template<typename SparseMatrixType> void sparse_extra(const SparseMatrixType& ref) { typedef typename SparseMatrixType::Index Index; const Index rows = ref.rows(); const Index cols = ref.cols(); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = (std::max)(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; Scalar eps = 1e-6; SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); DenseVector vec1 = DenseVector::Random(rows); std::vector<Vector2i> zeroCoords; std::vector<Vector2i> nonzeroCoords; initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); if (zeroCoords.size()==0 || nonzeroCoords.size()==0) return; // test coeff and coeffRef for (int i=0; i<(int)zeroCoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat); m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); VERIFY_IS_APPROX(m, refMat); // random setter // { // m.setZero(); // VERIFY_IS_NOT_APPROX(m, refMat); // SparseSetter<SparseMatrixType, RandomAccessPattern> w(m); // std::vector<Vector2i> remaining = nonzeroCoords; // while(!remaining.empty()) // { // int i = internal::random<int>(0,remaining.size()-1); // w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); // remaining[i] = remaining.back(); // remaining.pop_back(); // } // } // VERIFY_IS_APPROX(m, refMat); VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) )); #ifdef EIGEN_UNORDERED_MAP_SUPPORT VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) )); #endif #ifdef _DENSE_HASH_MAP_H_ VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) )); #endif #ifdef _SPARSE_HASH_MAP_H_ VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) )); #endif // test RandomSetter /*{ SparseMatrixType m1(rows,cols), m2(rows,cols); DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); initSparse<Scalar>(density, refM1, m1); { Eigen::RandomSetter<SparseMatrixType > setter(m2); for (int j=0; j<m1.outerSize(); ++j) for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i) setter(i.index(), j) = i.value(); } VERIFY_IS_APPROX(m1, m2); }*/ }
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) { const int rows = ref.rows(); const int cols = ref.cols(); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = std::max(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; Scalar eps = 1e-6; SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); DenseVector vec1 = DenseVector::Random(rows); Scalar s1 = ei_random<Scalar>(); std::vector<Vector2i> zeroCoords; std::vector<Vector2i> nonzeroCoords; initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); if (zeroCoords.size()==0 || nonzeroCoords.size()==0) return; // test coeff and coeffRef for (int i=0; i<(int)zeroCoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret) VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat); m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); VERIFY_IS_APPROX(m, refMat); /* // test InnerIterators and Block expressions for (int t=0; t<10; ++t) { int j = ei_random<int>(0,cols-1); int i = ei_random<int>(0,rows-1); int w = ei_random<int>(1,cols-j-1); int h = ei_random<int>(1,rows-i-1); // VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); for(int c=0; c<w; c++) { VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); for(int r=0; r<h; r++) { // VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); } } // for(int r=0; r<h; r++) // { // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); // for(int c=0; c<w; c++) // { // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); // } // } } for(int c=0; c<cols; c++) { VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); } for(int r=0; r<rows; r++) { VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); } */ // test SparseSetters // coherent setter // TODO extend the MatrixSetter // { // m.setZero(); // VERIFY_IS_NOT_APPROX(m, refMat); // SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m); // for (int i=0; i<nonzeroCoords.size(); ++i) // { // w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y()); // } // } // VERIFY_IS_APPROX(m, refMat); // random setter // { // m.setZero(); // VERIFY_IS_NOT_APPROX(m, refMat); // SparseSetter<SparseMatrixType, RandomAccessPattern> w(m); // std::vector<Vector2i> remaining = nonzeroCoords; // while(!remaining.empty()) // { // int i = ei_random<int>(0,remaining.size()-1); // w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); // remaining[i] = remaining.back(); // remaining.pop_back(); // } // } // VERIFY_IS_APPROX(m, refMat); VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) )); #ifdef EIGEN_UNORDERED_MAP_SUPPORT VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) )); #endif #ifdef _DENSE_HASH_MAP_H_ VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) )); #endif #ifdef _SPARSE_HASH_MAP_H_ VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) )); #endif // test fillrand { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); m2.startFill(); for (int j=0; j<cols; ++j) { for (int k=0; k<rows/2; ++k) { int i = ei_random<int>(0,rows-1); if (m1.coeff(i,j)==Scalar(0)) m2.fillrand(i,j) = m1(i,j) = ei_random<Scalar>(); } } m2.endFill(); VERIFY_IS_APPROX(m2,m1); } // test RandomSetter /*{ SparseMatrixType m1(rows,cols), m2(rows,cols); DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); initSparse<Scalar>(density, refM1, m1); { Eigen::RandomSetter<SparseMatrixType > setter(m2); for (int j=0; j<m1.outerSize(); ++j) for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i) setter(i.index(), j) = i.value(); } VERIFY_IS_APPROX(m1, m2); }*/ // std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n"; // VERIFY_IS_APPROX(m, refMat); // test basic computations { DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); SparseMatrixType m1(rows, rows); SparseMatrixType m2(rows, rows); SparseMatrixType m3(rows, rows); SparseMatrixType m4(rows, rows); initSparse<Scalar>(density, refM1, m1); initSparse<Scalar>(density, refM2, m2); initSparse<Scalar>(density, refM3, m3); initSparse<Scalar>(density, refM4, m4); VERIFY_IS_APPROX(m1+m2, refM1+refM2); VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2)); VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); VERIFY_IS_APPROX(m1*=s1, refM1*=s1); VERIFY_IS_APPROX(m1/=s1, refM1/=s1); VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); VERIFY_IS_APPROX(m1.col(0).eigen2_dot(refM2.row(0)), refM1.col(0).eigen2_dot(refM2.row(0))); refM4.setRandom(); // sparse cwise* dense VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4); // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); } // test innerVector() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); int j0 = ei_random(0,rows-1); int j1 = ei_random(0,rows-1); VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); //m2.innerVector(j0) = 2*m2.innerVector(j1); //refMat2.col(j0) = 2*refMat2.col(j1); //VERIFY_IS_APPROX(m2, refMat2); } // test innerVectors() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); int j0 = ei_random(0,rows-2); int j1 = ei_random(0,rows-2); int n0 = ei_random<int>(1,rows-std::max(j0,j1)); VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0); } // test transpose { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); } // test prune { SparseMatrixType m2(rows, rows); DenseMatrix refM2(rows, rows); refM2.setZero(); int countFalseNonZero = 0; int countTrueNonZero = 0; m2.startFill(); for (int j=0; j<m2.outerSize(); ++j) for (int i=0; i<m2.innerSize(); ++i) { float x = ei_random<float>(0,1); if (x<0.1) { // do nothing } else if (x<0.5) { countFalseNonZero++; m2.fill(i,j) = Scalar(0); } else { countTrueNonZero++; m2.fill(i,j) = refM2(i,j) = Scalar(1); } } m2.endFill(); VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); m2.prune(1); VERIFY(countTrueNonZero==m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); } }
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) { typedef typename SparseMatrixType::StorageIndex StorageIndex; typedef Matrix<StorageIndex,2,1> Vector2; const Index rows = ref.rows(); const Index cols = ref.cols(); //const Index inner = ref.innerSize(); //const Index outer = ref.outerSize(); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = (std::max)(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; Scalar eps = 1e-6; Scalar s1 = internal::random<Scalar>(); { SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); DenseVector vec1 = DenseVector::Random(rows); std::vector<Vector2> zeroCoords; std::vector<Vector2> nonzeroCoords; initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); // test coeff and coeffRef for (std::size_t i=0; i<zeroCoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat); if(!nonzeroCoords.empty()) { m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); } VERIFY_IS_APPROX(m, refMat); // test assertion VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 ); VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 ); } // test insert (inner random) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); bool call_reserve = internal::random<int>()%2; Index nnz = internal::random<int>(1,int(rows)/2); if(call_reserve) { if(internal::random<int>()%2) m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz))); else