void queue_test()
{
	std::cout << "starting queue test" << std::endl;
	PriorityQueue<int> queue;

	const int OPERATIONS_PER_THREAD = 500;
	const int THREADS_COUNT = 20;

	auto filler = [&]()
	{
		for (size_t index = 0; index < OPERATIONS_PER_THREAD; ++index)
		{
			queue.add(index, index);
		}
	};

	auto getter = [&]()
	{
		for (size_t index = 0; index < OPERATIONS_PER_THREAD; ++index)
		{
			queue.getMin();
		}
	};

	auto worker = [=](std::function<void()> func)
	{
		std::vector<boost::thread> threads;
		for (size_t index = 0; index < THREADS_COUNT; ++index)
		{
			threads.emplace_back(func);
		}

		for (auto & it : threads)
		{
			it.join();
		}
	};

	std::cout << "start filling" << std::endl;
	worker(filler);
	std::cout << "size after filling: " << queue.size() << std::endl;
	std::cout << "start getting" << std::endl;
	worker(getter);
	std::cout << "size after getting: " << queue.size() << std::endl;
	std::cout << "done" << std::endl;

	assert(queue.empty());
}
	void addTask(const T & task, int priority)
	{
		std::unique_lock<std::mutex> lock(mutex);
		queue.add(task, priority);
		condition.notify_one();
	}
Exemplo n.º 3
0
/*
 * Function: kruskal
 * --------------------
 * This function implements kruskal algorithm to create a minimum graph with all
 * vertexes connected with least cost or number of edges
 *
 * Preconditions:
 *
 *  @param: graph: The graph to be minimized
 *
 *  @return: returns a set of edges in the MST
 */
Set<Edge*> kruskal(BasicGraph& graph) {

    graph.resetData(); // Reset data jic

    PriorityQueue<Edge*> pq; // pq to hold the edges with least cost first
    Map<Vertex*, Set<Vertex*>*> mp; // Our cluster storing structure
    Set<Edge*> mst; // Our edge return set

    // PLace all edges into a pq with cost=priority
    for(Edge* e:graph.getEdgeSet()){
        pq.add(e,e->cost);
    }

    // Make clusters through map structure
    for(Vertex* v:graph.getVertexSet()){
        Set<Vertex*>* clusterSet = new Set<Vertex*>;
        clusterSet->add(v);

        mp.add(v,clusterSet);
    }

    // While the priority queue is not empty
    while(!pq.isEmpty()){
        Edge* e = pq.dequeue();
        Vertex* v1 = e->start;
        Vertex* v2 = e->end;

        // If the pointers point to the same Set, they must
        // be connected
        if(mp[v1]!=mp[v2]){

            // Make a temporary pointer to v2's Set
            Set<Vertex*>* tempPointer = mp[v2];

            // Set all clusters in v2's set to point to v1's set
            for(Vertex* v:*tempPointer){
                mp[v1]->add(v);
                Set<Vertex*>* tempPointer2 = mp[v];
                mp[v] = mp[v1];

                // Dont delete same pointer twice
                if(tempPointer2!=tempPointer)
                    delete tempPointer2;
            }

            // Delete abandoned memory
            delete tempPointer;

            // Add edge e to MST
            mst.add(e);
        }
    }

    // Free large cluster of memory
    for(Vertex* v:mp){
        Set<Vertex*>* toDelete = mp[v];
        delete toDelete;
        break;
    }

    return mst;
}