PaintingData(const SkISize& tileSize, SkScalar seed, SkScalar baseFrequencyX, SkScalar baseFrequencyY, const SkMatrix& matrix) { SkVector wavelength = SkVector::Make(SkScalarInvert(baseFrequencyX), SkScalarInvert(baseFrequencyY)); matrix.mapVectors(&wavelength, 1); fBaseFrequency.fX = SkScalarInvert(wavelength.fX); fBaseFrequency.fY = SkScalarInvert(wavelength.fY); SkVector sizeVec = SkVector::Make(SkIntToScalar(tileSize.fWidth), SkIntToScalar(tileSize.fHeight)); matrix.mapVectors(&sizeVec, 1); fTileSize.fWidth = SkScalarRoundToInt(sizeVec.fX); fTileSize.fHeight = SkScalarRoundToInt(sizeVec.fY); this->init(seed); if (!fTileSize.isEmpty()) { this->stitch(); } #if SK_SUPPORT_GPU fPermutationsBitmap.setInfo(SkImageInfo::MakeA8(kBlockSize, 1)); fPermutationsBitmap.setPixels(fLatticeSelector); fNoiseBitmap.setInfo(SkImageInfo::MakeN32Premul(kBlockSize, 4)); fNoiseBitmap.setPixels(fNoise[0][0]); #endif }
SkIRect SkDisplacementMapEffect::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm, MapDirection) const { SkVector scale = SkVector::Make(fScale, fScale); ctm.mapVectors(&scale, 1); return src.makeOutset(SkScalarCeilToInt(SkScalarAbs(scale.fX) * SK_ScalarHalf), SkScalarCeilToInt(SkScalarAbs(scale.fY) * SK_ScalarHalf)); }
PaintingData(const SkISize& tileSize, SkScalar seed, SkScalar baseFrequencyX, SkScalar baseFrequencyY, const SkMatrix& matrix) { SkVector vec[2] = { { SkScalarInvert(baseFrequencyX), SkScalarInvert(baseFrequencyY) }, { SkIntToScalar(tileSize.fWidth), SkIntToScalar(tileSize.fHeight) }, }; matrix.mapVectors(vec, 2); fBaseFrequency.set(SkScalarInvert(vec[0].fX), SkScalarInvert(vec[0].fY)); fTileSize.set(SkScalarRoundToInt(vec[1].fX), SkScalarRoundToInt(vec[1].fY)); this->init(seed); if (!fTileSize.isEmpty()) { this->stitch(); } #if SK_SUPPORT_GPU fPermutationsBitmap.setInfo(SkImageInfo::MakeA8(kBlockSize, 1)); fPermutationsBitmap.setPixels(fLatticeSelector); fNoiseBitmap.setInfo(SkImageInfo::MakeN32Premul(kBlockSize, 4)); fNoiseBitmap.setPixels(fNoise[0][0]); #endif }
static SkVector map_sigma(const SkSize& localSigma, const SkMatrix& ctm) { SkVector sigma = SkVector::Make(localSigma.width(), localSigma.height()); ctm.mapVectors(&sigma, 1); sigma.fX = SkMinScalar(SkScalarAbs(sigma.fX), MAX_SIGMA); sigma.fY = SkMinScalar(SkScalarAbs(sigma.fY), MAX_SIGMA); return sigma; }
SkIRect SkMorphologyImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm, MapDirection) const { SkVector radius = SkVector::Make(SkIntToScalar(this->radius().width()), SkIntToScalar(this->radius().height())); ctm.mapVectors(&radius, 1); return src.makeOutset(SkScalarCeilToInt(radius.x()), SkScalarCeilToInt(radius.y())); }
void Matrix::NativeMapPoints( /* [in] */ Int64 matrixHandle, /* [out] */ ArrayOf<Float>* dst, /* [in] */ Int32 dstIndex, /* [in] */ ArrayOf<Float>* src, /* [in] */ Int32 srcIndex, /* [in] */ Int32 ptCount, /* [in] */ Boolean isPts) { SkASSERT(ptCount >= 0); SkASSERT(src->GetLength() >= srcIndex + (ptCount << 1)); SkASSERT(dst->GetLength() >= dstIndex + (ptCount << 1)); SkMatrix* matrix = reinterpret_cast<SkMatrix*>(matrixHandle); // AutoJavaFloatArray autoSrc(env, src, srcIndex + (ptCount << 1), kRO_JNIAccess); // AutoJavaFloatArray autoDst(env, dst, dstIndex + (ptCount << 1), kRW_JNIAccess); Float* srcArray = src->GetPayload() + srcIndex; Float* dstArray = dst->GetPayload() + dstIndex; #ifdef SK_SCALAR_IS_FLOAT if (isPts) matrix->mapPoints((SkPoint*)dstArray, (const SkPoint*)srcArray, ptCount); else matrix->mapVectors((SkVector*)dstArray, (const SkVector*)srcArray, ptCount); #else SkASSERT(FALSE); #endif }
