bool CVarianceDecomposition::trainGP() 
{

	bool conv = false;
	// initGP if is not init
	if (this->is_init==0)	this->initGP();

	//train GP
	conv = this->opt->opt();

	//check convergence
    VectorXd scales;
    this->agetScales(&scales);
    conv &= (scales.unaryExpr(std::bind2nd( std::ptr_fun<double,double,double>(pow), 2) ).maxCoeff()<(mfloat_t)10.0);

	return conv;
}
VectorXd LayeredFeedForwardNeuralNet::FireSingleLayer(const VectorXd& inputActivations, long layerIndex) const
{
    // get layer input weights (also checks valid layerIndex)
    const MatrixXd& layerInputWeights = GetLayerInputWeights(layerIndex);
    
    if (layerInputWeights.cols() - 1 != inputActivations.size())
    {
        // input is invalid for this neural net topology
        throw NeuralNetTopologyMismatch("activation input must match number of units in neural network layer");
    }
    
    // get the activation function
    auto expressionParser = UnaryExpressionParserFactory::CreateParser();
    UnaryFunction activationFunction = expressionParser->GetFunctionForExpression(m_activationFunction);
    
    // bias activation
    VectorXd bias(1);
    bias << -1.0;
    
    // calculate layer net inputs
    VectorXd inputPlusBias(layerInputWeights.cols());
    inputPlusBias << inputActivations, bias;
    
    //std::cout << "layer " << layerIndex << " input activations +bias : " << std::endl << inputPlusBias << std::endl << std::endl;
    //std::cout << "layer " << layerIndex << " input weights : " << std::endl << layerInputWeights << std::endl << std::endl;
    
    VectorXd layerNetInputs = layerInputWeights * inputPlusBias;
    
    //std::cout << "layer " << layerIndex << " net inputs : " << std::endl << layerNetInputs << std::endl << std::endl;
    
    // calculate layer activations
    VectorXd layerActivations = layerNetInputs.unaryExpr(activationFunction);
    
    //std::cout << "layer " << layerIndex << " output activations : " << layerActivations << std::endl << std::endl;
    
    return layerActivations;
}
Example #3
0
VectorXd D_P_ANN_Controller::sgm(VectorXd x){
  VectorXd W_in;
  W_in=x.unaryExpr(std::ptr_fun(sigmoid));
  if(thresholdNo) W_in(0)=1;
  return W_in;
}