m2.reserve(m2.outerSize() * nnz); } g_realloc_count = 0; for (Index j=0; j<cols; ++j) { for (Index k=0; k<nnz; ++k) { Index i = internal::random<Index>(0,rows-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); } } if(call_reserve && !SparseMatrixType::IsRowMajor) { VERIFY(g_realloc_count==0); } m2.finalize(); VERIFY_IS_APPROX(m2,m1); } // test insert (fully random) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); if(internal::random<int>()%2) m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); for (int k=0; k<rows*cols; ++k) { Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,cols-1); if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); else { Scalar v = internal::random<Scalar>(); m2.coeffRef(i,j) += v; m1(i,j) += v; } } VERIFY_IS_APPROX(m2,m1); } // test insert (un-compressed) for(int mode=0;mode<4;++mode) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8))); m2.reserve(r); for (Index k=0; k<rows*cols; ++k) { Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,cols-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); if(mode==3) m2.reserve(r); } if(internal::random<int>()%2) m2.makeCompressed(); VERIFY_IS_APPROX(m2,m1); } // test basic computations { DenseMatrix refM1 = DenseMatrix::Zero(rows, cols); DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); DenseMatrix refM4 = DenseMatrix::Zero(rows, cols); SparseMatrixType m1(rows, cols); SparseMatrixType m2(rows, cols); SparseMatrixType m3(rows, cols); SparseMatrixType m4(rows, cols); initSparse<Scalar>(density, refM1, m1); initSparse<Scalar>(density, refM2, m2); initSparse<Scalar>(density, refM3, m3); initSparse<Scalar>(density, refM4, m4); if(internal::random<bool>()) m1.makeCompressed(); VERIFY_IS_APPROX(m1*s1, refM1*s1); VERIFY_IS_APPROX(m1+m2, refM1+refM2); VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); if(SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0))); else VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0))); DenseVector rv = DenseVector::Random(m1.cols()); DenseVector cv = DenseVector::Random(m1.rows()); Index r = internal::random<Index>(0,m1.rows()-2); Index c = internal::random<Index>(0,m1.cols()-1); VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv)); VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv)); VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv)); VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate()); VERIFY_IS_APPROX(m1.real(), refM1.real()); refM4.setRandom(); // sparse cwise* dense VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); // dense cwise* sparse VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3)); // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3); VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4); VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3); VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4); VERIFY_IS_APPROX(m1.sum(), refM1.sum()); VERIFY_IS_APPROX(m1*=s1, refM1*=s1); VERIFY_IS_APPROX(m1/=s1, refM1/=s1); VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); // test aliasing VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1)); VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval())); VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval())); VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1)); if(m1.isCompressed()) { VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum()); m1.coeffs() += s1; for(Index j = 0; j<m1.outerSize(); ++j) for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it) refM1(it.row(), it.col()) += s1; VERIFY_IS_APPROX(m1, refM1); } // and/or { typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool; SpBool mb1 = m1.real().template cast<bool>(); SpBool mb2 = m2.real().template cast<bool>(); VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count()); VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count()); VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count()); SpBool mb3 = mb1 && mb2; if(mb1.coeffs().all() && mb2.coeffs().all()) { VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count()); } } } // test reverse iterators { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); std::vector<Scalar> ref_value(m2.innerSize()); std::vector<Index> ref_index(m2.innerSize()); if(internal::random<bool>()) m2.makeCompressed(); for(Index j = 0; j<m2.outerSize(); ++j) { Index count_forward = 0; for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it) { ref_value[ref_value.size()-1-count_forward] = it.value(); ref_index[ref_index.size()-1-count_forward] = it.index(); count_forward++; } Index count_reverse = 