static void calc_dash_scaling(SkScalar* parallelScale, SkScalar* perpScale, const SkMatrix& viewMatrix, const SkPoint pts[2]) { SkVector vecSrc = pts[1] - pts[0]; SkScalar magSrc = vecSrc.length(); SkScalar invSrc = magSrc ? SkScalarInvert(magSrc) : 0; vecSrc.scale(invSrc); SkVector vecSrcPerp; vecSrc.rotateCW(&vecSrcPerp); viewMatrix.mapVectors(&vecSrc, 1); viewMatrix.mapVectors(&vecSrcPerp, 1); // parallelScale tells how much to scale along the line parallel to the dash line // perpScale tells how much to scale in the direction perpendicular to the dash line *parallelScale = vecSrc.length(); *perpScale = vecSrcPerp.length(); }
void SkDisplacementMapEffect::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst, MapDirection) const { *dst = src; SkVector scale = SkVector::Make(fScale, fScale); ctm.mapVectors(&scale, 1); dst->outset(SkScalarCeilToInt(scale.fX * SK_ScalarHalf), SkScalarCeilToInt(scale.fY * SK_ScalarHalf)); }
bool SkOffsetImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst) { SkVector vec; ctm.mapVectors(&vec, &fOffset, 1); *dst = src; dst->offset(SkScalarRoundToInt(vec.fX), SkScalarRoundToInt(vec.fY)); return true; }
void SkDropShadowImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst, MapDirection direction) const { *dst = src; SkVector offsetVec = SkVector::Make(fDx, fDy); if (kReverse_MapDirection == direction) { offsetVec.negate(); } ctm.mapVectors(&offsetVec, 1); dst->offset(SkScalarCeilToInt(offsetVec.x()), SkScalarCeilToInt(offsetVec.y())); SkVector sigma = SkVector::Make(fSigmaX, fSigmaY); ctm.mapVectors(&sigma, 1); dst->outset(SkScalarCeilToInt(SkScalarMul(sigma.x(), SkIntToScalar(3))), SkScalarCeilToInt(SkScalarMul(sigma.y(), SkIntToScalar(3)))); if (fShadowMode == kDrawShadowAndForeground_ShadowMode) { dst->join(src); } }
bool SkDropShadowImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst) const { SkIRect bounds = src; if (getInput(0) && !getInput(0)->filterBounds(src, ctm, &bounds)) { return false; } SkVector offsetVec = SkVector::Make(fDx, fDy); ctm.mapVectors(&offsetVec, 1); bounds.offset(-SkScalarCeilToInt(offsetVec.x()), -SkScalarCeilToInt(offsetVec.y())); SkVector sigma = SkVector::Make(fSigmaX, fSigmaY); ctm.mapVectors(&sigma, 1); bounds.outset(SkScalarCeilToInt(SkScalarMul(sigma.x(), SkIntToScalar(3))), SkScalarCeilToInt(SkScalarMul(sigma.y(), SkIntToScalar(3)))); bounds.join(src); *dst = bounds; return true; }
SkIRect SkDropShadowImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm, MapDirection direction) const { SkVector offsetVec = SkVector::Make(fDx, fDy); if (kReverse_MapDirection == direction) { offsetVec.negate(); } ctm.mapVectors(&offsetVec, 1); SkIRect dst = src.makeOffset(SkScalarCeilToInt(offsetVec.x()), SkScalarCeilToInt(offsetVec.y())); SkVector sigma = SkVector::Make(fSigmaX, fSigmaY); ctm.mapVectors(&sigma, 1); dst.outset( SkScalarCeilToInt(SkScalarAbs(sigma.x() * 3)), SkScalarCeilToInt(SkScalarAbs(sigma.y() * 3))); if (fShadowMode == kDrawShadowAndForeground_ShadowMode) { dst.join(src); } return dst; }
void SkOffsetImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst, MapDirection direction) const { SkVector vec; ctm.mapVectors(&vec, &fOffset, 1); if (kReverse_MapDirection == direction) { vec.negate(); } *dst = src; dst->offset(SkScalarCeilToInt(vec.fX), SkScalarCeilToInt(vec.fY)); }
bool SkOffsetImageFilter::onFilterImage(Proxy* proxy, const SkBitmap& src, const SkMatrix& matrix, SkBitmap* result, SkIPoint* loc) { SkVector vec; matrix.mapVectors(&vec, &fOffset, 1); loc->fX += SkScalarRoundToInt(vec.fX); loc->fY += SkScalarRoundToInt(vec.fY); *result = src; return true; }
