void onDraw(SkCanvas* canvas) override { static const struct { SkFilterQuality fQuality; const char* fName; } kQualities[] = { {kNone_SkFilterQuality, "none"}, {kLow_SkFilterQuality, "low"}, {kMedium_SkFilterQuality, "medium"}, {kHigh_SkFilterQuality, "high"}, }; for (size_t q = 0; q < SK_ARRAY_COUNT(kQualities); ++q) { SkPaint paint; sk_tool_utils::set_portable_typeface(&paint); paint.setFilterQuality(kQualities[q].fQuality); SkPaint bmpPaint(paint); SkMatrix lm = SkMatrix::I(); lm.setScaleX(2.5); lm.setTranslateX(423); lm.setTranslateY(330); static const SkShader::TileMode kTM = SkShader::kRepeat_TileMode; bmpPaint.setShader(SkShader::MakeBitmapShader(fBmp, kTM, kTM, &lm)); SkRect rect = SkRect::MakeLTRB(20, 60, 220, 210); canvas->drawRect(rect, bmpPaint); paint.setAntiAlias(true); canvas->drawText(kQualities[q].fName, strlen(kQualities[q].fName), 20, 40, paint); canvas->translate(250, 0); } }
sk_sp<GrFragmentProcessor> SkPerlinNoiseShader::asFragmentProcessor(const AsFPArgs& args) const { SkASSERT(args.fContext); SkMatrix localMatrix = this->getLocalMatrix(); if (args.fLocalMatrix) { localMatrix.preConcat(*args.fLocalMatrix); } SkMatrix matrix = *args.fViewMatrix; matrix.preConcat(localMatrix); if (0 == fNumOctaves) { if (kFractalNoise_Type == fType) { // Extract the incoming alpha and emit rgba = (a/4, a/4, a/4, a/2) // TODO: Either treat the output of this shader as sRGB or allow client to specify a // color space of the noise. Either way, this case (and the GLSL) need to convert to // the destination. sk_sp<GrFragmentProcessor> inner( GrConstColorProcessor::Make(GrColor4f::FromGrColor(0x80404040), GrConstColorProcessor::kModulateRGBA_InputMode)); return GrFragmentProcessor::MulOutputByInputAlpha(std::move(inner)); } // Emit zero. return GrConstColorProcessor::Make(GrColor4f::TransparentBlack(), GrConstColorProcessor::kIgnore_InputMode); } // Either we don't stitch tiles, either we have a valid tile size SkASSERT(!fStitchTiles || !fTileSize.isEmpty()); SkPerlinNoiseShader::PaintingData* paintingData = new PaintingData(fTileSize, fSeed, fBaseFrequencyX, fBaseFrequencyY, matrix); sk_sp<GrTextureProxy> permutationsProxy(GrMakeCachedBitmapProxy( args.fContext->resourceProvider(), paintingData->getPermutationsBitmap())); sk_sp<GrTextureProxy> noiseProxy(GrMakeCachedBitmapProxy(args.fContext->resourceProvider(), paintingData->getNoiseBitmap())); SkMatrix m = *args.fViewMatrix; m.setTranslateX(-localMatrix.getTranslateX() + SK_Scalar1); m.setTranslateY(-localMatrix.getTranslateY() + SK_Scalar1); if (permutationsProxy && noiseProxy) { sk_sp<GrFragmentProcessor> inner( GrPerlinNoiseEffect::Make(args.fContext->resourceProvider(), fType, fNumOctaves, fStitchTiles, paintingData, std::move(permutationsProxy), std::move(noiseProxy), m)); return GrFragmentProcessor::MulOutputByInputAlpha(std::move(inner)); } delete paintingData; return nullptr; }
const GrFragmentProcessor* SkPerlinNoiseShader::asFragmentProcessor( GrContext* context, const SkMatrix& viewM, const SkMatrix* externalLocalMatrix, SkFilterQuality) const { SkASSERT(context); SkMatrix localMatrix = this->getLocalMatrix(); if (externalLocalMatrix) { localMatrix.preConcat(*externalLocalMatrix); } SkMatrix matrix = viewM; matrix.preConcat(localMatrix); if (0 == fNumOctaves) { if (kFractalNoise_Type == fType) { // Extract the incoming alpha and emit rgba = (a/4, a/4, a/4, a/2) SkAutoTUnref<const GrFragmentProcessor> inner( GrConstColorProcessor::Create(0x80404040, GrConstColorProcessor::kModulateRGBA_InputMode)); return GrFragmentProcessor::MulOutputByInputAlpha(inner); } // Emit zero. return GrConstColorProcessor::Create(0x0, GrConstColorProcessor::kIgnore_InputMode); } // Either we don't stitch tiles, either we have a valid tile size SkASSERT(!fStitchTiles || !fTileSize.isEmpty()); SkPerlinNoiseShader::PaintingData* paintingData = new PaintingData(fTileSize, fSeed, fBaseFrequencyX, fBaseFrequencyY, matrix); SkAutoTUnref<GrTexture> permutationsTexture( GrRefCachedBitmapTexture(context, paintingData->getPermutationsBitmap(), GrTextureParams::ClampNoFilter())); SkAutoTUnref<GrTexture> noiseTexture( GrRefCachedBitmapTexture(context, paintingData->getNoiseBitmap(), GrTextureParams::ClampNoFilter())); SkMatrix m = viewM; m.setTranslateX(-localMatrix.getTranslateX() + SK_Scalar1); m.setTranslateY(-localMatrix.getTranslateY() + SK_Scalar1); if ((permutationsTexture) && (noiseTexture)) { SkAutoTUnref<GrFragmentProcessor> inner( GrPerlinNoiseEffect::Create(fType, fNumOctaves, fStitchTiles, paintingData, permutationsTexture, noiseTexture, m)); return GrFragmentProcessor::MulOutputByInputAlpha(inner); } delete paintingData; return nullptr; }
AffineTransform::operator SkMatrix() const { SkMatrix result; result.setScaleX(WebCoreDoubleToSkScalar(a())); result.setSkewX(WebCoreDoubleToSkScalar(c())); result.setTranslateX(WebCoreDoubleToSkScalar(e())); result.setScaleY(WebCoreDoubleToSkScalar(d())); result.setSkewY(WebCoreDoubleToSkScalar(b())); result.setTranslateY(WebCoreDoubleToSkScalar(f())); // FIXME: Set perspective properly. result.setPerspX(0); result.setPerspY(0); result.set(SkMatrix::kMPersp2, SK_Scalar1); return result; }
SkMatrix affineTransformToSkMatrix(const AffineTransform& source) { SkMatrix result; result.setScaleX(WebCoreDoubleToSkScalar(source.a())); result.setSkewX(WebCoreDoubleToSkScalar(source.c())); result.setTranslateX(WebCoreDoubleToSkScalar(source.e())); result.setScaleY(WebCoreDoubleToSkScalar(source.d())); result.setSkewY(WebCoreDoubleToSkScalar(source.b())); result.setTranslateY(WebCoreDoubleToSkScalar(source.f())); // FIXME: Set perspective properly. result.setPerspX(0); result.setPerspY(0); result.set(SkMatrix::kMPersp2, SK_Scalar1); return result; }
SkLinearBitmapPipeline::SkLinearBitmapPipeline( const SkMatrix& inverse, SkFilterQuality filterQuality, SkShader::TileMode xTile, SkShader::TileMode yTile, SkColor paintColor, const SkPixmap& srcPixmap) { SkISize dimensions = srcPixmap.info().dimensions(); const SkImageInfo& srcImageInfo = srcPixmap.info(); SkMatrix adjustedInverse = inverse; if (filterQuality == kNone_SkFilterQuality) { if (inverse.getScaleX() >= 0.0f) { adjustedInverse.setTranslateX( nextafterf(inverse.getTranslateX(), std::floor(inverse.getTranslateX()))); } if (inverse.getScaleY() >= 0.0f) { adjustedInverse.setTranslateY( nextafterf(inverse.getTranslateY(), std::floor(inverse.getTranslateY()))); } } SkScalar dx = adjustedInverse.getScaleX(); // If it is an index 8 color type, the sampler converts to unpremul for better fidelity. SkAlphaType alphaType = srcImageInfo.alphaType(); if (srcPixmap.colorType() == kIndex_8_SkColorType) { alphaType = kUnpremul_SkAlphaType; } float postAlpha = SkColorGetA(paintColor) * (1.0f / 255.0f); // As the stages are built, the chooser function may skip a stage. For example, with the // identity matrix, the matrix stage is skipped, and the tilerStage is the first stage. auto blenderStage = choose_blender_for_shading(alphaType, postAlpha, &fBlenderStage); auto samplerStage = choose_pixel_sampler( blenderStage, filterQuality, xTile, yTile, srcPixmap, paintColor, &fSampleStage, &fAccessor); auto tilerStage = choose_tiler(samplerStage, dimensions, xTile, yTile, filterQuality, dx, &fTileStage); fFirstStage = choose_matrix(tilerStage, adjustedInverse, &fMatrixStage); fLastStage = blenderStage; }
