コード例 #1
0
ファイル: bsplinebasis.cpp プロジェクト: pmukherj/splinter
// Old implementation of Jacobian
DenseMatrix BSplineBasis::evalBasisJacobianOld(DenseVector &x) const
{
    // Jacobian basis matrix
    DenseMatrix J; J.setZero(getNumBasisFunctions(), numVariables);

    // Calculate partial derivatives
    for (unsigned int i = 0; i < numVariables; i++)
    {
        // One column in basis jacobian
        DenseVector bi; bi.setOnes(1);
        for (unsigned int j = 0; j < numVariables; j++)
        {
            DenseVector temp = bi;
            DenseVector xi;
            if (j == i)
            {
                // Differentiated basis
                xi = bases.at(j).evaluateFirstDerivative(x(j));
            }
            else
            {
                // Normal basis
                xi = bases.at(j).evaluate(x(j));
            }

            bi = kroneckerProduct(temp, xi);
        }

        // Fill out column
        J.block(0,i,bi.rows(),1) = bi.block(0,0,bi.rows(),1);
    }

    return J;
}
コード例 #2
0
ファイル: bspline.cpp プロジェクト: LStoleriu/splinter
void BSpline::setControlPoints(const DenseMatrix &controlPoints)
{
    if (controlPoints.cols() != numVariables + 1)
        throw Exception("BSpline::setControlPoints: Incompatible size of control point matrix.");

    int nc = controlPoints.rows();

    knotaverages = controlPoints.block(0, 0, nc, numVariables);
    coefficients = controlPoints.block(0, numVariables, nc, 1);

    checkControlPoints();
}
コード例 #3
0
SparseMatrix BSplineBasis1D::reduceSupport(double lb, double ub)
{
    // Check bounds
    if (lb < knots.front() || ub > knots.back())
        throw Exception("BSplineBasis1D::reduceSupport: Cannot increase support!");

    unsigned int k = degree + 1;

    int index_lower = indexSupportedBasisfunctions(lb).front();
    int index_upper = indexSupportedBasisfunctions(ub).back();

    // Check lower bound index
    if (k != knotMultiplicity(knots.at(index_lower)))
    {
        int suggested_index = index_lower - 1;
        if (0 <= suggested_index)
        {
            index_lower = suggested_index;
        }
        else
        {
            throw Exception("BSplineBasis1D::reduceSupport: Suggested index is negative!");
        }
    }

    // Check upper bound index
    if (knotMultiplicity(ub) == k && knots.at(index_upper) == ub)
    {
        index_upper -= k;
    }

    // New knot vector
    std::vector<double> si;
    si.insert(si.begin(), knots.begin()+index_lower, knots.begin()+index_upper+k+1);

    // Construct selection matrix A
    int numOld = knots.size()-k; // Current number of basis functions
    int numNew = si.size()-k; // Number of basis functions after update

    if (numOld < numNew)
        throw Exception("BSplineBasis1D::reduceSupport: Number of basis functions is increased instead of reduced!");

    DenseMatrix Ad = DenseMatrix::Zero(numOld, numNew);
    Ad.block(index_lower, 0, numNew, numNew) = DenseMatrix::Identity(numNew, numNew);
    SparseMatrix A = Ad.sparseView();

    // Update knots
    knots = si;

    return A;
}
template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& ref)
{
  const Index rows = ref.rows();
  const Index cols = ref.cols();
  const Index inner = ref.innerSize();
  const Index outer = ref.outerSize();

  typedef typename SparseMatrixType::Scalar Scalar;
  typedef typename SparseMatrixType::StorageIndex StorageIndex;

  double density = (std::max)(8./(rows*cols), 0.01);
  typedef Matrix<Scalar,Dynamic,Dynamic,SparseMatrixType::IsRowMajor?RowMajor:ColMajor> DenseMatrix;
  typedef Matrix<Scalar,Dynamic,1> DenseVector;
  typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
  typedef SparseVector<Scalar> SparseVectorType;

  Scalar s1 = internal::random<Scalar>();
  {
    SparseMatrixType m(rows, cols);
    DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
    initSparse<Scalar>(density, refMat, m);

    VERIFY_IS_APPROX(m, refMat);

    // test InnerIterators and Block expressions
    for (int t=0; t<10; ++t)
    {
      Index j = internal::random<Index>(0,cols-2);
      Index i = internal::random<Index>(0,rows-2);
      Index w = internal::random<Index>(1,cols-j);
      Index h = internal::random<Index>(1,rows-i);

      VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
      for(Index c=0; c<w; c++)
      {
        VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
        for(Index r=0; r<h; r++)
        {
          VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
          VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
        }
      }
      for(Index r=0; r<h; r++)
      {
        VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
        for(Index c=0; c<w; c++)
        {
          VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
          VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
        }
      }
      
      VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w));
      VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h));
      for(Index r=0; r<h; r++)
      {
        VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r));
        VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r));
        for(Index c=0; c<w; c++)
        {
          VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r));
          VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c));
          
          VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c));
          VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
          if(m.middleCols(j,w).coeff(r,c) != Scalar(0))
          {
            VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c));
          }
          if(m.middleRows(i,h).coeff(r,c) != Scalar(0))
          {
            VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
          }
        }
      }
      for(Index c=0; c<w; c++)
      {
        VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c));
        VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c));
      }
    }

    for(Index c=0; c<cols; c++)
    {
      VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
      VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
    }

    for(Index r=0; r<rows; r++)
    {
      VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
      VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
    }
  }

  // test innerVector()
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
    SparseMatrixType m2(rows, cols);
    initSparse<Scalar>(density, refMat2, m2);
    Index j0 = internal::random<Index>(0,outer-1);
    Index j1 = internal::random<Index>(0,outer-1);
    Index r0 = internal::random<Index>(0,rows-1);
    Index c0 = internal::random<Index>(0,cols-1);

    VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2,j0));
    VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), innervec(refMat2,j0)+innervec(refMat2,j1));

    m2.innerVector(j0) *= Scalar(2);
    innervec(refMat2,j0) *= Scalar(2);
    VERIFY_IS_APPROX(m2, refMat2);

    m2.row(r0) *= Scalar(3);
    refMat2.row(r0) *= Scalar(3);
    VERIFY_IS_APPROX(m2, refMat2);

    m2.col(c0) *= Scalar(4);
    refMat2.col(c0) *= Scalar(4);
    VERIFY_IS_APPROX(m2, refMat2);

    m2.row(r0) /= Scalar(3);
    refMat2.row(r0) /= Scalar(3);
    VERIFY_IS_APPROX(m2, refMat2);

    m2.col(c0) /= Scalar(4);
    refMat2.col(c0) /= Scalar(4);
    VERIFY_IS_APPROX(m2, refMat2);

    SparseVectorType v1;
    VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0)*4);
    VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose()*4);

    SparseMatrixType m3(rows,cols);
    m3.reserve(VectorXi::Constant(outer,int(inner/2)));
    for(Index j=0; j<outer; ++j)
      for(Index k=0; k<(std::min)(j,inner); ++k)
        m3.insertByOuterInner(j,k) = internal::convert_index<StorageIndex>(k+1);
    for(Index j=0; j<(std::min)(outer, inner); ++j)
    {
      VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
      if(j>0)
        VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
    }
    m3.makeCompressed();
    for(Index j=0; j<(std::min)(outer, inner); ++j)
    {
      VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
      if(j>0)
        VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
    }

    VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros());

//     m2.innerVector(j0) = 2*m2.innerVector(j1);
//     refMat2.col(j0) = 2*refMat2.col(j1);
//     VERIFY_IS_APPROX(m2, refMat2);
  }

  // test innerVectors()
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
    SparseMatrixType m2(rows, cols);
    initSparse<Scalar>(density, refMat2, m2);
    if(internal::random<float>(0,1)>0.5f) m2.makeCompressed();
    Index j0 = internal::random<Index>(0,outer-2);
    Index j1 = internal::random<Index>(0,outer-2);
    Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1));
    if(SparseMatrixType::IsRowMajor)
      VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
    else
      VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
    if(SparseMatrixType::IsRowMajor)
      VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
                       refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0));
    else
      VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
                      refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
    
    VERIFY_IS_APPROX(m2, refMat2);
    
    VERIFY(m2.innerVectors(j0,n0).nonZeros() == m2.transpose().innerVectors(j0,n0).nonZeros());
    
    m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
    if(SparseMatrixType::IsRowMajor)
      refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval();
    else
      refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval();
    
