template<typename SparseMatrixType> void sparse_product(const SparseMatrixType& ref) { const int rows = ref.rows(); const int cols = ref.cols(); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = std::max(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; // test matrix-matrix product { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows); DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows); DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); SparseMatrixType m3(rows, rows); SparseMatrixType m4(rows, rows); initSparse<Scalar>(density, refMat2, m2); initSparse<Scalar>(density, refMat3, m3); initSparse<Scalar>(density, refMat4, m4); VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); // sparse * dense VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose()); VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3); VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); // dense * sparse VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3); } // test matrix - diagonal product if(false) // it compiles, but the precision is terrible. probably doesn't matter in this branch.... { DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); DiagonalMatrix<DenseVector> d1(DenseVector::Random(rows)); SparseMatrixType m2(rows, rows); SparseMatrixType m3(rows, rows); initSparse<Scalar>(density, refM2, m2); initSparse<Scalar>(density, refM3, m3); VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1); VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2); VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose()); } // test self adjoint products { DenseMatrix b = DenseMatrix::Random(rows, rows); DenseMatrix x = DenseMatrix::Random(rows, rows); DenseMatrix refX = DenseMatrix::Random(rows, rows); DenseMatrix refUp = DenseMatrix::Zero(rows, rows); DenseMatrix refLo = DenseMatrix::Zero(rows, rows); DenseMatrix refS = DenseMatrix::Zero(rows, rows); SparseMatrixType mUp(rows, rows); SparseMatrixType mLo(rows, rows); SparseMatrixType mS(rows, rows); do { initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); } while (refUp.isZero()); refLo = refUp.transpose().conjugate(); mLo = mUp.transpose().conjugate(); refS = refUp + refLo; refS.diagonal() *= 0.5; mS = mUp + mLo; for (int k=0; k<mS.outerSize(); ++k) for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it) if (it.index() == k) it.valueRef() *= 0.5; VERIFY_IS_APPROX(refS.adjoint(), refS); VERIFY_IS_APPROX(mS.transpose().conjugate(), mS); VERIFY_IS_APPROX(mS, refS); VERIFY_IS_APPROX(x=mS*b, refX=refS*b); VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b); VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b); VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b); } }
template<typename SparseMatrixType> void sparse_product() { typedef typename SparseMatrixType::Index Index; Index n = 100; const Index rows = internal::random<int>(1,n); const Index cols = internal::random<int>(1,n); const Index depth = internal::random<int>(1,n); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = (std::max)(8./(rows*cols), 0.1); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; Scalar s1 = internal::random<Scalar>(); Scalar s2 = internal::random<Scalar>(); // test matrix-matrix product { DenseMatrix refMat2 = DenseMatrix::Zero(rows, depth); DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows); DenseMatrix refMat3 = DenseMatrix::Zero(depth, cols); DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth); DenseMatrix refMat4 = DenseMatrix::Zero(rows, cols); DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows); DenseMatrix refMat5 = DenseMatrix::Random(depth, cols); DenseMatrix refMat6 = DenseMatrix::Random(rows, rows); DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); // DenseVector dv1 = DenseVector::Random(rows); SparseMatrixType m2 (rows, depth); SparseMatrixType m2t(depth, rows); SparseMatrixType m3 (depth, cols); SparseMatrixType m3t(cols, depth); SparseMatrixType m4 (rows, cols); SparseMatrixType m4t(cols, rows); SparseMatrixType m6(rows, rows); initSparse(density, refMat2, m2); initSparse(density, refMat2t, m2t); initSparse(density, refMat3, m3); initSparse(density, refMat3t, m3t); initSparse(density, refMat4, m4); initSparse(density, refMat4t, m4t); initSparse(density, refMat6, m6); // int c = internal::random<int>(0,depth-1); // sparse * sparse VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(m4=m2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); VERIFY_IS_APPROX(m4=m2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); VERIFY_IS_APPROX(m4=m2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1); VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1); VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1); VERIFY_IS_APPROX(m4=(m2*m3).pruned(0), refMat4=refMat2*refMat3); VERIFY_IS_APPROX(m4=(m2t.transpose()*m3).pruned(0), refMat4=refMat2t.transpose()*refMat3); VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose()); VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose()); // test aliasing m4 = m2; refMat4 = refMat2; VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3); // sparse * dense VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose()); VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3); VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3)); VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5); // dense * sparse VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); // sparse * dense and dense * sparse outer product test_outer<SparseMatrixType,DenseMatrix>::run(m2,m4,refMat2,refMat4); VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6); } // test