdot_xy = pdata->Jdot.topRows(2); MatrixXd Jcom,Jcomdot; if (x0.size()==6) { Jcom = pdata->J; Jcomdot = pdata->Jdot; } else { Jcom = pdata->J_xy; Jcomdot = pdata->Jdot_xy; } Map<VectorXd> qdvec(qd,nq); MatrixXd B,JB,Jp,Jpdot,normals; int nc = contactConstraintsBV(pdata->r,num_active_contact_pts,mu,active_supports,pdata->map_ptr,B,JB,Jp,Jpdot,normals,terrain_height); int neps = nc*dim; VectorXd x_bar,xlimp; MatrixXd D_float(6,JB.cols()), D_act(nu,JB.cols()); if (nc>0) { if (x0.size()==6) { // x,y,z com xlimp.resize(6); xlimp.topRows(3) = xcom; xlimp.bottomRows(3) = Jcom*qdvec; } else { xlimp.resize(4); xlimp.topRows(2) = xcom.topRows(2); xlimp.bottomRows(2) = Jcom*qdvec; } x_bar = xlimp-x0; D_float = JB.topRows(6); D_act = JB.bottomRows(nu); } int nf = nc*nd; // number of contact force variables int nparams = nq+nf+neps; Vector3d kdot_des; if (include_angular_momentum) { VectorXd k = pdata->Ak*qdvec; kdot_des = -pdata->Kp_ang*k; // TODO: parameterize } //---------------------------------------------------------------------- // QP cost function ---------------------------------------------------- // // min: ybar*Qy*ybar + ubar*R*ubar + (2*S*xbar + s1)*(A*x + B*u) + // w_qdd*quad(qddot_ref - qdd) + w_eps*quad(epsilon) + // w_grf*quad(beta) + quad(kdot_des - (A*qdd + Adot*qd)) VectorXd f(nparams); { if (nc > 0) { // NOTE: moved Hqp calcs below, because I compute the inverse directly for FastQP (and sparse Hqp for gurobi) VectorXd tmp = C_ls*xlimp; VectorXd tmp1 = Jcomdot*qdvec; MatrixXd tmp2 = R_DQyD_ls*Jcom; pdata->fqp = tmp.transpose()*Qy*D_ls*Jcom; pdata->fqp += tmp1.transpose()*tmp2; pdata->fqp += (S*x_bar + 0.5*s1).transpose()*B_ls*Jcom; pdata->fqp -= u0.transpose()*tmp2; pdata->fqp -= y0.transpose()*Qy*D_ls*Jcom; pdata->fqp -= (pdata->w_qdd.array()*qddot_des.array()).matrix().transpose(); if (include_angular_momentum) { pdata->fqp += qdvec.transpose()*pdata->Akdot.transpose()*pdata->W_kdot*pdata->Ak; pdata->fqp -= kdot_des.transpose()*pdata->W_kdot*pdata->Ak; } f.head(nq) = pdata->fqp.transpose(); } else { f.head(nq) = -qddot_des; } } f.tail(nf+neps) = VectorXd::Zero(nf+neps); int neq = 6+neps+6*pdata->n_body_accel_eq_constraints+num_condof; MatrixXd Aeq = MatrixXd::Zero(neq,nparams); VectorXd beq = VectorXd::Zero(neq); // constrained floating base dynamics // H_float*qdd - J_float'*lambda - Dbar_float*beta = -C_float Aeq.topLeftCorner(6,nq) = pdata->H_float; beq.topRows(6) = -pdata->C_float; if (nc>0) { Aeq.block(0,nq,6,nc*nd) = -D_float; } if (nc > 0) { // relative acceleration constraint Aeq.block(6,0,neps,nq) = Jp; Aeq.block(6,nq,neps,nf) = MatrixXd::Zero(neps,nf); // note: obvious sparsity here Aeq.block(6,nq+nf,neps,neps) = MatrixXd::Identity(neps,neps); // note: obvious sparsity here beq.segment(6,neps) = (-Jpdot -pdata->Kp_accel*Jp)*qdvec; } // add in body spatial equality constraints VectorXd body_vdot; MatrixXd orig = MatrixXd::Zero(4,1); orig(3,0) = 1; int body_idx; int equality_ind = 6+neps; MatrixXd Jb(6,nq); MatrixXd Jbdot(6,nq); for (int i=0; i<pdata->n_body_accel_inputs; i++) { if (pdata->body_accel_input_weights(i) < 0) { // negative implies constraint body_vdot = body_accel_inputs[i].bottomRows(6); body_idx = (int)(body_accel_inputs[i][0])-1; if (!inSupport(active_supports,body_idx)) { pdata->r->forwardJac(body_idx,orig,1,Jb); pdata->r->forwardJacDot(body_idx,orig,1,Jbdot); for (int j=0; j<6; j++) { if (!std::isnan(body_vdot[j])) { Aeq.block(equality_ind,0,1,nq) = Jb.row(j); beq[equality_ind++] = -Jbdot.row(j)*qdvec + body_vdot[j]; } } } } } if (num_condof>0) { // add joint acceleration constraints for (int i=0; i<num_condof; i++) { Aeq(equality_ind,(int)condof[i]-1) = 1; beq[equality_ind++] = qddot_des[(int)condof[i]-1]; } } int n_ineq = 2*nu+2*6*pdata->n_body_accel_bounds; MatrixXd Ain = MatrixXd::Zero(n_ineq,nparams); // note: obvious sparsity here VectorXd bin = VectorXd::Zero(n_ineq); // linear input saturation constraints // u=B_act'*(H_act*qdd + C_act - Jz_act'*z - Dbar_act*beta) // using transpose instead of inverse because B is orthogonal Ain.topLeftCorner(nu,nq) = pdata->B_act.transpose()*pdata->H_act; Ain.block(0,nq,nu,nc*nd) = -pdata->B_act.transpose()*D_act; bin.head(nu) = -pdata->B_act.transpose()*pdata->C_act + pdata->umax; Ain.block(nu,0,nu,nparams) = -1*Ain.block(0,0,nu,nparams); bin.segment(nu,nu) = pdata->B_act.transpose()*pdata->C_act - pdata->umin; int body_index; int constraint_start_index = 2*nu; for (int i=0; i<pdata->n_body_accel_bounds; i++) { body_index = pdata->accel_bound_body_idx[i]; pdata->r->forwardJac(body_index,orig,1,Jb); pdata->r->forwardJacDot(body_index,orig,1,Jbdot); Ain.block(constraint_start_index,0,6,pdata->r->num_dof) = Jb; bin.segment(constraint_start_index,6) = -Jbdot*qdvec + pdata->max_body_acceleration[i]; constraint_start_index += 6; Ain.block(constraint_start_index,0,6,pdata->r->num_dof) = -Jb; bin.segment(constraint_start_index,6) = Jbdot*qdvec - pdata->min_body_acceleration[i]; constraint_start_index += 6; } for (int i=0; i<n_ineq; i++) { // remove inf constraints---needed by gurobi if (std::isinf(double(bin(i)))) { Ain.row(i) = 0*Ain.row(i); bin(i)=0; } } GRBmodel * model = NULL; int info=-1; // set obj,lb,up VectorXd lb(nparams), ub(nparams); lb.head(nq) = qdd_lb; ub.head(nq) = qdd_ub; lb.segment(nq,nf) = VectorXd::Zero(nf); ub.segment(nq,nf) = 1e3*VectorXd::Ones(nf); lb.tail(neps) = -pdata->slack_limit*VectorXd::Ones(neps); ub.tail(neps) = pdata->slack_limit*VectorXd::Ones(neps); VectorXd alpha(nparams); MatrixXd Qnfdiag(nf,1), Qneps(neps,1); vector<MatrixXd*> QBlkDiag( nc>0 ? 3 : 1 ); // nq, nf, neps // this one is for gurobi VectorXd w = (pdata->w_qdd.array() + REG).matrix(); #ifdef USE_MATRIX_INVERSION_LEMMA bool include_body_accel_cost_terms = pdata->n_body_accel_inputs > 0 && pdata->body_accel_input_weights.array().maxCoeff() > 1e-10; if (use_fast_qp > 0 && !include_angular_momentum && !include_body_accel_cost_terms) { // TODO: update to include angular momentum, body accel objectives. // We want Hqp inverse, which I can compute efficiently using the // matrix inversion lemma (see wikipedia): // inv(A + U'CV) = inv(A) - inv(A)*U* inv([ inv(C)+ V*inv(A)*U ]) V inv(A) if (nc>0) { MatrixXd Wi = ((1/(pdata->w_qdd.array() + REG)).matrix()).asDiagonal(); if (R_DQyD_ls.trace()>1e-15) { // R_DQyD_ls is not zero pdata->Hqp = Wi - Wi*Jcom.transpose()*(R_DQyD_ls.inverse() + Jcom*Wi*Jcom.transpose()).inverse()*Jcom*Wi; } } else { pdata->Hqp = MatrixXd::Constant(nq,1,1/(1+REG)); } #ifdef TEST_FAST_QP if (nc>0) { MatrixXd Hqp_test(nq,nq); MatrixXd W = w.asDiagonal(); Hqp_test = (Jcom.transpose()*R_DQyD_ls*Jcom + W).inverse(); if (((Hqp_test-pdata->Hqp).array().abs()).maxCoeff() > 1e-6) { mexErrMsgTxt("Q submatrix inverse from matrix inversion lemma does not match direct Q inverse."); } } #endif Qnfdiag = MatrixXd::Constant(nf,1,1/REG); Qneps = MatrixXd::Constant(neps,1,1/(.001+REG)); QBlkDiag[0] = &pdata->Hqp; if (nc>0) { QBlkDiag[1] = &Qnfdiag; QBlkDiag[2] = &Qneps; // quadratic slack var cost, Q(nparams-neps:end,nparams-neps:end)=eye(neps) } MatrixXd Ain_lb_ub(n_ineq+2*nparams,nparams); VectorXd bin_lb_ub(n_ineq+2*nparams); Ain_lb_ub << Ain, // note: obvious sparsity here -MatrixXd::Identity(nparams,nparams), MatrixXd::Identity(nparams,nparams); bin_lb_ub << bin, -lb, ub; info = fastQPThatTakesQinv(QBlkDiag, f, Aeq, beq, Ain_lb_ub, bin_lb_ub, pdata->active, alpha); //if (info<0) mexPrintf("fastQP info = %d. Calling gurobi.