    VERIFY_IS_APPROX(m2, refMat2);
  }

  // test generic blocks
  {
    DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
    SparseMatrixType m2(rows, cols);
    initSparse<Scalar>(density, refMat2, m2);
    Index j0 = internal::random<Index>(0,outer-2);
    Index j1 = internal::random<Index>(0,outer-2);
    Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1));
    if(SparseMatrixType::IsRowMajor)
      VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols));
    else
      VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0));
    
    if(SparseMatrixType::IsRowMajor)
      VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols),
                      refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols));
    else
      VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0),
                      refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
      
    Index i = internal::random<Index>(0,m2.outerSize()-1);
    if(SparseMatrixType::IsRowMajor) {
      m2.innerVector(i) = m2.innerVector(i) * s1;
      refMat2.row(i) = refMat2.row(i) * s1;
      VERIFY_IS_APPROX(m2,refMat2);
    } else {
      m2.innerVector(i) = m2.innerVector(i) * s1;
      refMat2.col(i) = refMat2.col(i) * s1;
      VERIFY_IS_APPROX(m2,refMat2);
    }
    
    Index r0 = internal::random<Index>(0,rows-2);
    Index c0 = internal::random<Index>(0,cols-2);
    Index r1 = internal::random<Index>(1,rows-r0);
    Index c1 = internal::random<Index>(1,cols-c0);
    
    VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0));
    VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0));
    
    VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0));
    VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0));

    VERIFY_IS_APPROX(m2.block(r0,c0,r1,c1), refMat2.block(r0,c0,r1,c1));
    VERIFY_IS_APPROX((2*m2).block(r0,c0,r1,c1), (2*refMat2).block(r0,c0,r1,c1));

    if(m2.nonZeros()>0)
    {
      VERIFY_IS_APPROX(m2, refMat2);
      SparseMatrixType m3(rows, cols);
      DenseMatrix refMat3(rows, cols); refMat3.setZero();
      Index n = internal::random<Index>(1,10);
      for(Index k=0; k<n; ++k)
      {
        Index o1 = internal::random<Index>(0,outer-1);
        Index o2 = internal::random<Index>(0,outer-1);
        if(SparseMatrixType::IsRowMajor)
        {
          m3.innerVector(o1) = m2.row(o2);
          refMat3.row(o1) = refMat2.row(o2);
        }
        else
        {
          m3.innerVector(o1) = m2.col(o2);
          refMat3.col(o1) = refMat2.col(o2);
        }
        if(internal::random<bool>())
          m3.makeCompressed();
      }
      if(m3.nonZeros()>0)
      VERIFY_IS_APPROX(m3, refMat3);
    }
  }
}
コード例 #5
0
ファイル: constraintbspline.cpp プロジェクト: simudream/censo
bool ConstraintBSpline::controlPointBoundsDeduction() const
{
    // Get variable bounds
    auto xlb = bspline.getDomainLowerBound();
    auto xub = bspline.getDomainUpperBound();

    // Use these instead?
//    for (unsigned int i = 0; i < bspline.getNumVariables(); i++)
//    {
//        xlb.at(i) = variables.at(i)->getLowerBound();
//        xub.at(i) = variables.at(i)->getUpperBound();
//    }

    double lowerBound = variables.back()->getLowerBound(); // f(x) = y > lowerBound
    double upperBound = variables.back()->getUpperBound(); // f(x) = y < upperBound

    // Get knot vectors and basis degrees
    auto knotVectors = bspline.getKnotVectors();
    auto basisDegrees = bspline.getBasisDegrees();

    // Compute n value for each variable
    // Total number of control points is ns(0)*...*ns(d-1)
    std::vector<unsigned int> numBasisFunctions = bspline.getNumBasisFunctions();

    // Get matrix of coefficients
    DenseMatrix cps = controlPoints;
    DenseMatrix coeffs = cps.block(bspline.getNumVariables(), 0, 1, cps.cols());

    for (unsigned int d = 0; d < bspline.getNumVariables(); d++)
    {
        if (assertNear(xlb.at(d), xub.at(d)))
            continue;

        auto n = numBasisFunctions.at(d);
        auto p = basisDegrees.at(d);
        std::vector<double> knots = knotVectors.at(d);
        assert(knots.size() == n+p+1);

        // Tighten lower bound
        unsigned int i = 1;
        for (; i <= n; i++)
        {
            // Knot interval of interest: [t_0, t_i]

            // Selection matrix
            DenseMatrix S = DenseMatrix::Ones(1,1);

            for (unsigned int d2 = 0; d2 < bspline.getNumVariables(); d2++)
            {
                DenseMatrix temp(S);