void drawAll(SkCanvas* canvas, SkScalar scaleX) const { constexpr struct { SkFilterQuality fQuality; const char* fName; } kQualities[] = { {kNone_SkFilterQuality, "none"}, {kLow_SkFilterQuality, "low"}, {kMedium_SkFilterQuality, "medium"}, {kHigh_SkFilterQuality, "high"}, }; SkRect rect = SkRect::MakeLTRB(20, 60, 220, 210); SkMatrix lm = SkMatrix::I(); lm.setScaleX(scaleX); lm.setTranslateX(423); lm.setTranslateY(330); SkPaint textPaint; textPaint.setAntiAlias(true); SkPaint bmpPaint(textPaint); SkFont font(ToolUtils::create_portable_typeface()); SkAutoCanvasRestore acr(canvas, true); for (size_t q = 0; q < SK_ARRAY_COUNT(kQualities); ++q) { constexpr SkTileMode kTM = SkTileMode::kRepeat; bmpPaint.setShader(fBmp.makeShader(kTM, kTM, &lm)); bmpPaint.setFilterQuality(kQualities[q].fQuality); canvas->drawRect(rect, bmpPaint); canvas->drawString(kQualities[q].fName, 20, 40, font, textPaint); canvas->translate(250, 0); } }
void DrawTargetSkia::DrawSurfaceWithShadow(SourceSurface *aSurface, const Point &aDest, const Color &aColor, const Point &aOffset, Float aSigma, CompositionOp aOperator) { MarkChanged(); mCanvas->save(SkCanvas::kMatrix_SaveFlag); mCanvas->resetMatrix(); uint32_t blurFlags = SkBlurMaskFilter::kHighQuality_BlurFlag | SkBlurMaskFilter::kIgnoreTransform_BlurFlag; const SkBitmap& bitmap = static_cast<SourceSurfaceSkia*>(aSurface)->GetBitmap(); SkShader* shader = SkShader::CreateBitmapShader(bitmap, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode); SkMatrix matrix; matrix.reset(); matrix.setTranslateX(SkFloatToScalar(aDest.x)); matrix.setTranslateY(SkFloatToScalar(aDest.y)); shader->setLocalMatrix(matrix); SkLayerDrawLooper* dl = new SkLayerDrawLooper; SkLayerDrawLooper::LayerInfo info; info.fPaintBits |= SkLayerDrawLooper::kShader_Bit; SkPaint *layerPaint = dl->addLayer(info); layerPaint->setShader(shader); info.fPaintBits = 0; info.fPaintBits |= SkLayerDrawLooper::kMaskFilter_Bit; info.fPaintBits |= SkLayerDrawLooper::kColorFilter_Bit; info.fColorMode = SkXfermode::kDst_Mode; info.fOffset.set(SkFloatToScalar(aOffset.x), SkFloatToScalar(aOffset.y)); info.fPostTranslate = true; SkMaskFilter* mf = SkBlurMaskFilter::Create(aSigma, SkBlurMaskFilter::kNormal_BlurStyle, blurFlags); SkColor color = ColorToSkColor(aColor, 1); SkColorFilter* cf = SkColorFilter::CreateModeFilter(color, SkXfermode::kSrcIn_Mode); layerPaint = dl->addLayer(info); SkSafeUnref(layerPaint->setMaskFilter(mf)); SkSafeUnref(layerPaint->setColorFilter(cf)); layerPaint->setColor(color); // TODO: This is using the rasterizer to calculate an alpha mask // on both the shadow and normal layers. We should fix this // properly so it only happens for the shadow layer SkLayerRasterizer *raster = new SkLayerRasterizer(); SkPaint maskPaint; SkSafeUnref(maskPaint.setShader(shader)); raster->addLayer(maskPaint, 0, 0); SkPaint paint; paint.setAntiAlias(true); SkSafeUnref(paint.setRasterizer(raster)); paint.setXfermodeMode(GfxOpToSkiaOp(aOperator)); SkSafeUnref(paint.setLooper(dl)); SkRect rect = RectToSkRect(Rect(Float(aDest.x), Float(aDest.y), Float(bitmap.width()), Float(bitmap.height()))); mCanvas->drawRect(rect, paint); mCanvas->restore(); }
SkMatrix makeMatrix() { SkMatrix matrix; matrix.reset(); RandomSetMatrix setMatrix = (RandomSetMatrix) fRand.nextRangeU(0, kRandomSetMatrix_Last); if (fPrintName) { SkDebugf("%.*s%s\n", fPathDepth * 3, fTab, gRandomSetMatrixNames[setMatrix]); } switch (setMatrix) { case kSetIdentity: break; case kSetTranslateX: matrix.setTranslateX(makeScalar()); break; case kSetTranslateY: matrix.setTranslateY(makeScalar()); break; case kSetTranslate: matrix.setTranslate(makeScalar(), makeScalar()); break; case kSetScaleX: matrix.setScaleX(makeScalar()); break; case kSetScaleY: matrix.setScaleY(makeScalar()); break; case kSetScale: matrix.setScale(makeScalar(), makeScalar()); break; case kSetScaleTranslate: matrix.setScale(makeScalar(), makeScalar(), makeScalar(), makeScalar()); break; case kSetSkewX: matrix.setSkewX(makeScalar()); break; case kSetSkewY: matrix.setSkewY(makeScalar()); break; case kSetSkew: matrix.setSkew(makeScalar(), makeScalar()); break; case