\n", info); } else { #endif if (nc>0) { pdata->Hqp = Jcom.transpose()*R_DQyD_ls*Jcom; if (include_angular_momentum) { pdata->Hqp += pdata->Ak.transpose()*pdata->W_kdot*pdata->Ak; } pdata->Hqp += pdata->w_qdd.asDiagonal(); pdata->Hqp += REG*MatrixXd::Identity(nq,nq); } else { pdata->Hqp = (1+REG)*MatrixXd::Identity(nq,nq); } // add in body spatial acceleration cost terms double w_i; for (int i=0; i<pdata->n_body_accel_inputs; i++) { w_i=pdata->body_accel_input_weights(i); if (w_i > 0) { body_vdot = body_accel_inputs[i].bottomRows(6); body_idx = (int)(body_accel_inputs[i][0])-1; if (!inSupport(active_supports,body_idx)) { pdata->r->forwardJac(body_idx,orig,1,Jb); pdata->r->forwardJacDot(body_idx,orig,1,Jbdot); for (int j=0; j<6; j++) { if (!std::isnan(body_vdot[j])) { pdata->Hqp += w_i*(Jb.row(j)).transpose()*Jb.row(j); f.head(nq) += w_i*(qdvec.transpose()*Jbdot.row(j).transpose() - body_vdot[j])*Jb.row(j).transpose(); } } } } } Qnfdiag = MatrixXd::Constant(nf,1,pdata->w_grf+REG); Qneps = MatrixXd::Constant(neps,1,pdata->w_slack+REG); QBlkDiag[0] = &pdata->Hqp; if (nc>0) { QBlkDiag[1] = &Qnfdiag; QBlkDiag[2] = &Qneps; // quadratic slack var cost, Q(nparams-neps:end,nparams-neps:end)=eye(neps) } MatrixXd Ain_lb_ub(n_ineq+2*nparams,nparams); VectorXd bin_lb_ub(n_ineq+2*nparams); Ain_lb_ub << Ain, // note: obvious sparsity here -MatrixXd::Identity(nparams,nparams), MatrixXd::Identity(nparams,nparams); bin_lb_ub << bin, -lb, ub; if (use_fast_qp > 0) { // set up and call fastqp info = fastQP(QBlkDiag, f, Aeq, beq, Ain_lb_ub, bin_lb_ub, pdata->active, alpha); //if (info<0) mexPrintf("fastQP info=%d... calling Gurobi.\n", info); } else { // use gurobi active set model = gurobiActiveSetQP(pdata->env,QBlkDiag,f,Aeq,beq,Ain,bin,lb,ub,pdata->vbasis,pdata->vbasis_len,pdata->cbasis,pdata->cbasis_len,alpha); CGE(GRBgetintattr(model,"NumVars",&pdata->vbasis_len), pdata->env); CGE(GRBgetintattr(model,"NumConstrs",&pdata->cbasis_len), pdata->env); info=66; //info = -1; } if (info<0) { model = gurobiQP(pdata->env,QBlkDiag,f,Aeq,beq,Ain,bin,lb,ub,pdata->active,alpha); int status; CGE(GRBgetintattr(model, "Status", &status), pdata->env); //if (status!=2) mexPrintf("Gurobi reports non-optimal status = %d\n", status); } #ifdef USE_MATRIX_INVERSION_LEMMA } #endif //---------------------------------------------------------------------- // Solve for inputs ---------------------------------------------------- VectorXd y(nu); VectorXd qdd = alpha.head(nq); VectorXd beta = alpha.segment(nq,nc*nd); // use transpose because B_act is orthogonal y = pdata->B_act.transpose()*(pdata->H_act*qdd + pdata->C_act - D_act*beta); //y = pdata->B_act.jacobiSvd(ComputeThinU|ComputeThinV).solve(pdata->H_act*qdd + pdata->C_act - Jz_act.transpose()*lambda - D_act*beta); if (nlhs>0) { plhs[0] = eigenToMatlab(y); } if (nlhs>1) { plhs[1] = eigenToMatlab(qdd); } if (nlhs>2) { plhs[2] = mxCreateNumericMatrix(1,1,mxINT32_CLASS,mxREAL); memcpy(mxGetData(plhs[2]),&info,sizeof(int)); } if (nlhs>3) { plhs[3] = mxCreateDoubleMatrix(1,active_supports.size(),mxREAL); pr = mxGetPr(plhs[3]); int i=0; for (vector<SupportStateElement>::iterator iter = active_supports.begin(); iter!=active_supports.end(); iter++) { pr[i++] = (double) (iter->body_idx + 1); } } if (nlhs>4) { plhs[4] = eigenToMatlab(alpha); } if (nlhs>5) { plhs[5] = eigenToMatlab(pdata->Hqp); } if (nlhs>6) { plhs[6] = eigenToMatlab(f); } if (nlhs>7) { plhs[7] = eigenToMatlab(Aeq); } if (nlhs>8) { plhs[8] = eigenToMatlab(beq); } if (nlhs>9) { plhs[9] = eigenToMatlab(Ain_lb_ub); } if (nlhs>10) { plhs[10] = eigenToMatlab(bin_lb_ub); } if (nlhs>11) { plhs[11] = eigenToMatlab(Qnfdiag); } if (nlhs>12) { plhs[12] = eigenToMatlab(Qneps); } if (nlhs>13) { double Vdot; if (nc>0) // note: Sdot is 0 for ZMP/double integrator dynamics, so we omit that term here Vdot = ((2*x_bar.transpose()*S + s1.transpose())*(A_ls*x_bar + B_ls*(Jcomdot*qdvec + Jcom*qdd)) + s1dot.transpose()*x_bar)(0) + s2dot; else Vdot = 0; plhs[13] = mxCreateDoubleScalar(Vdot); } if (nlhs>14) { RigidBodyManipulator* r = pdata->r; VectorXd individual_cops = individualSupportCOPs(r, active_supports, normals, B, beta); plhs[14] = eigenToMatlab(individual_cops); } if (model) { GRBfreemodel(model); } // GRBfreeenv(env); }
