void SkDeferredCanvas::didConcat(const SkMatrix& matrix) { if (matrix.isIdentity()) { return; } if (!this->push_concat(matrix)) { this->flush_all(); fCanvas->concat(matrix); this->INHERITED::didConcat(matrix); } }
void GraphicsContext::concatCTM(const SkMatrix& affine) { if (paintingDisabled()) return; if (!affine.isIdentity()) nvgTransform(platformContext()->canvas(), affine.get(SkMatrix::kMScaleX), affine.get(SkMatrix::kMSkewY), affine.get(SkMatrix::kMSkewX), affine.get(SkMatrix::kMScaleY), affine.get(SkMatrix::kMTransX), affine.get(SkMatrix::kMTransY)); //platformContext()->canvas()->concat(affine); }
static void test_set9(skiatest::Reporter* reporter) { SkMatrix m; m.reset(); assert9(reporter, m, 1, 0, 0, 0, 1, 0, 0, 0, 1); m.setScale(2, 3); assert9(reporter, m, 2, 0, 0, 0, 3, 0, 0, 0, 1); m.postTranslate(4, 5); assert9(reporter, m, 2, 0, 4, 0, 3, 5, 0, 0, 1); SkScalar buffer[9]; sk_bzero(buffer, sizeof(buffer)); buffer[SkMatrix::kMScaleX] = 1; buffer[SkMatrix::kMScaleY] = 1; buffer[SkMatrix::kMPersp2] = 1; REPORTER_ASSERT(reporter, !m.isIdentity()); m.set9(buffer); REPORTER_ASSERT(reporter, m.isIdentity()); }
sk_sp<SkImageFilter> SkLocalMatrixImageFilter::Make(const SkMatrix& localM, sk_sp<SkImageFilter> input) { if (!input) { return nullptr; } if (localM.getType() & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)) { return nullptr; } if (localM.isIdentity()) { return input; } return sk_sp<SkImageFilter>(new SkLocalMatrixImageFilter(localM, input)); }
void SkGPipeCanvas::didConcat(const SkMatrix& matrix) { if (!matrix.isIdentity()) { NOTIFY_SETUP(this); switch (matrix.getType()) { case SkMatrix::kTranslate_Mask: this->recordTranslate(matrix); break; case SkMatrix::kScale_Mask: this->recordScale(matrix); break; default: this->recordConcat(matrix); break; } } this->INHERITED::didConcat(matrix); }
sk_sp<SkShader> SkShader::makeWithLocalMatrix(const SkMatrix& localMatrix) const { if (localMatrix.isIdentity()) { return sk_ref_sp(const_cast<SkShader*>(this)); } const SkMatrix* lm = &localMatrix; SkShader* baseShader = const_cast<SkShader*>(this); SkMatrix otherLocalMatrix; SkAutoTUnref<SkShader> proxy(this->refAsALocalMatrixShader(&otherLocalMatrix)); if (proxy) { otherLocalMatrix.preConcat(localMatrix); lm = &otherLocalMatrix; baseShader = proxy.get(); } return sk_make_sp<SkLocalMatrixShader>(baseShader, *lm); }
bool SkRasterClip::op(const SkPath& path, const SkMatrix& matrix, const SkIRect& devBounds, SkRegion::Op op, bool doAA) { AUTO_RASTERCLIP_VALIDATE(*this); SkIRect bounds(devBounds); this->applyClipRestriction(op, &bounds); // base is used to limit the size (and therefore memory allocation) of the // region that results from scan converting devPath. SkRegion base; SkPath devPath; if (matrix.isIdentity()) { devPath = path; } else { path.transform(matrix, &devPath); devPath.setIsVolatile(true); } if (SkRegion::kIntersect_Op == op) { // since we are intersect, we can do better (tighter) with currRgn's // bounds, than just using the device. However, if currRgn is complex, // our region blitter may hork, so we do that case in two steps. if (this->isRect()) { // FIXME: we should also be able to do this when this->isBW(), // but