Exemplo n.º 1
0
int main()  {
	PriorityQueue<int> *testQueue = new PriorityQueue<int>(3);
	

	// push a few random int's
	testQueue->enqueue(4);
	testQueue->enqueue(7);
	testQueue->enqueue(1);
	
	// queue shouldn't be empty; check this
	if(testQueue->isEmpty())  {
		cout << "The queue is empty!" << endl;
	}
	
	// pop items (more items than were pushed)
	cout << testQueue->dequeue() << endl;
	cout << testQueue->dequeue() << endl;
	cout << testQueue->dequeue() << endl;
	cout << testQueue->dequeue() << endl;
	
	// should be empty now; check this
	if(testQueue->isEmpty())  {
		cout << "The queue is empty!" << endl;
	}
	
	return 0;
}
Exemplo n.º 2
0
int main(){
    
    PriorityQueue* pr = new PriorityQueue();

    pr->insertElem(4,13);
    pr->insertElem(3,5);
    pr->insertElem(2,9);
    pr->insertElem(1,2);
    
    for(int i=0 ; i<pr->size() ;i++){
        
        printf("%d\n", pr->minQueue[i]->priority  );

    }


    
    if( pr->contains(4) ) {
        pr->changePriority(4,1);
    }

    while(!pr->isEmpty()){
        Element * elem = pr->minPriority();
        printf("(%d,%d)\n",elem->vertex,elem->priority);
    }

}
Exemplo n.º 3
0
vector<Node *> dijkstrasAlgorithm(BasicGraph& graph, Vertex* start, Vertex* end) {
	graph.resetData();
    vector<Vertex*> path;
    for (Vertex* node : graph.getNodeSet()){ //initiate all nodes with an inf. cost
        node->cost = INFINITY;
    }
    PriorityQueue<Vertex*> pQueue;
    start->cost = 0;
    pQueue.enqueue(start, start->cost); //start of search

    while (!pQueue.isEmpty()){
        Vertex* v = pQueue.dequeue();
        v->visited = true;
        v->setColor(GREEN);
        if (v == end){
            return pathBuilderToStart(start, v); //same as the one bfs uses
        }else{
            for(Arc* edge : graph.getEdgeSet(v)){ //Go through each edge from the Vertex v, counting the cost for each newly visited vertex
                Vertex* next = edge->finish;
                if (!next->visited){
                    double cost = v->cost + edge->cost;
                    if (cost < next->cost){ //found a lesser cost, what dijkstra is all about
                        next->setColor(YELLOW);
                        next->cost = cost;
                        next->previous = v;
                        pQueue.enqueue(next, cost);
                        //pQueue.changePriority(next, cost); Only do this if next already is in the queue, but this should not ever occur?
                    }
                }
            }
        }
    }
    return path;
}
Exemplo n.º 4
0
/*
 *  Method: aStar
 *  Parameters: BasicGraph graph by reference
 *              Vertex pointer variable for path start
 *              Vertex pointer variable for path end
 *  - - - - - - - - - - - - - - - - - - - - - - - - - -
 *  Returns a Vector of Vertex pointer variables for which
 *  each index corresponds to a step in the path between
 *  the path's start and end points, if any exists.
 *  This function uses A*'s algorithm, which evaluates
 *  the estimated total cost of all neighbors' paths to the end
 *  from the starting vertex before continuing. It differs from Dijkstra's
 *  in its prioritization of location based on their estimated total cost
 *  or distance from the starting point, as opposed to the current cost
 *  up to that point. Because A* also orients subsequent vertices
 *  to their earlier parent, this function uses a helper function to
 *  rewind the shortest route from end to start, if applicable,
 *  returning an empty vector if not.
 */
Vector<Vertex*> aStar(BasicGraph& graph, Vertex* start, Vertex* end) {
    graph.resetData();
    Vector<Vertex*> path;
    PriorityQueue<Vertex*> pqueue;
    pqueue.enqueue(start, heuristicFunction(start, end));
    while(!pqueue.isEmpty()) {
        Vertex* current = pqueue.dequeue();
        visitVertex(current);
        if(BasicGraph::compare(current, end) == 0) break;
        for(Edge* edge : current->edges) {
            double cost = current->cost + edge->cost;
            if(!edge->finish->visited &&
               edge->finish->getColor() != YELLOW) {
                enqueueVertex(edge->finish, current, cost);
                pqueue.enqueue(edge->finish, cost + 
                               heuristicFunction(edge->finish, end));
            }
            if(edge->finish->getColor() == YELLOW &&
               cost < edge->finish->cost) {
                enqueueVertex(edge->finish, current, cost);
                pqueue.changePriority(edge->finish, cost + 
                                      heuristicFunction(edge->finish, end));
            }
        }
    }
    determinePath(start, end, path);
    return path;
}
Exemplo n.º 5
0
Node* buildTree(Vector <int> & weightOfChars, char & delimiter){
    PriorityQueue<Node*> weightsOfNodes; // declare a PriorityQueue for simple sorting weights of nodes
    bool flag = 1; // set flag to prevent overwriting a delimiter
    for(int i = 0; i < weightOfChars.size(); ++i){
        if(weightOfChars[i] > 0){
            Node* node = new Node((i - 128), weightOfChars[i]);
            weightsOfNodes.enqueue(node, weightOfChars[i]);
        }
        else if((flag && (i < 128)) || (flag && (i > 159))){ // looking for a character that is not a control code and has a number of occurences which is equal zero
            delimiter = i;
            flag = 0;
        }
    }