0; for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it) { VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1); VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index()); count_reverse++; } VERIFY_IS_EQUAL(count_forward, count_reverse); } } // test transpose { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); // check isApprox handles opposite storage order typename Transpose<SparseMatrixType>::PlainObject m3(m2); VERIFY(m2.isApprox(m3)); } // test prune { SparseMatrixType m2(rows, cols); DenseMatrix refM2(rows, cols); refM2.setZero(); int countFalseNonZero = 0; int countTrueNonZero = 0; m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize()))); for (Index j=0; j<m2.cols(); ++j) { for (Index i=0; i<m2.rows(); ++i) { float x = internal::random<float>(0,1); if (x<0.1f) { // do nothing } else if (x<0.5f) { countFalseNonZero++; m2.insert(i,j) = Scalar(0); } else { countTrueNonZero++; m2.insert(i,j) = Scalar(1); refM2(i,j) = Scalar(1); } } } if(internal::random<bool>()) m2.makeCompressed(); VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); if(countTrueNonZero>0) VERIFY_IS_APPROX(m2, refM2); m2.prune(Scalar(1)); VERIFY(countTrueNonZero==m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); } // test setFromTriplets { typedef Triplet<Scalar,StorageIndex> TripletType; std::vector<TripletType> triplets; Index ntriplets = rows*cols; triplets.reserve(ntriplets); DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols); DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols); DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols); for(Index i=0;i<ntriplets;++i) { StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1)); StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1)); Scalar v = internal::random<Scalar>(); triplets.push_back(TripletType(r,c,v)); refMat_sum(r,c) += v; if(std::abs(refMat_prod(r,c))==0) refMat_prod(r,c) = v; else refMat_prod(r,c) *= v; refMat_last(r,c) = v; } SparseMatrixType m(rows,cols); m.setFromTriplets(triplets.begin(), triplets.end()); VERIFY_IS_APPROX(m, refMat_sum); m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>()); VERIFY_IS_APPROX(m, refMat_prod); #if (defined(__cplusplus) && __cplusplus >= 201103L) m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; }); VERIFY_IS_APPROX(m, refMat_last); #endif } // test Map { DenseMatrix refMat2(rows, cols), refMat3(rows, cols); SparseMatrixType m2(rows, cols), m3(rows, cols); initSparse<Scalar>(density, refMat2, m2); initSparse<Scalar>(density, refMat3, m3); { Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); } { MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); } Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,cols-1); m2.coeffRef(i,j) = 123; if(internal::random<bool>()) m2.makeCompressed(); Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123)); VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123)); mapMat2.coeffRef(i,j) = -123; VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123)); } // test triangularView { DenseMatrix refMat2(rows, cols), refMat3(rows, cols); SparseMatrixType m2(rows, cols), m3(rows, cols); initSparse<Scalar>(density, refMat2, m2); refMat3 = refMat2.template triangularView<Lower>(); m3 = m2.template triangularView<Lower>(); VERIFY_IS_APPROX(m3, refMat3); refMat3 = refMat2.template triangularView<Upper>(); m3 = m2.template triangularView<Upper>(); VERIFY_IS_APPROX(m3, refMat3); { refMat3 = refMat2.template triangularView<UnitUpper>(); m3 = m2.template triangularView<UnitUpper>(); VERIFY_IS_APPROX(m3, refMat3); refMat3 = refMat2.template triangularView<UnitLower>(); m3 = m2.template triangularView<UnitLower>(); VERIFY_IS_APPROX(m3, refMat3); } refMat3 = refMat2.template triangularView<StrictlyUpper>(); m3 = m2.template triangularView<StrictlyUpper>(); VERIFY_IS_APPROX(m3, refMat3); refMat3 = refMat2.template triangularView<StrictlyLower>(); m3 = m2.template triangularView<StrictlyLower>(); VERIFY_IS_APPROX(m3, refMat3); // check sparse-traingular to dense refMat3 = m2.template triangularView<StrictlyUpper>(); VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>())); } // test selfadjointView if(!SparseMatrixType::IsRowMajor) { DenseMatrix refMat2(rows, rows), refMat3(rows, rows); SparseMatrixType m2(rows, rows), m3(rows, rows); initSparse<Scalar>(density, refMat2, m2); refMat3 = refMat2.template selfadjointView<Lower>(); m3 = m2.template selfadjointView<Lower>(); VERIFY_IS_APPROX(m3, refMat3); refMat3 += refMat2.template selfadjointView<Lower>(); m3 += m2.template selfadjointView<Lower>(); VERIFY_IS_APPROX(m3, refMat3); refMat3 -= refMat2.template selfadjointView<Lower>(); m3 -= m2.template selfadjointView<Lower>(); VERIFY_IS_APPROX(m3, refMat3); // selfadjointView only works for square matrices: SparseMatrixType m4(rows, rows+1); VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>()); VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>()); } // test sparseView { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); // sparse view on expressions: VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval()); VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval()); VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval()); VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval()); } // test diagonal { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval()); initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag); m2.diagonal() += refMat2.diagonal(); refMat2.diagonal() += refMat2.diagonal(); VERIFY_IS_APPROX(m2, refMat2); } // test diagonal to sparse { DenseVector d = DenseVector::Random(rows); DenseMatrix refMat2 = d.asDiagonal(); SparseMatrixType m2(rows, rows); m2 = d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); SparseMatrixType m3(d.asDiagonal()); VERIFY_IS_APPROX(m3, refMat2); refMat2 += d.asDiagonal(); m2 += d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); } // test conservative resize { std::vector< std::pair<StorageIndex,StorageIndex> > inc; if(rows > 3 && cols > 2) inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2)); inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0)); inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2)); inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0)); inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3)); for(size_t i = 0; i< inc.size(); i++) { StorageIndex incRows = inc[i].first; StorageIndex incCols = inc[i].second; SparseMatrixType m1(rows, cols); DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols); initSparse<Scalar>(density, refMat1, m1); m1.conservativeResize(rows+incRows, cols+incCols); refMat1.conservativeResize(rows+incRows, cols+incCols); if (incRows > 0) refMat1.bottomRows(incRows).setZero(); if (incCols > 0) refMat1.rightCols(incCols).setZero(); VERIFY_IS_APPROX(m1, refMat1); // Insert new values if (incRows > 0) m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1; if (incCols > 0) m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1; VERIFY_IS_APPROX(m1, refMat1); } } // test Identity matrix { DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows); SparseMatrixType m1(rows, rows); m1.setIdentity(); VERIFY_IS_APPROX(m1, refMat1); for(int k=0; k<rows*rows/4; ++k) { Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,rows-1); Scalar v = internal::random<Scalar>(); m1.coeffRef(i,j) = v; refMat1.coeffRef(i,j) = v; VERIFY_IS_APPROX(m1, refMat1); if(internal::random<Index>(0,10)<2) m1.makeCompressed(); } m1.setIdentity(); refMat1.setIdentity(); VERIFY_IS_APPROX(m1, refMat1); } // test array/vector of InnerIterator { typedef typename SparseMatrixType::InnerIterator IteratorType; DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); IteratorType static_array[2]; static_array[0] = IteratorType(m2,0); static_array[1] = IteratorType(m2,m2.outerSize()-1); VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 ); VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 ); if(static_array[0] && static_array[1]) { ++(static_array[1]); static_array[1] = IteratorType(m2,0); VERIFY( static_array[1] ); VERIFY( static_array[1].index() == static_array[0].index() ); VERIFY( static_array[1].outer() == static_array[0].outer() ); VERIFY( static_array[1].value() == static_array[0].value() ); } std::vector<IteratorType> iters(2); iters[0] = IteratorType(m2,0); iters[1] = IteratorType(m2,m2.outerSize()-1); } }
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) { typedef typename SparseMatrixType::Index Index; const Index rows = ref.rows(); const Index cols = ref.cols(); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = (std::max)(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; Scalar eps = 1e-6; SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); DenseVector vec1 = DenseVector::Random(rows); Scalar s1 = internal::random<Scalar>(); std::vector<Vector2i> zeroCoords; std::vector<Vector2i> nonzeroCoords; initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); if (zeroCoords.size()==0 || nonzeroCoords.size()==0) return; // test coeff and coeffRef for (int i=0; i<(int)zeroCoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat); m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); VERIFY_IS_APPROX(m, refMat); /* // test