relaxing the test above triggers GM asserts in // SkRgnBuilder::blitH(). We need to investigate what's going on. return this->setPath(devPath, this->bwRgn(), doAA); } else { base.setRect(this->getBounds()); SkRasterClip clip; clip.setPath(devPath, base, doAA); return this->op(clip, op); } } else { base.setRect(bounds); if (SkRegion::kReplace_Op == op) { return this->setPath(devPath, base, doAA); } else { SkRasterClip clip; clip.setPath(devPath, base, doAA); return this->op(clip, op); } } }
static void populate_tiling_pattern_dict(SkPDFDict* pattern, SkRect& bbox, SkPDFDict* resources, const SkMatrix& matrix) { const int kTiling_PatternType = 1; const int kColoredTilingPattern_PaintType = 1; const int kConstantSpacing_TilingType = 1; pattern->insertName("Type", "Pattern"); pattern->insertInt("PatternType", kTiling_PatternType); pattern->insertInt("PaintType", kColoredTilingPattern_PaintType); pattern->insertInt("TilingType", kConstantSpacing_TilingType); pattern->insert("BBox", SkPDFUtils::RectToArray(bbox))->unref(); pattern->insertScalar("XStep", bbox.width()); pattern->insertScalar("YStep", bbox.height()); pattern->insert("Resources", resources); if (!matrix.isIdentity()) { pattern->insert("Matrix", SkPDFUtils::MatrixToArray(matrix))->unref(); } }
sk_sp<GrGeometryProcessor> GrDefaultGeoProcFactory::MakeForDeviceSpace( const Color& color, const Coverage& coverage, const LocalCoords& localCoords, const SkMatrix& viewMatrix) { SkMatrix invert = SkMatrix::I(); if (LocalCoords::kUnused_Type != localCoords.fType) { SkASSERT(LocalCoords::kUsePosition_Type == localCoords.fType); if (!viewMatrix.isIdentity() && !viewMatrix.invert(&invert)) { return nullptr; } if (localCoords.hasLocalMatrix()) { invert.preConcat(*localCoords.fMatrix); } } LocalCoords inverted(LocalCoords::kUsePosition_Type, &invert); return Make(color, coverage, inverted, SkMatrix::I()); }
void GrGLGeometryProcessor::setupPosition(GrGLGPBuilder* pb, GrGPArgs* gpArgs, const char* posName, const SkMatrix& mat) { GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder(); if (mat.isIdentity()) { gpArgs->fPositionVar.set(kVec2f_GrSLType, "pos2"); vsBuilder->codeAppendf("vec2 %s = %s;", gpArgs->fPositionVar.c_str(), posName); } else if (!mat.hasPerspective()) { this->addUniformViewMatrix(pb); gpArgs->fPositionVar.set(kVec2f_GrSLType, "pos2"); vsBuilder->codeAppendf("vec2 %s = vec2(%s * vec3(%s, 1));", gpArgs->fPositionVar.c_str(), this->uViewM(), posName); } else { this->addUniformViewMatrix(pb); gpArgs->fPositionVar.set(kVec3f_GrSLType, "pos3"); vsBuilder->codeAppendf("vec3 %s = %s * vec3(%s, 1);", gpArgs->fPositionVar.c_str(), this->uViewM(), posName); } }
SkPDFShader::State::State(const SkShader& shader, const SkMatrix& canvasTransform, const SkIRect& bbox, SkScalar rasterScale) : fCanvasTransform(canvasTransform), fBBox(bbox), fPixelGeneration(0) { fInfo.fColorCount = 0; fInfo.fColors = NULL; fInfo.fColorOffsets = NULL; fShaderTransform = shader.getLocalMatrix(); fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode; fType = shader.asAGradient(&fInfo); if (fType == SkShader::kNone_GradientType) { SkShader::BitmapType bitmapType; SkMatrix