bool SkBlurImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst) const { SkIRect bounds = src; if (getInput(0) && !getInput(0)->filterBounds(src, ctm, &bounds)) { return false; } SkVector sigma = SkVector::Make(fSigma.width(), fSigma.height()); ctm.mapVectors(&sigma, 1); bounds.outset(SkScalarCeilToInt(SkScalarMul(sigma.x(), SkIntToScalar(3))), SkScalarCeilToInt(SkScalarMul(sigma.y(), SkIntToScalar(3)))); *dst = bounds; return true; }
bool SkMorphologyImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst) const { SkIRect bounds = src; SkVector radius = SkVector::Make(SkIntToScalar(this->radius().width()), SkIntToScalar(this->radius().height())); ctm.mapVectors(&radius, 1); bounds.outset(SkScalarCeilToInt(radius.x()), SkScalarCeilToInt(radius.y())); if (getInput(0) && !getInput(0)->filterBounds(bounds, ctm, &bounds)) { return false; } *dst = bounds; return true; }
bool SkDisplacementMapEffect::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst) const { SkIRect bounds = src; SkVector scale = SkVector::Make(fScale, fScale); ctm.mapVectors(&scale, 1); bounds.outset(SkScalarCeilToInt(scale.fX * SK_ScalarHalf), SkScalarCeilToInt(scale.fY * SK_ScalarHalf)); if (getColorInput()) { return getColorInput()->filterBounds(bounds, ctm, dst); } *dst = bounds; return true; }
static void compute_rects(SkRect* devOutside, SkRect* devOutsideAssist, SkRect* devInside, bool* isDegenerate, const SkMatrix& viewMatrix, const SkRect& rect, SkScalar strokeWidth, bool miterStroke) { SkRect devRect; viewMatrix.mapRect(&devRect, rect); SkVector devStrokeSize; if (strokeWidth > 0) { devStrokeSize.set(strokeWidth, strokeWidth); viewMatrix.mapVectors(&devStrokeSize, 1); devStrokeSize.setAbs(devStrokeSize); } else { devStrokeSize.set(SK_Scalar1, SK_Scalar1); } const SkScalar dx = devStrokeSize.fX; const SkScalar dy = devStrokeSize.fY; const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf); const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf); *devOutside = devRect; *devOutsideAssist = devRect; *devInside = devRect; devOutside->outset(rx, ry); devInside->inset(rx, ry); // If we have a degenerate stroking rect(ie the stroke is larger than inner rect) then we // make a degenerate inside rect to avoid double hitting. We will also jam all of the points // together when we render these rects. SkScalar spare; { SkScalar w = devRect.width() - dx; SkScalar h = devRect.height() - dy; spare = SkTMin(w, h); } *isDegenerate = spare <= 0; if (*isDegenerate) { devInside->fLeft = devInside->fRight = devRect.centerX(); devInside->fTop = devInside->fBottom = devRect.centerY(); } // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist) // to draw the outside of the octagon. Because there are 8 vertices on the outer // edge, while vertex number of inner edge is 4, the same as miter-stroke. if (!miterStroke) { devOutside->inset(0, ry); devOutsideAssist->outset(0, ry); } }
bool SkEmbossMaskFilter::filterMask(SkMask* dst, const SkMask& src, const SkMatrix& matrix, SkIPoint* margin) const { SkScalar sigma = matrix.mapRadius(fBlurSigma); if (!SkBlurMask::BoxBlur(dst, src, sigma, SkBlurMask::kInner_Style, SkBlurMask::kLow_Quality)) { return false; } dst->fFormat = SkMask::k3D_Format; if (margin) { margin->set(SkScalarCeilToInt(3*sigma), SkScalarCeilToInt(3*sigma)); } if (src.fImage == NULL) { return true; } // create a larger buffer for the other two channels (should force fBlur to do this for us) { uint8_t* alphaPlane = dst->fImage; size_t planeSize = dst->computeImageSize(); if (0 == planeSize) { return false; // too big to allocate, abort } dst->fImage = SkMask::AllocImage(planeSize * 3); memcpy(dst->fImage, alphaPlane, planeSize); SkMask::FreeImage(alphaPlane); } // run the light direction through the matrix... Light light = fLight; matrix.mapVectors((SkVector*)(void*)light.fDirection, (SkVector*)(void*)fLight.fDirection, 1); // now restore the length of the XY component // cast to SkVector so we can call setLength (this double cast silences alias warnings) SkVector* vec = (SkVector*)(void*)light.fDirection; vec->setLength(light.fDirection[0], light.fDirection[1], SkPoint::Length(fLight.fDirection[0], fLight.fDirection[1])); SkEmbossMask::Emboss(dst, light); // restore original alpha memcpy(dst->fImage, src.fImage, src.computeImageSize()); return true; }