    // if file is empty the pointer of root of the tree is a NULL
    if(weightsOfNodes.isEmpty()){
        return NULL;
    }


    while (weightsOfNodes.size() > 1) {
        Node* lNode = weightsOfNodes.dequeue();
        Node* rNode = weightsOfNodes.dequeue();
        Node* newNode = new Node(lNode, rNode);
        weightsOfNodes.enqueue(newNode, newNode->weight);
    }


    Node* root = weightsOfNodes.dequeue();


    return root;
}
Exemplo n.º 6
0
vector<T> print_queue(PriorityQueue<T> &q){
    vector<T> ret;
    while(!q.isEmpty()) {
        ret.push_back(q.getTop());
        q.pop();
    }
    return ret;
}
Exemplo n.º 7
0
float* Dijkstra::dijkstra(Graph *&graph, int s)
{
	int n = graph->getVerticesNum();
	if ((s < 0)||(s >= n))
		return 0;
	int m = graph->getRealSize();
	
	Data** dist = new Data*[n];
	int* up = new int[n];

	for (int i = 0; i < n; i++){
		up[i] = 0;
		dist[i] = new DataFloat(i, FLT_MAX);
	}
	dist[s]->priority = 0;

	PriorityQueue *queue = new PriorityQueue(dist, n, 4);

	Edge** edges = graph->getEdgeSet();
	int edgeCount = m;
	while ((edgeCount != 0) && (!queue->isEmpty()))
	{
		Data* tmp = queue->pop();
		int v = ((DataFloat*)tmp)->v;
		int v0 = -1;
		float delta;
		for (int i = 0; i < m; i++)
		{
			v0 = -1;
			if (edges[i]->K == v)
				v0 = edges[i]->N;
			if (edges[i]->N == v)
				v0 = edges[i]->K;
			if (v0 == -1) continue;
			//edgeCount--;
			delta = dist[v0]->priorities - (dist[v]->priorities + graph->getWeight(v, v0));
			if (delta > 0){
				dist[v0]->priorities = graph->getWeight(v, v0) + dist[v]->priorities;
				up[v0] = v;
			}
		}
	}
	
	float *result = new float[n];
	for (int i = 0; i < n; i++)
		result[i] = dist[i]->priorities;

	for (int i = 0; i < n; i++)
		delete dist[i];
	delete []dist;
	delete queue;
	delete []up;

	return result;
}
Exemplo n.º 8
0
int main()
{
	PriorityQueue<TaskData> taskPQ;   // Priority queue of tasks
	TaskData task;               // Task
	int simLength,               // Length of simulation (minutes)
		minute,                  // Current minute
		numPtyLevels = 2,            // Number of priority levels
		numArrivals = 0,             // Number of new tasks arriving
		j;                     // Loop counter

	// Seed the random number generator
	srand((unsigned int)time(NULL));