int setupAndSolveQP(NewQPControllerData *pdata, std::shared_ptr<drake::lcmt_qp_controller_input> qp_input, double t, Map<VectorXd> &q, Map<VectorXd> &qd, const Ref<Matrix<bool, Dynamic, 1>> &b_contact_force, QPControllerOutput *qp_output, std::shared_ptr<QPControllerDebugData> debug) { // The primary solve loop for our controller. This constructs and solves a Quadratic Program and produces the instantaneous desired torques, along with reference positions, velocities, and accelerations. It mirrors the Matlab implementation in atlasControllers.InstantaneousQPController.setupAndSolveQP(), and more documentation can be found there. // Note: argument `debug` MAY be set to NULL, which signals that no debug information is requested. // look up the param set by name AtlasParams *params; std::map<string,AtlasParams>::iterator it; it = pdata->param_sets.find(qp_input->param_set_name); if (it == pdata->param_sets.end()) { mexWarnMsgTxt("Got a param set I don't recognize! Using standing params instead"); it = pdata->param_sets.find("standing"); if (it == pdata->param_sets.end()) { mexErrMsgTxt("Could not fall back to standing parameters either. I have to give up here."); } } // cout << "using params set: " + it->first + ", "; params = &(it->second); // mexPrintf("Kp_accel: %f, ", params->Kp_accel); int nu = pdata->B.cols(); int nq = pdata->r->num_positions; // zmp_data Map<Matrix<double, 4, 4, RowMajor>> A_ls(&qp_input->zmp_data.A[0][0]); Map<Matrix<double, 4, 2, RowMajor>> B_ls(&qp_input->zmp_data.B[0][0]); Map<Matrix<double, 2, 4, RowMajor>> C_ls(&qp_input->zmp_data.C[0][0]); Map<Matrix<double, 2, 2, RowMajor>> D_ls(&qp_input->zmp_data.D[0][0]); Map<Matrix<double, 4, 1>> x0(&qp_input->zmp_data.x0[0][0]); Map<Matrix<double, 2, 1>> y0(&qp_input->zmp_data.y0[0][0]); Map<Matrix<double, 2, 1>> u0(&qp_input->zmp_data.u0[0][0]); Map<Matrix<double, 2, 2, RowMajor>> R_ls(&qp_input->zmp_data.R[0][0]); Map<Matrix<double, 2, 2, RowMajor>> Qy(&qp_input->zmp_data.Qy[0][0]); Map<Matrix<double, 4, 4, RowMajor>> S(&qp_input->zmp_data.S[0][0]); Map<Matrix<double, 4, 1>> s1(&qp_input->zmp_data.s1[0][0]); Map<Matrix<double, 4, 1>> s1dot(&qp_input->zmp_data.s1dot[0][0]); // // whole_body_data if (qp_input->whole_body_data.num_positions != nq) mexErrMsgTxt("number of positions doesn't match num_dof for this robot"); Map<VectorXd> q_des(qp_input->whole_body_data.q_des.data(), nq); Map<VectorXd> condof(qp_input->whole_body_data.constrained_dofs.data(), qp_input->whole_body_data.num_constrained_dofs); PIDOutput pid_out = wholeBodyPID(pdata, t, q, qd, q_des, ¶ms->whole_body); qp_output->q_ref = pid_out.q_ref; // mu // NOTE: we're using the same mu for all supports double mu; if (qp_input->num_support_data == 0) { mu = 1.0; } else { mu = qp_input->support_data[0].mu; for (int i=1; i < qp_input->num_support_data; i++) { if (qp_input->support_data[i].mu != mu) { mexWarnMsgTxt("Currently, we assume that all supports have the same value of mu"); } } } const int dim = 3, // 3D nd = 2*m_surface_tangents; // for friction cone approx, hard coded for now assert(nu+6 == nq); vector<DesiredBodyAcceleration> desired_body_accelerations; desired_body_accelerations.resize(qp_input->num_tracked_bodies); Vector6d