kSetSkewTranslate: matrix.setSkew(makeScalar(), makeScalar(), makeScalar(), makeScalar()); break; case kSetRotate: matrix.setRotate(makeScalar()); break; case kSetRotateTranslate: matrix.setRotate(makeScalar(), makeScalar(), makeScalar()); break; case kSetPerspectiveX: matrix.setPerspX(makeScalar()); break; case kSetPerspectiveY: matrix.setPerspY(makeScalar()); break; case kSetAll: matrix.setAll(makeScalar(), makeScalar(), makeScalar(), makeScalar(), makeScalar(), makeScalar(), makeScalar(), makeScalar(), makeScalar()); break; } return matrix; }
// Called to test various transforms on a single SkRRect. static void test_transform_helper(skiatest::Reporter* reporter, const SkRRect& orig) { SkRRect dst; dst.setEmpty(); // The identity matrix will duplicate the rrect. bool success = orig.transform(SkMatrix::I(), &dst); REPORTER_ASSERT(reporter, success); REPORTER_ASSERT(reporter, orig == dst); // Skew and Perspective make transform fail. SkMatrix matrix; matrix.reset(); matrix.setSkewX(SkIntToScalar(2)); assert_transform_failure(reporter, orig, matrix); matrix.reset(); matrix.setSkewY(SkIntToScalar(3)); assert_transform_failure(reporter, orig, matrix); matrix.reset(); matrix.setPerspX(4); assert_transform_failure(reporter, orig, matrix); matrix.reset(); matrix.setPerspY(5); assert_transform_failure(reporter, orig, matrix); // Rotation fails. matrix.reset(); matrix.setRotate(SkIntToScalar(90)); assert_transform_failure(reporter, orig, matrix); matrix.setRotate(SkIntToScalar(37)); assert_transform_failure(reporter, orig, matrix); // Translate will keep the rect moved, but otherwise the same. matrix.reset(); SkScalar translateX = SkIntToScalar(32); SkScalar translateY = SkIntToScalar(15); matrix.setTranslateX(translateX); matrix.setTranslateY(translateY); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, orig.radii((SkRRect::Corner) i) == dst.radii((SkRRect::Corner) i)); } REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height()); REPORTER_ASSERT(reporter, dst.rect().left() == orig.rect().left() + translateX); REPORTER_ASSERT(reporter, dst.rect().top() == orig.rect().top() + translateY); // Keeping the translation, but adding skew will make transform fail. matrix.setSkewY(SkIntToScalar(7)); assert_transform_failure(reporter, orig, matrix); // Scaling in -x will flip the round rect horizontally. matrix.reset(); matrix.setScaleX(SkIntToScalar(-1)); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); { GET_RADII; // Radii have swapped in x. REPORTER_ASSERT(reporter, origUL == dstUR); REPORTER_ASSERT(reporter, origUR == dstUL); REPORTER_ASSERT(reporter, origLR == dstLL); REPORTER_ASSERT(reporter, origLL == dstLR); } // Width and height remain the same. REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height()); // Right and left have swapped (sort of) REPORTER_ASSERT(reporter, orig.rect().right() == -dst.rect().left()); // Top has stayed the same. REPORTER_ASSERT(reporter, orig.rect().top() == dst.rect().top()); // Keeping the scale, but adding a persp will make transform fail. matrix.setPerspX(7); assert_transform_failure(reporter, orig, matrix); // Scaling in -y will flip the round rect vertically. matrix.reset(); matrix.setScaleY(SkIntToScalar(-1)); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); { GET_RADII; // Radii have swapped in y. REPORTER_ASSERT(reporter, origUL == dstLL); REPORTER_ASSERT(reporter, origUR == dstLR); REPORTER_ASSERT(reporter, origLR == dstUR); REPORTER_ASSERT(reporter, origLL == dstUL); } // Width and height remain the same. REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height()); // Top and bottom have swapped (sort of) REPORTER_ASSERT(reporter, orig.rect().top() == -dst.rect().bottom()); // Left has stayed the same. REPORTER_ASSERT(reporter, orig.rect().left() == dst.rect().left()); // Scaling