//	cout << endl << "Enter the number of priority levels : ";
//	cin >> numPtyLevels;

	cout << "Enter the length of time to run the simulator : ";
	cin >> simLength;

	time_t timer;

	for (minute = 0; minute < simLength; minute++)
	{
		// Dequeue the first task in the queue (if any).
		if (taskPQ.isEmpty() == false)
		{
			task=taskPQ.dequeue();
			cout << "Priority " << task.priority << " task arrived at " << task.arrived << " & completed at " << minute << endl;
		}

		numArrivals = rand() % 4;
		switch (numArrivals)
		{
		case 2:
			task.arrived = minute;
			task.priority = rand() % numPtyLevels;
			//task.priority = rand() % numPtyLevels - (task.arrived / simLength);
			taskPQ.enqueue(task);
		case 1:
			task.arrived = minute;
			task.priority = rand() % numPtyLevels;
			taskPQ.enqueue(task);
		default:
			break;
		}


	}

	return 0;


}
Exemplo n.º 9
0
Vector<Vertex*> dijkstrasAlgorithm(BasicGraph& graph, Vertex* start, Vertex* end) {
    graph.resetData();
    PriorityQueue<Vertex*> pqueue;
    Vector<Vertex*> path;

    pqueue.enqueue(start, 0);
    start->cost = 0.0;
    start->setColor(YELLOW);

    while(!pqueue.isEmpty())
    {
        Vertex* v = pqueue.dequeue();
        v->setColor(GREEN);

        if (v == end)
            break;

        for (auto edge : v->edges)
        {
            Vertex* next_v = edge->finish;
            if (next_v->getColor() == 0)
            {
                next_v->setColor(YELLOW);
                double next_cost = v->cost + edge->cost;
                next_v->previous = v;
                next_v->cost = next_cost;
                pqueue.enqueue(next_v, next_cost);
            }
            else if (next_v->getColor() == YELLOW)
            {
                double next_cost = v->cost + edge->cost;
                if (next_cost < next_v->cost)
                {
                    next_v->cost = next_cost;
                    next_v->previous = v;
                    pqueue.changePriority(next_v, next_v->cost);
                }
            }
        }
    }

    if (end->getColor() == GREEN)
    {
        Vertex* path_v = end;
        while (path_v->previous)
        {
            path.insert(0, path_v);
            path_v = path_v->previous;
        }
        path.insert(0, path_v);
    }
    return path;
}
Exemplo n.º 10
0
/*
 * A* search. Will explore from 'end' until it finds 'start' or can determine that no valid path exists.
 * It explores in reverse to make it easier to build path array.
 */
vector<Node *> aStar(BasicGraph& graph, Vertex* start, Vertex* end) {
    graph.resetData();
    vector<Vertex*> path;
    PriorityQueue<Vertex*> openQueue;

    //Setup starting state
    end->cost = 0;
    end->visited = true;
    openQueue.enqueue(end, end->cost);
    Vertex* current = nullptr;

    //While there are still reachable nodes to explore
    while(!openQueue.isEmpty()){

        //Set current node to the next node in the queue
        current = openQueue.dequeue();
        current->setColor(GREEN);

        //If current node is target, build path and return
        if(current == start){

            rewind(end, start, path);
            return path;
        }

        //Add any unvisited neighbor to queue, adjust cost for already visited neighbor nodes
        for(Vertex* neighbor : graph.getNeighbors(current)){

            if(!neighbor->visited){

                neighbor->previous = current;
                neighbor->visited = true;
                neighbor->cost = current->cost + graph.getArc(current, neighbor)->cost;
                openQueue.enqueue(neighbor, neighbor->cost + neighbor->heuristic(start));
                neighbor->setColor(YELLOW);
            }else{

                double newCost = current->cost + graph.getArc(current, neighbor)->cost;
                if(neighbor->cost > newCost){