InnerIterators and Block expressions for (int t=0; t<10; ++t) { int j = internal::random<int>(0,cols-1); int i = internal::random<int>(0,rows-1); int w = internal::random<int>(1,cols-j-1); int h = internal::random<int>(1,rows-i-1); // VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); for(int c=0; c<w; c++) { VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); for(int r=0; r<h; r++) { // VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); } } // for(int r=0; r<h; r++) // { // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); // for(int c=0; c<w; c++) // { // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); // } // } } for(int c=0; c<cols; c++) { VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); } for(int r=0; r<rows; r++) { VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); } */ // test insert (inner random) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); m2.reserve(10); for (int j=0; j<cols; ++j) { for (int k=0; k<rows/2; ++k) { int i = internal::random<int>(0,rows-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); } } m2.finalize(); VERIFY_IS_APPROX(m2,m1); } // test insert (fully random) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); m2.reserve(10); for (int k=0; k<rows*cols; ++k) { int i = internal::random<int>(0,rows-1); int j = internal::random<int>(0,cols-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); } m2.finalize(); VERIFY_IS_APPROX(m2,m1); } // test basic computations { DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); SparseMatrixType m1(rows, rows); SparseMatrixType m2(rows, rows); SparseMatrixType m3(rows, rows); SparseMatrixType m4(rows, rows); initSparse<Scalar>(density, refM1, m1); initSparse<Scalar>(density, refM2, m2); initSparse<Scalar>(density, refM3, m3); initSparse<Scalar>(density, refM4, m4); VERIFY_IS_APPROX(m1+m2, refM1+refM2); VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); VERIFY_IS_APPROX(m1*=s1, refM1*=s1); VERIFY_IS_APPROX(m1/=s1, refM1/=s1); VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); VERIFY_IS_APPROX(m1.col(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0))); refM4.setRandom(); // sparse cwise* dense VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); } // test transpose { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); } // test innerVector() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); int j0 = internal::random(0,rows-1); int j1 = internal::random(0,rows-1); VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); //m2.innerVector(j0) = 2*m2.innerVector(j1); //refMat2.col(j0) = 2*refMat2.col(j1); //VERIFY_IS_APPROX(m2, refMat2); } // test innerVectors() { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); int j0 = internal::random(0,rows-2); int j1 = internal::random(0,rows-2); int n0 = internal::random<int>(1,rows-(std::max)(j0,j1)); VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0); } // test prune { SparseMatrixType m2(rows, rows); DenseMatrix refM2(rows, rows); refM2.setZero(); int countFalseNonZero = 0; int countTrueNonZero = 0; for (int j=0; j<m2.outerSize(); ++j) { m2.startVec(j); for (int i=0; i<m2.innerSize(); ++i) { float x = internal::random<float>(0,1); if (x<0.1) { // do nothing } else if (x<0.5) { countFalseNonZero++; m2.insertBackByOuterInner(j,i) = Scalar(0); } else { countTrueNonZero++; m2.insertBackByOuterInner(j,i) = refM2(i,j) = Scalar(1); } } } m2.finalize(); VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); m2.prune(Scalar(1)); VERIFY(countTrueNonZero==m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); } // test selfadjointView { DenseMatrix refMat2(rows, rows), refMat3(rows, rows); SparseMatrixType m2(rows, rows), m3(rows, rows); initSparse<Scalar>(density, refMat2, m2); refMat3 = refMat2.template selfadjointView<Lower>(); m3 = m2.template selfadjointView<Lower>(); VERIFY_IS_APPROX(m3, refMat3); } // test sparseView { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); } }