body_pose_des, body_v_des, body_vdot_des; Vector6d body_vdot; for (int i=0; i < qp_input->num_tracked_bodies; i++) { int body_id0 = qp_input->body_motion_data[i].body_id - 1; double weight = params->body_motion[body_id0].weight; desired_body_accelerations[i].body_id0 = body_id0; Map<Matrix<double, 6, 4,RowMajor>>coefs_rowmaj(&qp_input->body_motion_data[i].coefs[0][0]); Matrix<double, 6, 4> coefs = coefs_rowmaj; evaluateCubicSplineSegment(t - qp_input->body_motion_data[i].ts[0], coefs, body_pose_des, body_v_des, body_vdot_des); desired_body_accelerations[i].body_vdot = bodyMotionPD(pdata->r, q, qd, body_id0, body_pose_des, body_v_des, body_vdot_des, params->body_motion[body_id0].Kp, params->body_motion[body_id0].Kd); desired_body_accelerations[i].weight = weight; desired_body_accelerations[i].accel_bounds = params->body_motion[body_id0].accel_bounds; // mexPrintf("body: %d, vdot: %f %f %f %f %f %f weight: %f\n", body_id0, // desired_body_accelerations[i].body_vdot(0), // desired_body_accelerations[i].body_vdot(1), // desired_body_accelerations[i].body_vdot(2), // desired_body_accelerations[i].body_vdot(3), // desired_body_accelerations[i].body_vdot(4), // desired_body_accelerations[i].body_vdot(5), // weight); // mexPrintf("tracking body: %d, coefs[:,0]: %f %f %f %f %f %f coefs(", body_id0, } int n_body_accel_eq_constraints = 0; for (int i=0; i < desired_body_accelerations.size(); i++) { if (desired_body_accelerations[i].weight < 0) n_body_accel_eq_constraints++; } MatrixXd R_DQyD_ls = R_ls + D_ls.transpose()*Qy*D_ls; pdata->r->doKinematics(q,false,qd); //--------------------------------------------------------------------- vector<SupportStateElement> available_supports = loadAvailableSupports(qp_input); vector<SupportStateElement> active_supports = getActiveSupports(pdata->r, pdata->map_ptr, q, qd, available_supports, b_contact_force, params->contact_threshold, pdata->default_terrain_height); int num_active_contact_pts=0; for (vector<SupportStateElement>::iterator iter = active_supports.begin(); iter!=active_supports.end(); iter++) { num_active_contact_pts += iter->contact_pts.size(); } pdata->r->HandC(q,qd,(MatrixXd*)nullptr,pdata->H,pdata->C,(MatrixXd*)nullptr,(MatrixXd*)nullptr,(MatrixXd*)nullptr); pdata->H_float = pdata->H.topRows(6); pdata->H_act = pdata->H.bottomRows(nu); pdata->C_float = pdata->C.head(6); pdata->C_act = pdata->C.tail(nu); bool include_angular_momentum = (params->W_kdot.array().maxCoeff() > 1e-10); if (include_angular_momentum) { pdata->r->getCMM(q,qd,pdata->Ag,pdata->Agdot); pdata->Ak = pdata->Ag.topRows(3); pdata->Akdot = pdata->Agdot.topRows(3); } Vector3d xcom; // consider making all J's into row-major pdata->r->getCOM(xcom); pdata->r->getCOMJac(pdata->J); pdata->r->getCOMJacDot(pdata->Jdot); pdata->J_xy = pdata->J.topRows(2); pdata->Jdot_xy = pdata->Jdot.topRows(2); MatrixXd Jcom,Jcomdot; if (x0.size()==6) { Jcom = pdata->J; Jcomdot = pdata->Jdot; } else { Jcom = pdata->J_xy; Jcomdot = pdata->Jdot_xy; } MatrixXd B,JB,Jp,Jpdot,normals; int nc = contactConstraintsBV(pdata->r,num_active_contact_pts,mu,active_supports,pdata->map_ptr,B,JB,Jp,Jpdot,normals,pdata->default_terrain_height); int neps = nc*dim; VectorXd x_bar,xlimp; MatrixXd D_float(6,JB.cols()), D_act(nu,JB.cols()); if (nc>0) { if (x0.size()==6) { // x,y,z com xlimp.resize(6); xlimp.topRows(3) = xcom; xlimp.bottomRows(3) = Jcom*qd; } else { xlimp.resize(4); xlimp.topRows(2) = xcom.topRows(2); xlimp.bottomRows(2) = Jcom*qd; } x_bar = xlimp-x0; D_float = JB.topRows(6); D_act = JB.bottomRows(nu); } int nf = nc*nd; // number of contact force variables int nparams = nq+nf+neps; Vector3d kdot_des; if (include_angular_momentum) { VectorXd k = pdata->Ak*qd; kdot_des = -params->Kp_ang*k; // TODO: parameterize } //---------------------------------------------------------------------- // QP cost function ---------------------------------------------------- // // min: ybar*Qy*ybar + ubar*R*ubar + (2*S*xbar + s1)*(A*x + B*u) + // w_qdd*quad(qddot_ref - qdd) + w_eps*quad(epsilon) + // w_grf*quad(beta) + quad(kdot_des - (A*qdd + Adot*qd)) VectorXd f(nparams); { if (nc > 0) { // NOTE: moved Hqp calcs below, because I compute the inverse directly for FastQP (and sparse Hqp for gurobi) VectorXd tmp = C_ls*xlimp; VectorXd tmp1 = Jcomdot*qd; MatrixXd tmp2 = R_DQyD_ls*Jcom; pdata->fqp = tmp.transpose()*Qy*D_ls*Jcom; // mexPrintf("fqp head: %f %f %f\n", pdata->fqp(0), pdata->fqp(1), pdata->fqp(2)); pdata->fqp += tmp1.transpose()*tmp2; pdata->fqp += (S*x_bar + 0.5*s1).transpose()*B_ls*Jcom; pdata->fqp -= u0.transpose()*tmp2; pdata->fqp -= y0.transpose()*Qy*D_ls*Jcom; pdata->fqp -= (params->whole_body.w_qdd.array()*pid_out.qddot_des.array()).matrix().transpose(); if (include_angular_momentum) { pdata->fqp += qd.transpose()*pdata->Akdot.transpose()*params->W_kdot*pdata->Ak; pdata->fqp -= kdot_des.transpose()*params->W_kdot*pdata->Ak; } f.head(nq) = pdata->fqp.transpose(); } else { f.head(nq) = -pid_out.qddot_des; } } f.tail(nf+neps) = VectorXd::Zero(nf+neps); int neq = 6+neps+6*n_body_accel_eq_constraints+qp_input->whole_body_data.num_constrained_dofs; MatrixXd Aeq = MatrixXd::Zero(neq,nparams); VectorXd beq = VectorXd::Zero(neq); // constrained floating base dynamics // H_float*qdd - J_float'*lambda - Dbar_float*beta = -C_float Aeq.topLeftCorner(6,nq) = pdata->H_float; beq.topRows(6) = -pdata->C_float; if (nc>0) { Aeq.block(0,nq,6,nc*nd) = -D_float; } if (nc > 0) { // relative acceleration constraint Aeq.block(6,0,neps,nq) = Jp; Aeq.block(6,nq,neps,nf) = MatrixXd::Zero(neps,nf); // note: obvious sparsity here Aeq.block(6,nq+nf,neps,neps) = MatrixXd::Identity(neps,neps); // note: obvious sparsity here beq.segment(6,neps) = (-Jpdot -params->Kp_accel*Jp)*qd; } // add in body spatial equality constraints // VectorXd body_vdot; MatrixXd orig = MatrixXd::Zero(4,1); orig(3,0) = 1; int equality_ind = 6+neps; MatrixXd Jb(6,nq); MatrixXd Jbdot(6,nq); for (int i=0; i<desired_body_accelerations.size(); i++) { if (desired_body_accelerations[i].weight < 0) { // negative implies constraint if (!inSupport(active_supports,desired_body_accelerations[i].body_id0)) { pdata->r->forwardJac(desired_body_accelerations[i].body_id0,orig,1,Jb); pdata->r->forwardJacDot(desired_body_accelerations[i].body_id0,orig,1,Jbdot); for (int j=0; j<6; j++) { if (!std::isnan(desired_body_accelerations[i].body_vdot(j))) { Aeq.block(equality_ind,0,1,nq) = Jb.row(j); beq[equality_ind++] = -Jbdot.row(j)*qd + desired_body_accelerations[i].body_vdot(j); } } } } } if (qp_input->whole_body_data.num_constrained_dofs>0) { // add joint acceleration constraints for (int i=0; i<qp_input->whole_body_data.num_constrained_dofs; i++) { Aeq(equality_ind,(int)condof[i]-1) = 1; beq[equality_ind++] = pid_out.qddot_des[(int)condof[i]-1]; } } int n_ineq = 2*nu+2*6*desired_body_accelerations.size(); MatrixXd Ain = MatrixXd::Zero(n_ineq,nparams); // note: obvious sparsity here VectorXd bin = VectorXd::Zero(n_ineq); // linear input saturation constraints // u=B_act'*(H_act*qdd + C_act - Jz_act'*z - Dbar_act*beta) // using transpose instead of inverse because B is orthogonal Ain.topLeftCorner(nu,nq) = pdata->B_act.transpose()*pdata->H_act; Ain.block(0,nq,nu,nc*nd) = -pdata->B_act.transpose()*D_act; bin.head(nu) = -pdata->B_act.transpose()*pdata->C_act + pdata->umax; Ain.block(nu,0,nu,nparams) = -1*Ain.block(0,0,nu,nparams); bin.segment(nu,nu) = pdata->B_act.transpose()*pdata->C_act - pdata->umin; int