                    neighbor->previous = current;
                    neighbor->cost = newCost;
                    openQueue.changePriority(neighbor, neighbor->cost + neighbor->heuristic(start));
                    neighbor->setColor(YELLOW);
                }
            }
        }
    }
    return path;
}
Exemplo n.º 11
0
/*
 *  Method: kruskal
 *  Parameters: BasicGraph graph by reference
 *  - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 *  Returns a set of Edges that correspond to the minimum
 *  spanning tree of the graph passed by reference. This Kruskal
 *  algorithm implementation leverages a Priority Queue to
 *  connect each Vertex with its minimum cost Edge without
 *  creating cycles, ensuring its a minimum spanning tree.
 */
Set<Edge*> kruskal(BasicGraph& graph) {
    Set<Edge*> mst;
    Map<Vertex*, Set<Vertex*> > clusters;
    PriorityQueue<Edge*> pqueue;
    initializeClusters(graph, clusters);
    enqueueEdges(graph, pqueue);
    while(!pqueue.isEmpty()) {
        Edge* edge = pqueue.dequeue();
        if(!clusters[edge->start].contains(edge->finish)) {
            mergeClusters(clusters, edge->start, edge->finish);
            mst.add(edge);
        }
    }
    return mst;
}
Exemplo n.º 12
0
int* getOptimalPath(Vertex Graph[], int size, int start, int goal)
{
    PriorityQueue<float> PQ;
    LinkedList<edge>* Edges;
    int current, next, i;
	float NewCost;

    float *CostSoFar = new float[size];
    for (i = 1; i < size; i++)
		CostSoFar[i] = FLT_MAX;
    CostSoFar[0] = 0.0;

    int* parent = new int[size];

    //PQ.insert(start, getEuclideanDistance(Coordinates[start], Coordinates[goal]));
    PQ.insert(start, 0);
    while (!PQ.isEmpty())
    {	
		//PQ.Print();
        current = PQ.remove();
        if (current == goal)
        {
            delete [] CostSoFar;
            return parent;
        }

        else
        {
            Edges = &Graph[current].getEdges();
            for (Edges->begin(); !Edges->end(); Edges->next())
            {
                next = Edges->getCurrent().to;
                NewCost = CostSoFar[current] + Edges->getCurrent().cost /*+ getEuclideanDistance(Coordinates[next], Coordinates[goal])*/;
                if (NewCost < CostSoFar[next])
                {
                    CostSoFar[next] = NewCost;
                    parent[next] = current;

                    PQ.insert(next, NewCost);
                }
            }
        }
    }

    delete [] CostSoFar;
    return NULL;
}
Exemplo n.º 13
0
void Graph::dijkstra(Vertex *src)
{
	comparisons = 0;//tallies number of comparisons made
    src->d = 0;
	src->p = NULL;
	 PriorityQueue<Vertex*> pq;
	 for(int i = 0;i<vertList.size();++i){//Fill priority queue
		if(vertList[i]->getID() != src->getID()){
			vertList[i]->d = INT_MAX;
			vertList[i]->p = NULL;
		}
		pq.insertItem(vertList[i]->d, vertList[i], vertList[i]->getID());
	}
	while(!pq.isEmpty()){//Start sifting through the vertices
		Vertex* u = pq.minElement();
		pq.removeMin();
		int sz = u->outList.size();
		for(int i =0; i < sz;++i){
			int alt = u->d + u->outList[i]->getWeight();
			Vertex* evalVert = u->outList[i]->geteVertP();
			comparisons++;
			if(u->outList[i]->geteVertP()->d == INT_MAX){//relax function
					Locator repkey = pq.getLoc(evalVert->getID());
					pq.replaceKey(repkey,alt);
					evalVert->setD(alt);
					evalVert->setP(u);
				
			}
			else if(alt < u->outList[i]->geteVertP()->d){//relax function
					Locator repkey = pq.getLoc(evalVert->getID());
					pq.replaceKey(repkey,alt);
					evalVert->setD(alt);
					evalVert->setP(u);
				
			}
			
		}
	}
	comparisons += pq.getComps();//grab comparisons from priority queue
	return;
}
Exemplo n.º 14
0
int  main()
   {
    PriorityQueue<DataType> testPQA;
    PriorityQueue<DataType> testPQB;
    PriorityQueue<DataType> testPQC;
    char cmdChar;
    DataType dataItem;
    int qPriority;
    char qProcess[ SMALL_STR_LEN ];
    bool dataChanged;