matrix - diagonal product { DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); DenseMatrix d3 = DenseMatrix::Zero(rows, cols); DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(cols)); DiagonalMatrix<Scalar,Dynamic> d2(DenseVector::Random(rows)); SparseMatrixType m2(rows, cols); SparseMatrixType m3(rows, cols); initSparse<Scalar>(density, refM2, m2); initSparse<Scalar>(density, refM3, m3); VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); VERIFY_IS_APPROX(m3=m2.transpose()*d2, refM3=refM2.transpose()*d2); VERIFY_IS_APPROX(m3=d2*m2, refM3=d2*refM2); VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1*refM2.transpose()); // evaluate to a dense matrix to check the .row() and .col() iterator functions VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1); VERIFY_IS_APPROX(d3=m2.transpose()*d2, refM3=refM2.transpose()*d2); VERIFY_IS_APPROX(d3=d2*m2, refM3=d2*refM2); VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose()); } // test self adjoint products { DenseMatrix b = DenseMatrix::Random(rows, rows); DenseMatrix x = DenseMatrix::Random(rows, rows); DenseMatrix refX = DenseMatrix::Random(rows, rows); DenseMatrix refUp = DenseMatrix::Zero(rows, rows); DenseMatrix refLo = DenseMatrix::Zero(rows, rows); DenseMatrix refS = DenseMatrix::Zero(rows, rows); SparseMatrixType mUp(rows, rows); SparseMatrixType mLo(rows, rows); SparseMatrixType mS(rows, rows); do { initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); } while (refUp.isZero()); refLo = refUp.adjoint(); mLo = mUp.adjoint(); refS = refUp + refLo; refS.diagonal() *= 0.5; mS = mUp + mLo; // TODO be able to address the diagonal.... for (int k=0; k<mS.outerSize(); ++k) for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it) if (it.index() == k) it.valueRef() *= 0.5; VERIFY_IS_APPROX(refS.adjoint(), refS); VERIFY_IS_APPROX(mS.adjoint(), mS); VERIFY_IS_APPROX(mS, refS); VERIFY_IS_APPROX(x=mS*b, refX=refS*b); VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b); VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b); VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b); } }
template<typename Scalar> void sparse_llt(int rows, int cols) { double density = std::max(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; // TODO fix the issue with complex (see SparseLLT::solveInPlace) SparseMatrix<Scalar> m2(rows, cols); DenseMatrix refMat2(rows, cols); DenseVector b = DenseVector::Random(cols); DenseVector ref_x(cols), x(cols); DenseMatrix B = DenseMatrix::Random(rows,cols); DenseMatrix ref_X(rows,cols), X(rows,cols); initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0); for(int i=0; i<rows; ++i) m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i))); ref_x = refMat2.template selfadjointView<Lower>().llt().solve(b); if (!NumTraits<Scalar>::IsComplex) { x = b; SparseLLT<SparseMatrix<Scalar> > (m2).solveInPlace(x); VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: default"); } #ifdef EIGEN_CHOLMOD_SUPPORT // legacy API { // Cholmod, as configured in CholmodSupport.h, only supports self-adjoint matrices SparseMatrix<Scalar> m3 = m2.adjoint()*m2; DenseMatrix refMat3 = refMat2.adjoint()*refMat2; ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b); x = b; SparseLLT<SparseMatrix<Scalar>, Cholmod>(m3).solveInPlace(x); VERIFY((m3*x).isApprox(b,test_precision<Scalar>()) && "LLT legacy: cholmod solveInPlace"); x = SparseLLT<SparseMatrix<Scalar>, Cholmod>(m3).solve(b); VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT legacy: cholmod solve"); } // new API { // Cholmod, as configured in CholmodSupport.h, only supports self-adjoint matrices SparseMatrix<Scalar> m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows); DenseMatrix refMat3 = refMat2 * refMat2.adjoint(); m3_lo.template selfadjointView<Lower>().rankUpdate(m2,0); m3_up.template selfadjointView<Upper>().rankUpdate(m2,0); // with a single vector as the rhs ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b); x = CholmodDecomposition<SparseMatrix<Scalar>, Lower>(m3).solve(b); VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve, single dense rhs"); x = CholmodDecomposition<SparseMatrix<Scalar>, Upper>(m3).solve(b); VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve, single dense rhs"); x = CholmodDecomposition<SparseMatrix<Scalar>, Lower>(m3_lo).solve(b); VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve, single dense rhs"); x = CholmodDecomposition<SparseMatrix<Scalar>, Upper>(m3_up).solve(b); VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve, single dense rhs"); // with multiple rhs ref_X = refMat3.template selfadjointView<Lower>().llt().solve(B); #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR // TODO make sure the API is properly documented about this fact X = CholmodDecomposition<SparseMatrix<Scalar>, Lower>(m3).solve(B); VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "LLT: cholmod solve, multiple dense rhs"); X = CholmodDecomposition<SparseMatrix<Scalar>, Upper>(m3).solve(B); VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "LLT: cholmod solve, multiple dense rhs"); #endif // with a sparse rhs SparseMatrix<Scalar> spB(rows,cols), spX(rows,cols); B.diagonal().array() += 1; spB = B.sparseView(0.5,1); ref_X = refMat3.template selfadjointView<Lower>().llt().solve(DenseMatrix(spB)); spX = CholmodDecomposition<SparseMatrix<Scalar>, Lower>(m3).solve(spB); VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs"); spX = CholmodDecomposition<SparseMatrix<Scalar>, Upper>(m3).solve(spB); VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs"); } #endif }