                DenseMatrix Sd_full = DenseMatrix::Identity(numBasisFunctions.at(d2),numBasisFunctions.at(d2));
                DenseMatrix Sd(Sd_full);
                if (d == d2)
                    Sd = Sd_full.block(0,0,n,i);

                S = kroneckerProduct(temp, Sd);
            }

            // Control points that have support in [t_0, t_i]
            DenseMatrix selc = coeffs*S;
            DenseVector minCP = selc.rowwise().minCoeff();
            DenseVector maxCP = selc.rowwise().maxCoeff();
            double minv = minCP(0);
            double maxv = maxCP(0);

            // Investigate feasibility
            if (minv > upperBound || maxv < lowerBound)
                continue; // infeasible
            else
                break; // feasible
        }

        // New valid lower bound on x(d) is knots(i-1)
        if (i > 1)
        {
            if (!variables.at(d)->updateLowerBound(knots.at(i-1)))
                return false;
        }

        // Tighten upper bound
        i = 1;
        for (; i <= n; i++)
        {
            // Knot interval of interest: [t_{n+p-i}, t_{n+p}]

            // Selection matrix
            DenseMatrix S = DenseMatrix::Ones(1,1);

            for (unsigned int d2 = 0; d2 < bspline.getNumVariables(); d2++)
            {
                DenseMatrix temp(S);

                DenseMatrix Sd_full = DenseMatrix::Identity(numBasisFunctions.at(d2),numBasisFunctions.at(d2));
                DenseMatrix Sd(Sd_full);
                if (d == d2)
                    Sd = Sd_full.block(0,n-i,n,i);

                S = kroneckerProduct(temp, Sd);
            }

            // Control points that have support in [t_{n+p-i}, t_{n+p}]
            DenseMatrix selc = coeffs*S;
            DenseVector minCP = selc.rowwise().minCoeff();
            DenseVector maxCP = selc.rowwise().maxCoeff();
            double minv = minCP(0);
            double maxv = maxCP(0);

            // Investigate feasibility
            if (minv > upperBound || maxv < lowerBound)
                continue; // infeasible
            else
                break; // feasible
        }

        // New valid lower bound on x(d) is knots(n+p-(i-1))
        if (i > 1)
        {
            if (!variables.at(d)->updateUpperBound(knots.at(n+p-(i-1))))
                return false;
            // NOTE: the upper bound seems to not be tight! can we use knots.at(n+p-i)?
        }

    }

    return true;
}
コード例 #6
0
bool BSplineBasis1D::reduceSupport(double lb, double ub, SparseMatrix &A)
{
    // Check bounds
    if(lb < knots.front() || ub > knots.back())
    {
        return false;
    }

    unsigned int k = degree + 1;

    int index_lower = indexSupportedBasisfunctions(lb).front();
    int index_upper = indexSupportedBasisfunctions(ub).back();

    // Check lower bound index
    unsigned int count = knotMultiplicity(knots.at(index_lower));
    bool is_p_regular = (k == count);

    if(!is_p_regular)
    {
        int suggested_index = index_lower - 1;
        if(0 <= suggested_index)
        {
            index_lower = suggested_index;
        }
        else
        {

#ifndef NDEBUG
            std::cout << "\n\n----------------adjust_index_for_domain_reduction-----------------" << std::endl;
            std::cout << "Error: not enough knots to guarantee controlpoint convergence" << std::endl;
            std::cout << "----------------adjust_index_for_domain_reduction-----------------\n\n" << std::endl;
#endif // NDEBUG

            return false;
        }
    }

    // Check upper bound index
    if(knotMultiplicity(ub) == k && knots.at(index_upper) == ub)
    {
        index_upper -= k;
    }

    // New knot vector
    std::vector<double> si;
    si.insert(si.begin(), knots.begin()+index_lower, knots.begin()+index_upper+k+1);

    // Construct selection matrix A
    int n_old = knots.size()-k; // Current number of basis functions
    int n_new = si.size()-k; // Number of basis functions after update

    if (n_old < n_new) return false;

    DenseMatrix Ad = DenseMatrix::Zero(n_old, n_new);
    Ad.block(index_lower, 0, n_new, n_new) = DenseMatrix::Identity(n_new, n_new);
    A = Ad.sparseView();

    // Update knots
    knots = si;

    return true;
}