    ShowMenu();

    do
       {
        dataChanged = false;

        cout << endl << "Command: ";                  // Read command
        
        cmdChar = GetCommandInput( qProcess, qPriority );

        switch ( cmdChar )
           {
            case 'c': case 'C':  // clear priority queue

               while( !testPQA.isEmpty() )
                  {
                   testPQA.dequeue( dataItem );
                  }

               if( VERBOSE )
                  {
                   cout << "  Priority Queue has been cleared " << endl;
                  }

               dataChanged = true;

               break;

            case 'd': case 'D':  // dequeue one data item

               testPQA.dequeue( dataItem );

               if( VERBOSE )
                  {
                   cout << "  Process: " << dataItem.process
                        << " has been dequeued with a priority of "
                        << dataItem.priority << PERIOD << endl;
                  }

               dataChanged = true;

               break;

            case 'e': case 'E':  // enqueue

               testPQA.enqueue( qPriority, qProcess );

               if( VERBOSE )
                  {
                   cout << "  Process: " << qProcess
                        << " has been enqueued with a priority of "
                        << qPriority << PERIOD << endl;
                  }

               dataChanged = true;

               break;

            case 'h': case 'H':  // help request

               ShowMenu();

               break;

            case 'p': case 'P':  // peek at next item

               testPQA.peekAtFront( dataItem );

               if( VERBOSE )
                  {
                    cout << "  Process: " << dataItem.process
                         << " with priority: " << dataItem.priority
                         << " found at front of queue." << endl;
                  }
               break;

            case 'q': case 'Q':  // quit the test program

               if( VERBOSE )
                  {
                   cout << "  End Program Requested" << endl;
                  }

               cout << endl;

               break;

            case 'x': case 'X':  // create copy constructor PQ

               // tempPQ constructed in code block to control scope
                  { 
                   PriorityQueue<DataType> tempPQ( testPQA );

                   testPQC = tempPQ;
                  }

               if( VERBOSE )
                  {
                   cout << "  Test PQ \'C\' has been constructed with test PQ \'A\'." 
                        << endl;
                  }

               dataChanged = true;

               break;

            case 'z': case 'Z':  // assign to b PQ

               testPQB = testPQA;

               if( VERBOSE )
                  {
                   cout << "  Test PQ \'A\' has been assigned to test PQ \'B\'." 
                        << endl;
                  }

               dataChanged = true;

               break;

            default :            // Invalid command

               // clear to end of line in case further data input
               cin.ignore( SMALL_STR_LEN, ENDLINE_CHAR );

               if( VERBOSE )
                  {
                   cout << "  Inactive or invalid command" << endl;
                  }
           }

        if( dataChanged )
           {
            testPQA.showStructure( 'A' );
            testPQB.showStructure( 'B' );
            testPQC.showStructure( 'C' );
           }
       }
    while ( cmdChar != 'q' && cmdChar != 'Q' );

    return 0;
   }
Exemplo n.º 15
0
void testPriorityQueue(){
    PriorityQueue<int> mycontainer;

    cout << "\n\n Begin test function for the PriorityQueue<T> class\n";

    // Testing the enqueue function
    cout << "Testing size of new empty container: " << mycontainer.length() << endl;
    cout << "Testing enqueue(1), length(), and isEmpty() functions. mycontainer is empty? "
            << (mycontainer.isEmpty() ? " true\n" : "false\n");
    mycontainer.enqueue(1);
    cout << "Size is " << mycontainer.length() << endl;
    cout << "Testing enqueue(2), length(), and isEmpty() functions. mycontainer is empty? "
            << (mycontainer.isEmpty() ? " true\n" : "false\n");
    mycontainer.enqueue(2);
    cout << "Size is " << mycontainer.length() << endl;
    cout << "Testing enqueue(2), length(), and isEmpty() functions. mycontainer is empty? "
            << (mycontainer.isEmpty() ? " true\n" : "false\n");
    mycontainer.enqueue(2);
    cout << "Size is " << mycontainer.length() << endl;
    cout << "Testing enqueue(2), length(), and isEmpty() functions. mycontainer is empty? "
            << (mycontainer.isEmpty() ? " true\n" : "false\n");
    mycontainer.enqueue(2);
    cout << "Size is " << mycontainer.length() << endl;
    cout << "Testing enqueue(2), length(), and isEmpty() functions. mycontainer is empty? "
            << (mycontainer.isEmpty() ? " true\n" : "false\n");
    mycontainer.enqueue(2);
    cout << "Size is " << mycontainer.length() << endl;
    cout << "Testing enqueue(2), length(), and isEmpty() functions. mycontainer is empty? "
            << (mycontainer.isEmpty() ? " true\n" : "false\n");
    cout << "Size is " << mycontainer.length() << endl << endl;