constraint_start_index = 2*nu; for (int i=0; i<desired_body_accelerations.size(); i++) { pdata->r->forwardJac(desired_body_accelerations[i].body_id0,orig,1,Jb); pdata->r->forwardJacDot(desired_body_accelerations[i].body_id0,orig,1,Jbdot); Ain.block(constraint_start_index,0,6,pdata->r->num_positions) = Jb; bin.segment(constraint_start_index,6) = -Jbdot*qd + desired_body_accelerations[i].accel_bounds.max; constraint_start_index += 6; Ain.block(constraint_start_index,0,6,pdata->r->num_positions) = -Jb; bin.segment(constraint_start_index,6) = Jbdot*qd - desired_body_accelerations[i].accel_bounds.min; constraint_start_index += 6; } for (int i=0; i<n_ineq; i++) { // remove inf constraints---needed by gurobi if (std::isinf(double(bin(i)))) { Ain.row(i) = 0*Ain.row(i); bin(i)=0; } } GRBmodel * model = nullptr; int info=-1; // set obj,lb,up VectorXd lb(nparams), ub(nparams); lb.head(nq) = pdata->qdd_lb; ub.head(nq) = pdata->qdd_ub; lb.segment(nq,nf) = VectorXd::Zero(nf); ub.segment(nq,nf) = 1e3*VectorXd::Ones(nf); lb.tail(neps) = -params->slack_limit*VectorXd::Ones(neps); ub.tail(neps) = params->slack_limit*VectorXd::Ones(neps); VectorXd alpha(nparams); MatrixXd Qnfdiag(nf,1), Qneps(neps,1); vector<MatrixXd*> QBlkDiag( nc>0 ? 3 : 1 ); // nq, nf, neps // this one is for gurobi VectorXd w = (params->whole_body.w_qdd.array() + REG).matrix(); #ifdef USE_MATRIX_INVERSION_LEMMA double max_body_accel_weight = -numeric_limits<double>::infinity(); for (int i=0; i < desired_body_accelerations.size(); i++) { max_body_accel_weight = max(max_body_accel_weight, desired_body_accelerations[i].weight); } bool include_body_accel_cost_terms = desired_body_accelerations.size() > 0 && max_body_accel_weight > 1e-10; if (pdata->use_fast_qp > 0 && !include_angular_momentum && !include_body_accel_cost_terms) { // TODO: update to include angular momentum, body accel objectives. // We want Hqp inverse, which I can compute efficiently using the // matrix inversion lemma (see wikipedia): // inv(A + U'CV) = inv(A) - inv(A)*U* inv([ inv(C)+ V*inv(A)*U ]) V inv(A) if (nc>0) { MatrixXd Wi = ((1/(params->whole_body.w_qdd.array() + REG)).matrix()).asDiagonal(); if (R_DQyD_ls.trace()>1e-15) { // R_DQyD_ls is not zero pdata->Hqp = Wi - Wi*Jcom.transpose()*(R_DQyD_ls.inverse() + Jcom*Wi*Jcom.transpose()).inverse()*Jcom*Wi; } } else { pdata->Hqp = MatrixXd::Constant(nq,1,1/(1+REG)); } #ifdef TEST_FAST_QP if (nc>0) { MatrixXd Hqp_test(nq,nq); MatrixXd W = w.asDiagonal(); Hqp_test = (Jcom.transpose()*R_DQyD_ls*Jcom + W).inverse(); if (((Hqp_test-pdata->Hqp).array().abs()).maxCoeff() > 1e-6) { mexErrMsgTxt("Q submatrix inverse from matrix inversion lemma does not match direct Q inverse."); } } #endif Qnfdiag = MatrixXd::Constant(nf,1,1/REG); Qneps = MatrixXd::Constant(neps,1,1/(.001+REG)); QBlkDiag[0] = &pdata->Hqp; if (nc>0) { QBlkDiag[1] = &Qnfdiag; QBlkDiag[2] = &Qneps; // quadratic slack var cost, Q(nparams-neps:end,nparams-neps:end)=eye(neps) } MatrixXd Ain_lb_ub(n_ineq+2*nparams,nparams); VectorXd bin_lb_ub(n_ineq+2*nparams); Ain_lb_ub << Ain, // note: obvious sparsity here -MatrixXd::Identity(nparams,nparams), MatrixXd::Identity(nparams,nparams); bin_lb_ub << bin, -lb, ub; info = fastQPThatTakesQinv(QBlkDiag, f, Aeq, beq, Ain_lb_ub, bin_lb_ub, pdata->state.active, alpha); //if (info<0) mexPrintf("fastQP info = %d. Calling gurobi.