void SkOffsetImageFilter::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst, MapDirection direction) const { SkVector vec; ctm.mapVectors(&vec, &fOffset, 1); if (kReverse_MapDirection == direction) { vec.negate(); } *dst = src; dst->offset(SkScalarCeilToInt(vec.fX), SkScalarCeilToInt(vec.fY)); #ifdef SK_SUPPORT_SRC_BOUNDS_BLOAT_FOR_IMAGEFILTERS dst->join(src); #endif }
static void mapPoints(JNIEnv* env, jobject clazz, jlong matrixHandle, jfloatArray dst, jint dstIndex, jfloatArray src, jint srcIndex, jint ptCount, jboolean isPts) { SkMatrix* matrix = reinterpret_cast<SkMatrix*>(matrixHandle); SkASSERT(ptCount >= 0); AutoJavaFloatArray autoSrc(env, src, srcIndex + (ptCount << 1), kRO_JNIAccess); AutoJavaFloatArray autoDst(env, dst, dstIndex + (ptCount << 1), kRW_JNIAccess); float* srcArray = autoSrc.ptr() + srcIndex; float* dstArray = autoDst.ptr() + dstIndex; #ifdef SK_SCALAR_IS_FLOAT if (isPts) matrix->mapPoints((SkPoint*)dstArray, (const SkPoint*)srcArray, ptCount); else matrix->mapVectors((SkVector*)dstArray, (const SkVector*)srcArray, ptCount); #else SkASSERT(false); #endif }
static void test_matrix_min_max_scale(skiatest::Reporter* reporter) { SkScalar scales[2]; bool success; SkMatrix identity; identity.reset(); REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMinScale()); REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxScale()); success = identity.getMinMaxScales(scales); REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]); SkMatrix scale; scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4); REPORTER_ASSERT(reporter, SK_Scalar1 * 2 == scale.getMinScale()); REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxScale()); success = scale.getMinMaxScales(scales); REPORTER_ASSERT(reporter, success && SK_Scalar1 * 2 == scales[0] && SK_Scalar1 * 4 == scales[1]); SkMatrix rot90Scale; rot90Scale.setRotate(90 * SK_Scalar1); rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2); REPORTER_ASSERT(reporter, SK_Scalar1 / 4 == rot90Scale.getMinScale()); REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxScale()); success = rot90Scale.getMinMaxScales(scales); REPORTER_ASSERT(reporter, success && SK_Scalar1 / 4 == scales[0] && SK_Scalar1 / 2 == scales[1]); SkMatrix rotate; rotate.setRotate(128 * SK_Scalar1); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMinScale(), SK_ScalarNearlyZero)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMaxScale(), SK_ScalarNearlyZero)); success = rotate.getMinMaxScales(scales); REPORTER_ASSERT(reporter, success); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[0], SK_ScalarNearlyZero)); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[1], SK_ScalarNearlyZero)); SkMatrix translate; translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1); REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMinScale()); REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxScale()); success = translate.getMinMaxScales(scales); REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]); SkMatrix perspX; perspX.reset(); perspX.setPerspX(SkScalarToPersp(SK_Scalar1 / 