    int size = mycontainer.length();
    cout << "Testing pop_back(), front(), back(), length() and isEmpty() functions \n"
            << "in a for loop with iterations greater than container size.";
    for (int i = 0; i < size + 1; i++) {
        cout << "\nIteration: " << i + 1 << "\n";
        if (!mycontainer.isEmpty()) {
            cout << " mycontainer is empty? " << (mycontainer.isEmpty() ? " true\n" : "false\n");
            cout << "PriorityQueue size before pop is " << mycontainer.length() << endl;
            //cout<<"Front of container is " << mycontainer.front()<<endl;
            //cout<<"Back of container is " << mycontainer.back()<<endl;
            //cout << "Popping: " << mycontainer.front() << endl << endl;
            mycontainer.pop_back();
        } else {
            cout << "The PriorityQueue is empty.\n";
        }

        cout << "PriorityQueue size is now: " << mycontainer.length() << endl;
    }
    cout << "\nFinished for loop\n";

    cout << "\nTesting the reference for front() and back() functions.\n";
    cout << "Start with int test = 7. mycontainer.enqueue(test)\n";
    int test = 7;
    mycontainer.enqueue(test);
    cout << "Testing with test = 8. test=mycontainer.front(). mycontainer.front() = 13 \n";
    test = 8;
    test = mycontainer.front();
    mycontainer.front() = 13;
    cout << "Test is now " << test << " front of container is " << mycontainer.front()
            << " back of container is " << mycontainer.back() << endl;
    test = 11;
    mycontainer.enqueue(test);
    cout << "Back of container is: " << mycontainer.back() << endl;
    cout << "Test is now " << test << " front of container is " << mycontainer.front()
            << " back of container is " << mycontainer.back() << endl;
    mycontainer.back() = test;
    cout << "Test is now " << test << " front of container is " << mycontainer.front()
            << " back of container is " << mycontainer.back() << endl;

    cout << "mycontainer size is " << mycontainer.length() << endl;

    cout << "\nTesting the clear() function: \n";
    mycontainer.clear();
    cout << "mycontainer size now is " << mycontainer.length()
            << " mycontainer is empty: "
            << (mycontainer.isEmpty() ? " true\n" : "false\n");


    cout << "\nTesting assignment operator: container2 = mycontainer\n";
    cout << "Filling mycontainer with ints starting at 42\n";
    size = 5;
    // Fill mycontainer with ints to test copy constructor
    for (int i = 0; i < size; i++) {
        mycontainer.enqueue(i + 41);
    }

    cout << "mycontainer size now is " << mycontainer.length()
            << " mycontainer is empty: "
            << (mycontainer.isEmpty() ? " true\n" : "false\n");

    PriorityQueue<int> container2;
    container2 = mycontainer;
    cout << "mycontainer size is: " << mycontainer.length() << endl;
    cout << "container2 size is: " << container2.length() << endl;
    cout << "Testing the contents of container2 and mycontainer using back() and pop_back() functions:\n";
    size = container2.length();
    for (int i = 0; i < size; i++) {
        cout << "Attempting front and pop functions. Iteration: " << i + 1 << "\n";