\n", info); } else { #endif if (nc>0) { pdata->Hqp = Jcom.transpose()*R_DQyD_ls*Jcom; if (include_angular_momentum) { pdata->Hqp += pdata->Ak.transpose()*params->W_kdot*pdata->Ak; } pdata->Hqp += params->whole_body.w_qdd.asDiagonal(); pdata->Hqp += REG*MatrixXd::Identity(nq,nq); } else { pdata->Hqp = (1+REG)*MatrixXd::Identity(nq,nq); } // add in body spatial acceleration cost terms for (int i=0; i<desired_body_accelerations.size(); i++) { if (desired_body_accelerations[i].weight > 0) { if (!inSupport(active_supports,desired_body_accelerations[i].body_id0)) { pdata->r->forwardJac(desired_body_accelerations[i].body_id0,orig,1,Jb); pdata->r->forwardJacDot(desired_body_accelerations[i].body_id0,orig,1,Jbdot); for (int j=0; j<6; j++) { if (!std::isnan(desired_body_accelerations[i].body_vdot[j])) { pdata->Hqp += desired_body_accelerations[i].weight*(Jb.row(j)).transpose()*Jb.row(j); f.head(nq) += desired_body_accelerations[i].weight*(qd.transpose()*Jbdot.row(j).transpose() - desired_body_accelerations[i].body_vdot[j])*Jb.row(j).transpose(); } } } } } Qnfdiag = MatrixXd::Constant(nf,1,params->w_grf+REG); Qneps = MatrixXd::Constant(neps,1,params->w_slack+REG); QBlkDiag[0] = &pdata->Hqp; if (nc>0) { QBlkDiag[1] = &Qnfdiag; QBlkDiag[2] = &Qneps; // quadratic slack var cost, Q(nparams-neps:end,nparams-neps:end)=eye(neps) } MatrixXd Ain_lb_ub(n_ineq+2*nparams,nparams); VectorXd bin_lb_ub(n_ineq+2*nparams); Ain_lb_ub << Ain, // note: obvious sparsity here -MatrixXd::Identity(nparams,nparams), MatrixXd::Identity(nparams,nparams); bin_lb_ub << bin, -lb, ub; if (pdata->use_fast_qp > 0) { // set up and call fastqp info = fastQP(QBlkDiag, f, Aeq, beq, Ain_lb_ub, bin_lb_ub, pdata->state.active, alpha); //if (info<0) mexPrintf("fastQP info=%d... calling Gurobi.\n", info); } else { // use gurobi active set model = gurobiActiveSetQP(pdata->env,QBlkDiag,f,Aeq,beq,Ain,bin,lb,ub,pdata->state.vbasis,pdata->state.vbasis_len,pdata->state.cbasis,pdata->state.cbasis_len,alpha); CGE(GRBgetintattr(model,"NumVars",&(pdata->state.vbasis_len)), pdata->env); CGE(GRBgetintattr(model,"NumConstrs",&(pdata->state.cbasis_len)), pdata->env); info=66; //info = -1; } if (info<0) { model = gurobiQP(pdata->env,QBlkDiag,f,Aeq,beq,Ain,bin,lb,ub,pdata->state.active,alpha); int status; CGE(GRBgetintattr(model, "Status", &status), pdata->env); //if (status!=2) mexPrintf("Gurobi reports non-optimal status = %d\n", status); } #ifdef USE_MATRIX_INVERSION_LEMMA } #endif //---------------------------------------------------------------------- // Solve for inputs ---------------------------------------------------- qp_output->qdd = alpha.head(nq); VectorXd beta = alpha.segment(nq,nc*nd); // use transpose because B_act is orthogonal qp_output->u = pdata->B_act.transpose()*(pdata->H_act*qp_output->qdd + pdata->C_act - D_act*beta); //y = pdata->B_act.jacobiSvd(ComputeThinU|ComputeThinV).solve(pdata->H_act*qdd + pdata->C_act - Jz_act.transpose()*lambda - D_act*beta); bool foot_contact[2]; foot_contact[0] = b_contact_force(pdata->rpc.body_ids.r_foot) == 1; foot_contact[1] = b_contact_force(pdata->rpc.body_ids.l_foot) == 1; qp_output->qd_ref = velocityReference(pdata, t, q, qd, qp_output->qdd, foot_contact, &(params->vref_integrator), &(pdata->rpc)); // Remember t for next time around pdata->state.t_prev = t; // If a debug pointer was passed in, fill it with useful data if (debug) { debug->active_supports.resize(active_supports.size()); for (int i=0; i < active_supports.size(); i++) { debug->active_supports[i] = active_supports[i]; } debug->nc = nc; debug->normals = normals; debug->B = B; debug->alpha = alpha; debug->f = f; debug->Aeq = Aeq; debug->beq = beq; debug->Ain_lb_ub = Ain_lb_ub; debug->bin_lb_ub = bin_lb_ub; debug->Qnfdiag = Qnfdiag; debug->Qneps = Qneps; debug->x_bar = x_bar; debug->S = S; debug->s1 = s1; debug->s1dot = s1dot; debug->s2dot = qp_input->zmp_data.s2dot; debug->A_ls = A_ls; debug->B_ls = B_ls; debug->Jcom = Jcom; debug->Jcomdot = Jcomdot; debug->beta = beta; } // if we used gurobi, clean up if (model) { GRBfreemodel(model); } // GRBfreeenv(env); return info; }