1000)); REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMinScale()); REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxScale()); // Verify that getMinMaxScales() doesn't update the scales array on failure. scales[0] = -5; scales[1] = -5; success = perspX.getMinMaxScales(scales); REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1 == scales[1]); SkMatrix perspY; perspY.reset(); perspY.setPerspY(SkScalarToPersp(-SK_Scalar1 / 500)); REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMinScale()); REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxScale()); scales[0] = -5; scales[1] = -5; success = perspY.getMinMaxScales(scales); REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1 == scales[1]); SkMatrix baseMats[] = {scale, rot90Scale, rotate, translate, perspX, perspY}; SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)]; for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) { mats[i] = baseMats[i]; bool invertable = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]); REPORTER_ASSERT(reporter, invertable); } SkRandom rand; for (int m = 0; m < 1000; ++m) { SkMatrix mat; mat.reset(); for (int i = 0; i < 4; ++i) { int x = rand.nextU() % SK_ARRAY_COUNT(mats); mat.postConcat(mats[x]); } SkScalar minScale = mat.getMinScale(); SkScalar maxScale = mat.getMaxScale(); REPORTER_ASSERT(reporter, (minScale < 0) == (maxScale < 0)); REPORTER_ASSERT(reporter, (maxScale < 0) == mat.hasPerspective()); SkScalar scales[2]; bool success = mat.getMinMaxScales(scales); REPORTER_ASSERT(reporter, success == !mat.hasPerspective()); REPORTER_ASSERT(reporter, !success || (scales[0] == minScale && scales[1] == maxScale)); if (mat.hasPerspective()) { m -= 1; // try another non-persp matrix continue; } // test a bunch of vectors. All should be scaled by between minScale and maxScale // (modulo some error) and we should find a vector that is scaled by almost each. static const SkScalar gVectorScaleTol = (105 * SK_Scalar1) / 100; static const SkScalar gCloseScaleTol = (97 * SK_Scalar1) / 100; SkScalar max = 0, min = SK_ScalarMax; SkVector vectors[1000]; for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { vectors[i].fX = rand.nextSScalar1(); vectors[i].fY = rand.nextSScalar1(); if (!vectors[i].normalize()) { i -= 1; continue; } } mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors)); for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { SkScalar d = vectors[i].length(); REPORTER_ASSERT(reporter, SkScalarDiv(d, maxScale) < gVectorScaleTol); REPORTER_ASSERT(reporter, SkScalarDiv(minScale, d) < gVectorScaleTol); if (max < d) { max = d; } if (min > d) { min = d; } } REPORTER_ASSERT(reporter, SkScalarDiv(max, maxScale) >= gCloseScaleTol); REPORTER_ASSERT(reporter, SkScalarDiv(minScale, min) >= gCloseScaleTol); } }
void GrAARectRenderer::StrokeAARect(GrDrawTarget* target, const GrPipelineBuilder& pipelineBuilder, GrColor color, const SkMatrix& viewMatrix, const SkRect& rect, const SkRect& devRect, const SkStrokeRec& stroke) { SkVector devStrokeSize; SkScalar width = stroke.getWidth(); if (width > 0) { devStrokeSize.set(width, width); viewMatrix.mapVectors(&devStrokeSize, 1); devStrokeSize.setAbs(devStrokeSize); } else { devStrokeSize.set(SK_Scalar1, SK_Scalar1); } const SkScalar dx = devStrokeSize.fX; const SkScalar dy = devStrokeSize.fY; const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf); const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf); SkScalar spare; { SkScalar w = devRect.width() - dx; SkScalar h = devRect.height() - dy; spare = SkTMin(w, h); } SkRect devOutside(devRect); devOutside.outset(rx, ry); bool miterStroke = true; // For hairlines, make bevel and round joins appear the same as