matrix; bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes); if (bitmapType != SkShader::kDefault_BitmapType) { // Generic fallback for unsupported shaders: // * allocate a bbox-sized bitmap // * shade the whole area // * use the result as a bitmap shader // bbox is in device space. While that's exactly what we want for sizing our bitmap, // we need to map it into shader space for adjustments (to match // SkPDFImageShader::Create's behavior). SkRect shaderRect = SkRect::Make(bbox); if (!inverse_transform_bbox(canvasTransform, &shaderRect)) { fImage.reset(); return; } // Clamp the bitmap size to about 1M pixels static const SkScalar kMaxBitmapArea = 1024 * 1024; SkScalar bitmapArea = rasterScale * bbox.width() * rasterScale * bbox.height(); if (bitmapArea > kMaxBitmapArea) { rasterScale *= SkScalarSqrt(SkScalarDiv(kMaxBitmapArea, bitmapArea)); } SkISize size = SkISize::Make(SkScalarRoundToInt(rasterScale * bbox.width()), SkScalarRoundToInt(rasterScale * bbox.height())); SkSize scale = SkSize::Make(SkIntToScalar(size.width()) / shaderRect.width(), SkIntToScalar(size.height()) / shaderRect.height()); fImage.allocN32Pixels(size.width(), size.height()); fImage.eraseColor(SK_ColorTRANSPARENT); SkPaint p; p.setShader(const_cast<SkShader*>(&shader)); SkCanvas canvas(fImage); canvas.scale(scale.width(), scale.height()); canvas.translate(-shaderRect.x(), -shaderRect.y()); canvas.drawPaint(p); fShaderTransform.setTranslate(shaderRect.x(), shaderRect.y()); fShaderTransform.preScale(1 / scale.width(), 1 / scale.height()); } else { SkASSERT(matrix.isIdentity()); } fPixelGeneration = fImage.getGenerationID(); } else { AllocateGradientInfoStorage(); shader.asAGradient(&fInfo); } }
void SkScalerContext_FreeType_Base::generateGlyphImage( FT_Face face, const SkGlyph& glyph, const SkMatrix& bitmapTransform) { const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag); const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag); switch ( face->glyph->format ) { case FT_GLYPH_FORMAT_OUTLINE: { FT_Outline* outline = &face->glyph->outline; int dx = 0, dy = 0; if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) { dx = SkFixedToFDot6(glyph.getSubXFixed()); dy = SkFixedToFDot6(glyph.getSubYFixed()); // negate dy since freetype-y-goes-up and skia-y-goes-down dy = -dy; } memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight); if (SkMask::kLCD16_Format == glyph.fMaskFormat) { FT_Outline_Translate(outline, dx, dy); FT_Error err = FT_Render_Glyph(face->glyph, doVert ? FT_RENDER_MODE_LCD_V : FT_RENDER_MODE_LCD); if (err) { SK_TRACEFTR(err, "Could not render glyph."); return; } SkMask mask; glyph.toMask(&mask); #ifdef SK_SHOW_TEXT_BLIT_COVERAGE memset(mask.fImage, 0x80, mask.fBounds.height() * mask.fRowBytes); #endif FT_GlyphSlotRec& ftGlyph = *face->glyph; if (!SkIRect::Intersects(mask.fBounds, SkIRect::MakeXYWH( ftGlyph.bitmap_left, -ftGlyph.bitmap_top, ftGlyph.bitmap.width, ftGlyph.bitmap.rows))) { return; } // If the FT_Bitmap extent is larger, discard bits of the bitmap outside the mask. // If the SkMask extent is larger, shrink mask to fit bitmap (clearing discarded). unsigned char* origBuffer = ftGlyph.bitmap.buffer; // First align the top left (origin). if (-ftGlyph.bitmap_top < mask.fBounds.fTop) { int32_t topDiff = mask.fBounds.fTop - (-ftGlyph.bitmap_top); ftGlyph.bitmap.buffer += ftGlyph.bitmap.pitch * topDiff; ftGlyph.bitmap.rows -= topDiff; ftGlyph.bitmap_top = -mask.fBounds.fTop; } if (ftGlyph.bitmap_left < mask.fBounds.fLeft) { int32_t leftDiff = mask.fBounds.fLeft - ftGlyph.bitmap_left; ftGlyph.bitmap.buffer += leftDiff; ftGlyph.bitmap.width -= leftDiff; ftGlyph.bitmap_left = mask.fBounds.fLeft; } if (mask.fBounds.fTop < -ftGlyph.bitmap_top) { mask.fImage += mask.fRowBytes * (-ftGlyph.bitmap_top - mask.fBounds.fTop); mask.fBounds.fTop = -ftGlyph.bitmap_top; } if (mask.fBounds.fLeft < ftGlyph.bitmap_left) { mask.fImage += sizeof(uint16_t) * (ftGlyph.bitmap_left - mask.fBounds.fLeft); mask.fBounds.fLeft = ftGlyph.bitmap_left; } // Origins aligned, clean up the width and height. int ftVertScale = (doVert ? 3 : 1); int ftHoriScale = (doVert ? 1 : 3); if (mask.fBounds.height() * ftVertScale < SkToInt(ftGlyph.bitmap.rows)) { ftGlyph.bitmap.rows = mask.fBounds.height() * ftVertScale; } if (mask.fBounds.width() * ftHoriScale < SkToInt(ftGlyph.bitmap.width)) { ftGlyph.bitmap.width = mask.fBounds.width() * ftHoriScale; } if (SkToInt(ftGlyph.bitmap.rows) < mask.fBounds.height() * ftVertScale) { mask.fBounds.fBottom = mask.fBounds.fTop + ftGlyph.bitmap.rows / ftVertScale; } if (SkToInt(ftGlyph.bitmap.width) < mask.fBounds.width() * ftHoriScale) { mask.fBounds.fRight = mask.fBounds.fLeft + ftGlyph.bitmap.width / ftHoriScale; } if (fPreBlend.isApplicable()) { copyFT2LCD16<true>(ftGlyph.bitmap, mask, doBGR, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } else { copyFT2LCD16<false>(ftGlyph.bitmap, mask, doBGR, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } // Restore the buffer pointer so FreeType can properly free it. ftGlyph.bitmap.buffer = origBuffer; } else { FT_BBox bbox; FT_Bitmap target; FT_Outline_Get_CBox(outline, &bbox); /* what we really want to do for subpixel is offset(dx, dy) compute_bounds offset(bbox & !63) but that is two calls to offset, so we do the following, which achieves the same thing with only one offset call. */ FT_Outline_Translate(outline, dx - ((bbox.xMin + dx) & ~63), dy - ((bbox.yMin + dy) & ~63)); target.width = glyph.fWidth; target.rows = glyph.fHeight; target.pitch = glyph.rowBytes(); target.buffer = reinterpret_cast<uint8_t*>(glyph.fImage); target.pixel_mode = compute_pixel_mode( (SkMask::Format)fRec.fMaskFormat); target.num_grays = 256; FT_Outline_Get_Bitmap(face->glyph->library, outline, &target); #ifdef SK_SHOW_TEXT_BLIT_COVERAGE for (int y = 0; y < glyph.fHeight; ++y) { for (int x = 0; x < glyph.fWidth; ++x) { uint8_t& a = ((uint8_t*)glyph.fImage)[(glyph.rowBytes() * y) + x]; a = SkTMax<uint8_t>(a, 0x20); } } #endif } } break; case FT_GLYPH_FORMAT_BITMAP: { FT_Pixel_Mode pixel_mode = static_cast<FT_Pixel_Mode>(face->glyph->bitmap.pixel_mode); SkMask::Format maskFormat = static_cast<SkMask::Format>(glyph.fMaskFormat); // Assume that the other formats do not exist. SkASSERT(FT_PIXEL_MODE_MONO == pixel_mode || FT_PIXEL_MODE_GRAY == pixel_mode || FT_PIXEL_MODE_BGRA == pixel_mode); // These are the only formats this ScalerContext