in -x and -y will swap in both directions. matrix.reset(); matrix.setScaleY(SkIntToScalar(-1)); matrix.setScaleX(SkIntToScalar(-1)); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); { GET_RADII; REPORTER_ASSERT(reporter, origUL == dstLR); REPORTER_ASSERT(reporter, origUR == dstLL); REPORTER_ASSERT(reporter, origLR == dstUL); REPORTER_ASSERT(reporter, origLL == dstUR); } // Width and height remain the same. REPORTER_ASSERT(reporter, orig.rect().width() == dst.rect().width()); REPORTER_ASSERT(reporter, orig.rect().height() == dst.rect().height()); REPORTER_ASSERT(reporter, orig.rect().top() == -dst.rect().bottom()); REPORTER_ASSERT(reporter, orig.rect().right() == -dst.rect().left()); // Scale in both directions. SkScalar xScale = SkIntToScalar(3); SkScalar yScale = 3.2f; matrix.reset(); matrix.setScaleX(xScale); matrix.setScaleY(yScale); dst.setEmpty(); success = orig.transform(matrix, &dst); REPORTER_ASSERT(reporter, success); // Radii are scaled. for (int i = 0; i < 4; ++i) { REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.radii((SkRRect::Corner) i).fX, SkScalarMul(orig.radii((SkRRect::Corner) i).fX, xScale))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.radii((SkRRect::Corner) i).fY, SkScalarMul(orig.radii((SkRRect::Corner) i).fY, yScale))); } REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().width(), SkScalarMul(orig.rect().width(), xScale))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().height(), SkScalarMul(orig.rect().height(), yScale))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().left(), SkScalarMul(orig.rect().left(), xScale))); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.rect().top(), SkScalarMul(orig.rect().top(), yScale))); }
void SkSVGPaint::setSave(SkSVGParser& parser) { SkTDArray<SkString*> clips; SkSVGPaint* walking = parser.fHead; int index; SkMatrix sum; sum.reset(); while (walking != NULL) { for (index = kInitial + 1; index < kTerminal; index++) { SkString* lastAttr = (*walking)[index]; if (lastAttr->size() == 0) continue; if (index == kTransform) { const char* str = lastAttr->c_str(); SkASSERT(strncmp(str, "matrix(", 7) == 0); str += 6; const char* strEnd = strrchr(str, ')'); SkASSERT(strEnd != NULL); SkString mat(str, strEnd - str); SkSVGParser::ConvertToArray(mat); SkScalar values[6]; SkParse::FindScalars(mat.c_str() + 1, values, 6); SkMatrix matrix; matrix.reset(); matrix.setScaleX(values[0]); matrix.setSkewY(values[1]); matrix.setSkewX(values[2]); matrix.setScaleY(values[3]); matrix.setTranslateX(values[4]); matrix.setTranslateY(values[5]); sum.setConcat(matrix, sum); continue; } if ( index == kClipPath) *clips.insert(0) = lastAttr; } walking = walking->fNext; } if ((sum == parser.fLastTransform) == false) { SkMatrix inverse; bool success = parser.fLastTransform.invert(&inverse); SkASSERT(success == true); SkMatrix output; output.setConcat(inverse, sum); parser.fLastTransform = sum; SkString outputStr; outputStr.appendUnichar('['); outputStr.appendScalar(output.getScaleX()); outputStr.appendUnichar(','); outputStr.appendScalar(output.getSkewX()); outputStr.appendUnichar(','); outputStr.appendScalar(output.getTranslateX()); outputStr.appendUnichar(','); outputStr.appendScalar(output.getSkewY()); outputStr.appendUnichar(','); outputStr.appendScalar(output.getScaleY()); outputStr.appendUnichar(','); outputStr.appendScalar(output.getTranslateY()); outputStr.appendUnichar(','); outputStr.appendScalar(output.getPerspX()); outputStr.appendUnichar(','); outputStr.appendScalar(output.getPerspY()); outputStr.append(",1]"); parser._startElement("matrix"); parser._addAttributeLen("matrix", outputStr.c_str(), outputStr.size()); parser._endElement(); } #if 0 // incomplete if (parser.fTransformClips.size() > 0) { // need to reset the clip when the 'g' scope is ended parser._startElement("add"); const char* start = strchr(current->f_clipPath.c_str(), '#') + 1; SkASSERT(start); parser._addAttributeLen("use", start, strlen(start) - 1); parser._endElement(); // clip } #endif }