mitered ones. // small miter limit means right angles show bevel... if ((width > 0) && (stroke.getJoin() != SkPaint::kMiter_Join || stroke.getMiter() < SK_ScalarSqrt2)) { miterStroke = false; } if (spare <= 0 && miterStroke) { FillAARect(target, pipelineBuilder, color, viewMatrix, devOutside, devOutside); return; } SkRect devInside(devRect); devInside.inset(rx, ry); SkRect devOutsideAssist(devRect); // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist) // to draw the outer of the rect. Because there are 8 vertices on the outer // edge, while vertex number of inner edge is 4, the same as miter-stroke. if (!miterStroke) { devOutside.inset(0, ry); devOutsideAssist.outset(0, ry); } GeometryStrokeAARect(target, pipelineBuilder, color, viewMatrix, devOutside, devOutsideAssist, devInside, miterStroke); }
void GrAARectRenderer::strokeAARect(GrDrawTarget* target, GrDrawState* drawState, GrColor color, const SkRect& rect, const SkMatrix& combinedMatrix, const SkRect& devRect, const SkStrokeRec& stroke) { SkVector devStrokeSize; SkScalar width = stroke.getWidth(); if (width > 0) { devStrokeSize.set(width, width); combinedMatrix.mapVectors(&devStrokeSize, 1); devStrokeSize.setAbs(devStrokeSize); } else { devStrokeSize.set(SK_Scalar1, SK_Scalar1); } const SkScalar dx = devStrokeSize.fX; const SkScalar dy = devStrokeSize.fY; const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf); const SkScalar ry = SkScalarMul(dy, SK_ScalarHalf); // Temporarily #if'ed out. We don't want to pass in the devRect but // right now it is computed in GrContext::apply_aa_to_rect and we don't // want to throw away the work #if 0 SkRect devRect; combinedMatrix.mapRect(&devRect, rect); #endif SkScalar spare; { SkScalar w = devRect.width() - dx; SkScalar h = devRect.height() - dy; spare = SkTMin(w, h); } SkRect devOutside(devRect); devOutside.outset(rx, ry); bool miterStroke = true; // For hairlines, make bevel and round joins appear the same as mitered ones. // small miter limit means right angles show bevel... if ((width > 0) && (stroke.getJoin() != SkPaint::kMiter_Join || stroke.getMiter() < SK_ScalarSqrt2)) { miterStroke = false; } if (spare <= 0 && miterStroke) { this->fillAARect(target, drawState, color, devOutside, SkMatrix::I(), devOutside); return; } SkRect devInside(devRect); devInside.inset(rx, ry); SkRect devOutsideAssist(devRect); // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist) // to draw the outer of the rect. Because there are 8 vertices on the outer // edge, while vertex number of inner edge is 4, the same as miter-stroke. if (!miterStroke) { devOutside.inset(0, ry); devOutsideAssist.outset(0, ry); } this->geometryStrokeAARect(target, drawState, color, devOutside, devOutsideAssist, devInside, miterStroke); }
static void test_matrix_max_stretch(skiatest::Reporter* reporter) { SkMatrix identity; identity.reset(); REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxStretch()); SkMatrix scale; scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4); REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxStretch()); SkMatrix rot90Scale; rot90Scale.setRotate(90 * SK_Scalar1); rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2); REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxStretch()); SkMatrix rotate; rotate.setRotate(128 * SK_Scalar1); REPORTER_ASSERT(reporter, SkScalarAbs(SK_Scalar1 - rotate.getMaxStretch()) <= SK_ScalarNearlyZero); SkMatrix translate; translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1); REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxStretch()); SkMatrix perspX; perspX.reset(); perspX.setPerspX(SkScalarToPersp(SK_Scalar1 / 