should request. SkASSERT(SkMask::kBW_Format == maskFormat || SkMask::kA8_Format == maskFormat || SkMask::kARGB32_Format == maskFormat || SkMask::kLCD16_Format == maskFormat); // If no scaling needed, directly copy glyph bitmap. if (bitmapTransform.isIdentity()) { SkMask dstMask; glyph.toMask(&dstMask); copyFTBitmap(face->glyph->bitmap, dstMask); break; } // Otherwise, scale the bitmap. // Copy the FT_Bitmap into an SkBitmap (either A8 or ARGB) SkBitmap unscaledBitmap; // TODO: mark this as sRGB when the blits will be sRGB. unscaledBitmap.allocPixels(SkImageInfo::Make(face->glyph->bitmap.width, face->glyph->bitmap.rows, SkColorType_for_FTPixelMode(pixel_mode), kPremul_SkAlphaType)); SkMask unscaledBitmapAlias; unscaledBitmapAlias.fImage = reinterpret_cast<uint8_t*>(unscaledBitmap.getPixels()); unscaledBitmapAlias.fBounds.set(0, 0, unscaledBitmap.width(), unscaledBitmap.height()); unscaledBitmapAlias.fRowBytes = unscaledBitmap.rowBytes(); unscaledBitmapAlias.fFormat = SkMaskFormat_for_SkColorType(unscaledBitmap.colorType()); copyFTBitmap(face->glyph->bitmap, unscaledBitmapAlias); // Wrap the glyph's mask in a bitmap, unless the glyph's mask is BW or LCD. // BW requires an A8 target for resizing, which can then be down sampled. // LCD should use a 4x A8 target, which will then be down sampled. // For simplicity, LCD uses A8 and is replicated. int bitmapRowBytes = 0; if (SkMask::kBW_Format != maskFormat && SkMask::kLCD16_Format != maskFormat) { bitmapRowBytes = glyph.rowBytes(); } SkBitmap dstBitmap; // TODO: mark this as sRGB when the blits will be sRGB. dstBitmap.setInfo(SkImageInfo::Make(glyph.fWidth, glyph.fHeight, SkColorType_for_SkMaskFormat(maskFormat), kPremul_SkAlphaType), bitmapRowBytes); if (SkMask::kBW_Format == maskFormat || SkMask::kLCD16_Format == maskFormat) { dstBitmap.allocPixels(); } else { dstBitmap.setPixels(glyph.fImage); } // Scale unscaledBitmap into dstBitmap. SkCanvas canvas(dstBitmap); #ifdef SK_SHOW_TEXT_BLIT_COVERAGE canvas.clear(0x33FF0000); #else canvas.clear(SK_ColorTRANSPARENT); #endif canvas.translate(-glyph.fLeft, -glyph.fTop); canvas.concat(bitmapTransform); canvas.translate(face->glyph->bitmap_left, -face->glyph->bitmap_top); SkPaint paint; paint.setFilterQuality(kMedium_SkFilterQuality); canvas.drawBitmap(unscaledBitmap, 0, 0, &paint); // If the destination is BW or LCD, convert from A8. if (SkMask::kBW_Format == maskFormat) { // Copy the A8 dstBitmap into the A1 glyph.fImage. SkMask dstMask; glyph.toMask(&dstMask); packA8ToA1(dstMask, dstBitmap.getAddr8(0, 0), dstBitmap.rowBytes()); } else if (SkMask::kLCD16_Format == maskFormat) { // Copy the A8 dstBitmap into the LCD16 glyph.fImage. uint8_t* src = dstBitmap.getAddr8(0, 0); uint16_t* dst = reinterpret_cast<uint16_t*>(glyph.fImage); for (int y = dstBitmap.height(); y --> 0;) { for (int x = 0; x < dstBitmap.width(); ++x) { dst[x] = grayToRGB16(src[x]); } dst = (uint16_t*)((char*)dst + glyph.rowBytes()); src += dstBitmap.rowBytes(); } } } break; default: SkDEBUGFAIL("unknown glyph format"); memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight); return; } // We used to always do this pre-USE_COLOR_LUMINANCE, but with colorlum, // it is optional #if defined(SK_GAMMA_APPLY_TO_A8) if (SkMask::kA8_Format == glyph.fMaskFormat && fPreBlend.isApplicable()) { uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage; unsigned rowBytes = glyph.rowBytes(); for (int y = glyph.fHeight - 1; y >= 0; --y) { for (int x = glyph.fWidth - 1; x >= 0; --x) { dst[x] = fPreBlend.fG[dst[x]]; } dst += rowBytes; } } #endif }