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) { typedef typename SparseMatrixType::StorageIndex StorageIndex; typedef Matrix<StorageIndex,2,1> Vector2; const Index rows = ref.rows(); const Index cols = ref.cols(); const Index inner = ref.innerSize(); const Index outer = ref.outerSize(); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = (std::max)(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; Scalar eps = 1e-6; Scalar s1 = internal::random<Scalar>(); { SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); DenseVector vec1 = DenseVector::Random(rows); std::vector<Vector2> zeroCoords; std::vector<Vector2> nonzeroCoords; initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); // test coeff and coeffRef for (std::size_t i=0; i<zeroCoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat); if(!nonzeroCoords.empty()) { m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); } VERIFY_IS_APPROX(m, refMat); // test assertion VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 ); VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 ); } // test insert (inner random) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); bool call_reserve = internal::random<int>()%2; Index nnz = internal::random<int>(1,int(rows)/2); if(call_reserve) { if(internal::random<int>()%2) m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz))); else m2.reserve(m2.outerSize() * nnz); } g_realloc_count = 0; for (Index j=0; j<cols; ++j) { for (Index k=0; k<nnz; ++k) { Index i = internal::random<Index>(0,rows-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); } } if(call_reserve && !SparseMatrixType::IsRowMajor) { VERIFY(g_realloc_count==0); } m2.finalize(); VERIFY_IS_APPROX(m2,m1); } // test insert (fully random) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); if(internal::random<int>()%2) m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); for (int k=0; k<rows*cols; ++k) { Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,cols-1); if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); else { Scalar v = internal::random<Scalar>(); m2.coeffRef(i,j) += v; m1(i,j) += v; } } VERIFY_IS_APPROX(m2,m1); } // test insert (un-compressed) for(int mode=0;mode<4;++mode) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8))); m2.reserve(r); for (Index k=0; k<rows*cols; ++k) { Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,cols-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); if(mode==3) m2.reserve(r); } if(internal::random<int>()%2) m2.makeCompressed(); VERIFY_IS_APPROX(m2,m1); } // test basic computations { DenseMatrix refM1 = DenseMatrix::Zero(rows, cols); DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); DenseMatrix refM4 = DenseMatrix::Zero(rows, cols); SparseMatrixType m1(rows, cols); SparseMatrixType m2(rows, cols); SparseMatrixType m3(rows, cols); SparseMatrixType m4(rows, cols); initSparse<Scalar>(density, refM1, m1); initSparse<Scalar>(density, refM2, m2); initSparse<Scalar>(density, refM3, m3); initSparse<Scalar>(density, refM4, m4); VERIFY_IS_APPROX(m1*s1, refM1*s1); VERIFY_IS_APPROX(m1+m2, refM1+refM2); VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); VERIFY_IS_APPROX(m1*=s1, refM1*=s1); VERIFY_IS_APPROX(m1/=s1, refM1/=s1); VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); if(SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0))); else VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0))); DenseVector rv = DenseVector::Random(m1.cols()); DenseVector cv = DenseVector::Random(m1.rows()); Index r = internal::random<Index>(0,m1.rows()-2); Index c = internal::random<Index>(0,m1.cols()-1); VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv)); VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv)); VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv)); VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate()); VERIFY_IS_APPROX(m1.real(), refM1.real()); refM4.setRandom(); // sparse cwise* dense VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); // test aliasing VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1)); VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval())); VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval())); VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1)); } // test transpose { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); // check isApprox handles opposite storage order typename Transpose<SparseMatrixType>::PlainObject m3(m2); VERIFY(m2.isApprox(m3)); } // test prune { SparseMatrixType m2(rows, cols); DenseMatrix refM2(rows, cols); refM2.setZero(); int countFalseNonZero = 0; int countTrueNonZero = 0; for (Index j=0; j<m2.outerSize(); ++j) { m2.startVec(j); for (Index i=0; i<m2.innerSize(); ++i) { float x = internal::random<float>(0,1); if (x<0.1) { // do nothing } else if (x<0.5) { countFalseNonZero++; m2.insertBackByOuterInner(j,i) = Scalar(0); } else { countTrueNonZero++; m2.insertBackByOuterInner(j,i) = Scalar(1); if(SparseMatrixType::IsRowMajor) refM2(j,i) = Scalar(1); else refM2(i,j) = Scalar(1); } } } m2.finalize(); VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); m2.prune(Scalar(1)); VERIFY(countTrueNonZero==m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); } // test