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END bool SkImageShader::onAppendStages(const StageRec& rec) const { SkRasterPipeline* p = rec.fPipeline; SkArenaAlloc* alloc = rec.fAlloc; SkMatrix matrix; if (!this->computeTotalInverse(rec.fCTM, rec.fLocalM, &matrix)) { return false; } auto quality = rec.fPaint.getFilterQuality(); SkBitmapProvider provider(fImage.get(), rec.fDstCS); SkDefaultBitmapController controller; std::unique_ptr<SkBitmapController::State> state { controller.requestBitmap(provider, matrix, quality) }; if (!state) { return false; } const SkPixmap& pm = state->pixmap(); matrix = state->invMatrix(); quality = state->quality(); auto info = pm.info(); // When the matrix is just an integer translate, bilerp == nearest neighbor. if (quality == kLow_SkFilterQuality && matrix.getType() <= SkMatrix::kTranslate_Mask && matrix.getTranslateX() == (int)matrix.getTranslateX() && matrix.getTranslateY() == (int)matrix.getTranslateY()) { quality = kNone_SkFilterQuality; } // See skia:4649 and the GM image_scale_aligned. if (quality == kNone_SkFilterQuality) { if (matrix.getScaleX() >= 0) { matrix.setTranslateX(nextafterf(matrix.getTranslateX(), floorf(matrix.getTranslateX()))); } if (matrix.getScaleY() >= 0) { matrix.setTranslateY(nextafterf(matrix.getTranslateY(), floorf(matrix.getTranslateY()))); } } p->append(SkRasterPipeline::seed_shader); struct MiscCtx { std::unique_ptr<SkBitmapController::State> state; SkColor4f paint_color; }; auto misc = alloc->make<MiscCtx>(); misc->state = std::move(state); // Extend lifetime to match the pipeline's. misc->paint_color = SkColor4f_from_SkColor(rec.fPaint.getColor(), rec.fDstCS); p->append_matrix(alloc, matrix); auto gather = alloc->make<SkJumper_GatherCtx>(); gather->pixels = pm.addr(); gather->stride = pm.rowBytesAsPixels(); gather->width = pm.width(); gather->height = pm.height(); auto limit_x = alloc->make<SkJumper_TileCtx>(), limit_y = alloc->make<SkJumper_TileCtx>(); limit_x->scale = pm.width(); limit_x->invScale = 1.0f / pm.width(); limit_y->scale = pm.height(); limit_y->invScale = 1.0f / pm.height(); bool is_srgb = rec.fDstCS && (!info.colorSpace() || info.gammaCloseToSRGB()); SkJumper_DecalTileCtx* decal_ctx = nullptr; bool decal_x_and_y = fTileModeX == kDecal_TileMode && fTileModeY == kDecal_TileMode; if (fTileModeX == kDecal_TileMode || fTileModeY == kDecal_TileMode) { decal_ctx = alloc->make<SkJumper_DecalTileCtx>(); decal_ctx->limit_x = limit_x->scale; decal_ctx->limit_y = limit_y->scale; } auto append_tiling_and_gather = [&] { if (decal_x_and_y) { p->append(SkRasterPipeline::decal_x_and_y, decal_ctx); } else { switch (fTileModeX) { case kClamp_TileMode: /* The gather_xxx stage will clamp for us. */ break; case kMirror_TileMode: p->append(SkRasterPipeline::mirror_x, limit_x); break; case kRepeat_TileMode: p->append(SkRasterPipeline::repeat_x, limit_x); break; case kDecal_TileMode: p->append(SkRasterPipeline::decal_x, decal_ctx); break; } switch (fTileModeY) { case kClamp_TileMode: /* The gather_xxx stage will clamp for us. */ break; case kMirror_TileMode: p->append(SkRasterPipeline::mirror_y, limit_y); break; case kRepeat_TileMode: p->append(SkRasterPipeline::repeat_y, limit_y); break; case kDecal_TileMode: p->append(SkRasterPipeline::decal_y, decal_ctx); break; } } void* ctx = gather; switch (info.colorType()) { case kAlpha_8_SkColorType: p->append(SkRasterPipeline::gather_a8, ctx); break; case kGray_8_SkColorType: p->append(SkRasterPipeline::gather_g8, ctx); break; case kRGB_565_SkColorType: p->append(SkRasterPipeline::gather_565, ctx); break; case kARGB_4444_SkColorType: p->append(SkRasterPipeline::gather_4444, ctx); break; case kBGRA_8888_SkColorType: p->append(SkRasterPipeline::gather_bgra, ctx); break; case kRGBA_8888_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx); break; case kRGBA_1010102_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); break; case kRGBA_F16_SkColorType: p->append(SkRasterPipeline::gather_f16, ctx); break; case kRGB_888x_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx); p->append(SkRasterPipeline::force_opaque ); break; case kRGB_101010x_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); p->append(SkRasterPipeline::force_opaque ); break; default: SkASSERT(false); } if (decal_ctx) { p->append(SkRasterPipeline::check_decal_mask, decal_ctx); } if (is_srgb) { p->append(SkRasterPipeline::from_srgb); } }; auto append_misc = [&] { if (info.colorType() == kAlpha_8_SkColorType) { p->append(SkRasterPipeline::set_rgb, &misc->paint_color); } if (info.colorType() == kAlpha_8_SkColorType || info.alphaType() == kUnpremul_SkAlphaType) { p->append(SkRasterPipeline::premul); } if (quality > kLow_SkFilterQuality) { // Bicubic filtering naturally produces out of range values on both sides. p->append(SkRasterPipeline::clamp_0); p->append(fClampAsIfUnpremul ? SkRasterPipeline::clamp_1 : SkRasterPipeline::clamp_a); } append_gamut_transform(p, alloc, info.colorSpace(), rec.fDstCS, fClampAsIfUnpremul ? kUnpremul_SkAlphaType : kPremul_SkAlphaType); return true; }; // We've got a fast path for 8888 bilinear clamp/clamp non-color-managed sampling. auto ct = info.colorType(); if (true && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) && quality == kLow_SkFilterQuality && fTileModeX == SkShader::kClamp_TileMode && fTileModeY == SkShader::kClamp_TileMode && !is_srgb) { p->append(SkRasterPipeline::bilerp_clamp_8888, gather); if (ct == kBGRA_8888_SkColorType) { p->append(SkRasterPipeline::swap_rb); } return append_misc(); } SkJumper_SamplerCtx* sampler = nullptr; if (quality != kNone_SkFilterQuality) { sampler = alloc->make<SkJumper_SamplerCtx>(); } auto sample = [&](SkRasterPipeline::StockStage setup_x, SkRasterPipeline::StockStage setup_y) { p->append(setup_x, sampler); p->append(setup_y, sampler); append_tiling_and_gather(); p->append(SkRasterPipeline::accumulate, sampler); }; if (quality == kNone_SkFilterQuality) { append_tiling_and_gather(); } else if (quality == kLow_SkFilterQuality) { p->append(SkRasterPipeline::save_xy, sampler); sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_ny); sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_ny); sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_py); sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_py); p->append(SkRasterPipeline::move_dst_src); } else { p->append(SkRasterPipeline::save_xy, sampler); sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n3y); sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n3y); sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n3y); sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n3y); sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n1y); sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n1y); sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n1y); sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n1y); sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p1y); sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p1y); sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p1y); sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p1y); sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p3y); sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p3y); sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p3y); sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p3y); p->append(SkRasterPipeline::move_dst_src); } return append_misc(); }