static void draw_path_with_mask_filter(GrContext* context, GrDrawContext* drawContext, const GrClip& clip, GrPaint* paint, const SkMatrix& viewMatrix, const SkMaskFilter* maskFilter, const GrStyle& style, const SkPath* path, bool pathIsMutable) { SkASSERT(maskFilter); SkIRect clipBounds; clip.getConservativeBounds(drawContext->width(), drawContext->height(), &clipBounds); SkTLazy<SkPath> tmpPath; SkStrokeRec::InitStyle fillOrHairline; // We just fully apply the style here. if (style.applies()) { if (!style.applyToPath(tmpPath.init(), &fillOrHairline, *path, GrStyle::MatrixToScaleFactor(viewMatrix))) { return; } pathIsMutable = true; path = tmpPath.get(); } else if (style.isSimpleHairline()) { fillOrHairline = SkStrokeRec::kHairline_InitStyle; } else { SkASSERT(style.isSimpleFill()); fillOrHairline = SkStrokeRec::kFill_InitStyle; } // transform the path into device space if (!viewMatrix.isIdentity()) { SkPath* result; if (pathIsMutable) { result = const_cast<SkPath*>(path); } else { if (!tmpPath.isValid()) { tmpPath.init(); } result = tmpPath.get(); } path->transform(viewMatrix, result); path = result; result->setIsVolatile(true); pathIsMutable = true; } SkRect maskRect; if (maskFilter->canFilterMaskGPU(SkRRect::MakeRect(path->getBounds()), clipBounds, viewMatrix, &maskRect)) { // This mask will ultimately be drawn as a non-AA rect (see draw_mask). // Non-AA rects have a bad habit of snapping arbitrarily. Integerize here // so the mask draws in a reproducible manner. SkIRect finalIRect; maskRect.roundOut(&finalIRect); if (clip_bounds_quick_reject(clipBounds, finalIRect)) { // clipped out return; } if (maskFilter->directFilterMaskGPU(context->textureProvider(), drawContext, paint, clip, viewMatrix, SkStrokeRec(fillOrHairline), *path)) { // the mask filter was able to draw itself directly, so there's nothing // left to do. return; } sk_sp<GrTexture> mask(create_mask_GPU(context, finalIRect, *path, fillOrHairline, paint->isAntiAlias(), drawContext->numColorSamples())); if (mask) { GrTexture* filtered; if (maskFilter->filterMaskGPU(mask.get(), viewMatrix, finalIRect, &filtered, true)) { // filterMaskGPU gives us ownership of a ref to the result SkAutoTUnref<GrTexture> atu(filtered); if (draw_mask(drawContext, clip, viewMatrix, finalIRect, paint, filtered)) { // This path is completely drawn return; } } } } sw_draw_with_mask_filter(drawContext, context->textureProvider(), clip, viewMatrix, *path, maskFilter, clipBounds, paint, fillOrHairline); }
Boolean Matrix::NativeIsIdentity( /* [in] */ Int64 nObj) { SkMatrix* obj = reinterpret_cast<SkMatrix*>(nObj); return obj->isIdentity() ? TRUE : FALSE; }
static jboolean isIdentity(JNIEnv* env, jobject clazz, jlong objHandle) { SkMatrix* obj = reinterpret_cast<SkMatrix*>(objHandle); return obj->isIdentity() ? JNI_TRUE : JNI_FALSE; }