1000)); REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxStretch()); SkMatrix perspY; perspY.reset(); perspY.setPerspX(SkScalarToPersp(-SK_Scalar1 / 500)); REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxStretch()); SkMatrix baseMats[] = {scale, rot90Scale, rotate, translate, perspX, perspY}; SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)]; for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) { mats[i] = baseMats[i]; bool invertable = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]); REPORTER_ASSERT(reporter, invertable); } SkMWCRandom rand; for (int m = 0; m < 1000; ++m) { SkMatrix mat; mat.reset(); for (int i = 0; i < 4; ++i) { int x = rand.nextU() % SK_ARRAY_COUNT(mats); mat.postConcat(mats[x]); } SkScalar stretch = mat.getMaxStretch(); if ((stretch < 0) != mat.hasPerspective()) { stretch = mat.getMaxStretch(); } REPORTER_ASSERT(reporter, (stretch < 0) == mat.hasPerspective()); if (mat.hasPerspective()) { m -= 1; // try another non-persp matrix continue; } // test a bunch of vectors. None should be scaled by more than stretch // (modulo some error) and we should find a vector that is scaled by // almost stretch. static const SkScalar gStretchTol = (105 * SK_Scalar1) / 100; static const SkScalar gMaxStretchTol = (97 * SK_Scalar1) / 100; SkScalar max = 0; SkVector vectors[1000]; for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { vectors[i].fX = rand.nextSScalar1(); vectors[i].fY = rand.nextSScalar1(); if (!vectors[i].normalize()) { i -= 1; continue; } } mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors)); for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) { SkScalar d = vectors[i].length(); REPORTER_ASSERT(reporter, SkScalarDiv(d, stretch) < gStretchTol); if (max < d) { max = d; } } REPORTER_ASSERT(reporter, SkScalarDiv(max, stretch) >= gMaxStretchTol); } }
bool SkOffsetImageFilter::onFilterImage(Proxy* proxy, const SkBitmap& source, const SkMatrix& matrix, SkBitmap* result, SkIPoint* offset) const { SkImageFilter* input = getInput(0); SkBitmap src = source; SkIPoint srcOffset = SkIPoint::Make(0, 0); #ifdef SK_DISABLE_OFFSETIMAGEFILTER_OPTIMIZATION if (false) { #else if (!cropRectIsSet()) { #endif if (input && !input->filterImage(proxy, source, matrix, &src, &srcOffset)) { return false; } SkVector vec; matrix.mapVectors(&vec, &fOffset, 1); offset->fX = srcOffset.fX + SkScalarRoundToInt(vec.fX); offset->fY = srcOffset.fY + SkScalarRoundToInt(vec.fY); *result = src; } else { if (input && !input->filterImage(proxy, source, matrix, &src, &srcOffset)) { return false; } SkIRect bounds; src.getBounds(&bounds); bounds.offset(srcOffset); if (!applyCropRect(&bounds, matrix)) { return false; } SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(bounds.width(), bounds.height())); if (NULL == device.get()) { return false; } SkCanvas canvas(device); SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrc_Mode); canvas.translate(SkIntToScalar(srcOffset.fX - bounds.fLeft), SkIntToScalar(srcOffset.fY - bounds.fTop)); canvas.drawBitmap(src, fOffset.x(), fOffset.y(), &paint); *result = device->accessBitmap(false); offset->fX = bounds.fLeft; offset->fY = bounds.fTop; } return true; } void SkOffsetImageFilter::computeFastBounds(const SkRect& src, SkRect* dst) const { if (getInput(0)) { getInput(0)->computeFastBounds(src, dst); } else { *dst = src; } SkRect copy = *dst; dst->offset(fOffset.fX, fOffset.fY); dst->join(copy); } bool SkOffsetImageFilter::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst) const { SkVector vec; ctm.mapVectors(&vec, &fOffset, 1); *dst = src; dst->offset(-SkScalarCeilToInt(vec.fX), -SkScalarCeilToInt(vec.fY)); dst->join(src); return true; }