setFromTriplets { typedef Triplet<Scalar,StorageIndex> TripletType; std::vector<TripletType> triplets; Index ntriplets = rows*cols; triplets.reserve(ntriplets); DenseMatrix refMat(rows,cols); refMat.setZero(); for(Index i=0;i<ntriplets;++i) { StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1)); StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1)); Scalar v = internal::random<Scalar>(); triplets.push_back(TripletType(r,c,v)); refMat(r,c) += v; } SparseMatrixType m(rows,cols); m.setFromTriplets(triplets.begin(), triplets.end()); VERIFY_IS_APPROX(m, refMat); } // test Map { DenseMatrix refMat2(rows, cols), refMat3(rows, cols); SparseMatrixType m2(rows, cols), m3(rows, cols); initSparse<Scalar>(density, refMat2, m2); initSparse<Scalar>(density, refMat3, m3); { Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); } { MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); } } // test triangularView { DenseMatrix refMat2(rows, cols), refMat3(rows, cols); SparseMatrixType m2(rows, cols), m3(rows, cols); initSparse<Scalar>(density, refMat2, m2); refMat3 = refMat2.template triangularView<Lower>(); m3 = m2.template triangularView<Lower>(); VERIFY_IS_APPROX(m3, refMat3); refMat3 = refMat2.template triangularView<Upper>(); m3 = m2.template triangularView<Upper>(); VERIFY_IS_APPROX(m3, refMat3); if(inner>=outer) // FIXME this should be implemented for outer>inner as well { refMat3 = refMat2.template triangularView<UnitUpper>(); m3 = m2.template triangularView<UnitUpper>(); VERIFY_IS_APPROX(m3, refMat3); refMat3 = refMat2.template triangularView<UnitLower>(); m3 = m2.template triangularView<UnitLower>(); VERIFY_IS_APPROX(m3, refMat3); } refMat3 = refMat2.template triangularView<StrictlyUpper>(); m3 = m2.template triangularView<StrictlyUpper>(); VERIFY_IS_APPROX(m3, refMat3); refMat3 = refMat2.template triangularView<StrictlyLower>(); m3 = m2.template triangularView<StrictlyLower>(); VERIFY_IS_APPROX(m3, refMat3); } // test selfadjointView if(!SparseMatrixType::IsRowMajor) { DenseMatrix refMat2(rows, rows), refMat3(rows, rows); SparseMatrixType m2(rows, rows), m3(rows, rows); initSparse<Scalar>(density, refMat2, m2); refMat3 = refMat2.template selfadjointView<Lower>(); m3 = m2.template selfadjointView<Lower>(); VERIFY_IS_APPROX(m3, refMat3); // selfadjointView only works for square matrices: SparseMatrixType m4(rows, rows+1); VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>()); VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>()); } // test sparseView { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); } // test diagonal { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval()); initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag); m2.diagonal() += refMat2.diagonal(); refMat2.diagonal() += refMat2.diagonal(); VERIFY_IS_APPROX(m2, refMat2); } // test diagonal to sparse { DenseVector d = DenseVector::Random(rows); DenseMatrix refMat2 = d.asDiagonal(); SparseMatrixType m2(rows, rows); m2 = d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); SparseMatrixType m3(d.asDiagonal()); VERIFY_IS_APPROX(m3, refMat2); refMat2 += d.asDiagonal(); m2 += d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); } // test conservative resize { std::vector< std::pair<StorageIndex,StorageIndex> > inc; if(rows > 3 && cols > 2) inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2)); inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0)); inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2)); inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0)); inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3)); for(size_t i = 0; i< inc.size(); i++) { StorageIndex incRows = inc[i].first; StorageIndex incCols = inc[i].second; SparseMatrixType m1(rows, cols); DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols); initSparse<Scalar>(density, refMat1, m1); m1.conservativeResize(rows+incRows, cols+incCols); refMat1.conservativeResize(rows+incRows, cols+incCols); if (incRows > 0) refMat1.bottomRows(incRows).setZero(); if (incCols > 0) refMat1.rightCols(incCols).setZero(); VERIFY_IS_APPROX(m1, refMat1); // Insert new values if (incRows > 0) m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1; if (incCols > 0) m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1; VERIFY_IS_APPROX(m1, refMat1); } } // test Identity matrix { DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows); SparseMatrixType m1(rows, rows); m1.setIdentity(); VERIFY_IS_APPROX(m1, refMat1); } }