        // Don't perform the operation if either container is empty. 
        // Output should be the same for both containers
        if (!container2.isEmpty() || !mycontainer.isEmpty()) {
            cout << "\tcontainer2 - front(): " << container2.front()
                    << " back(): " << container2.back() << endl;
            container2.pop_back();
            cout << "\tmycontainer - front(): " << mycontainer.front()
                    << " back(): " << mycontainer.back() << endl;
            mycontainer.pop_back();
        } else {
            cout << "Containers are empty.\n";
        }
    }

    cout << "\nTesting the copy constructor. Filling mycontainer ints\n";
    size = 5;
    // Fill mycontainer with ints to test copy constructor
    for (int i = 0; i < size; i++) {
        mycontainer.enqueue(i + 41);
    }

    cout << "mycontainer size now is " << mycontainer.length()
            << " mycontainer is empty: "
            << (mycontainer.isEmpty() ? " true\n" : "false\n");

    PriorityQueue<int> container3(mycontainer);

    cout << "container3 size is: " << container3.length();
    cout << "\nTesting the contents of container3 and mycontainer using back() and pop_back() functions:\n";
    size = container3.length();
    for (int i = 0; i < size; i++) {
        cout << "Attempting front and pop functions. Iteration: " << i + 1 << "\n";

        // Don't perform the operation if either container is empty. 
        // Output should be the same for both containers
        if (!container3.isEmpty() || !mycontainer.isEmpty()) {
            cout << "\tcontainer3 - front(): " << container3.front()
                    << " back(): " << container3.back() << endl;
            container3.pop_back();
            cout << "\tmycontainer - front(): " << mycontainer.front()
                    << " back(): " << mycontainer.back() << endl;
            mycontainer.pop_back();
        } else {
            cout << "Containers are empty.\n";
        }
    }
    cout << "\nEnd of test function for the PriorityQueue<T> class\n\n";
}
inline void singleDefUse(FlowGraph* fg, X86Instruction* ins, BasicBlock* bb, Loop* loop,
                         std::pebil_map_type<uint64_t, X86Instruction*>& ipebil_map_type,
                         std::pebil_map_type<uint64_t, BasicBlock*>& bpebil_map_type,
                         std::pebil_map_type<uint64_t, LinkedList<X86Instruction::ReachingDefinition*>*>& alliuses,
                         std::pebil_map_type<uint64_t, LinkedList<X86Instruction::ReachingDefinition*>*>& allidefs,
                         int k, uint64_t loopLeader, uint32_t fcnt){

    // Get defintions for this instruction: ins
    LinkedList<X86Instruction::ReachingDefinition*>* idefs = ins->getDefs();
    LinkedList<X86Instruction::ReachingDefinition*>* allDefs = idefs;

    // Skip instruction if it doesn't define anything
    if (idefs == NULL) {
        return;
    }

    if (idefs->empty()) {
        delete idefs;
        return;
    }

    set<LinkedList<X86Instruction::ReachingDefinition*>*> allDefLists;
    allDefLists.insert(idefs);

    PriorityQueue<struct path*, uint32_t> paths = PriorityQueue<struct path*, uint32_t>();
    bool blockTouched[fg->getFunction()->getNumberOfBasicBlocks()];
    bzero(&blockTouched, sizeof(bool) * fg->getFunction()->getNumberOfBasicBlocks());

    // Initialize worklist with the path from this instruction
    // Only take paths inside the loop. Since the definitions are in a loop, uses in the loop will be most relevant.
    if (k == bb->getNumberOfInstructions() - 1){
        ASSERT(ins->controlFallsThrough());
        if (bb->getNumberOfTargets() > 0){
            ASSERT(bb->getNumberOfTargets() == 1);
            if (flowsInDefUseScope(bb->getTargetBlock(0), loop)){
                // Path flows to the first instruction of the next block
                paths.insert(new path(bb->getTargetBlock(0)->getLeader(), idefs), 1);
            } 
        }
    } else {
        // path flows to the next instruction in this block
        paths.insert(new path(bb->getInstruction(k+1), idefs), 1);
    }

    // while there are paths in worklist
    while (!paths.isEmpty()) {

        // take the shortest path in list
        uint32_t currDist;
        struct path* p = paths.deleteMin(&currDist);
        X86Instruction* cand = p->ins;
        idefs = p->defs;
        delete p;

        LinkedList<X86Instruction::ReachingDefinition*>* i2uses, *i2defs, *newdefs;
        i2uses = alliuses[cand->getBaseAddress()];

        // Check if any of idefs is used
        if(i2uses != NULL && anyDefsAreUsed(idefs, i2uses)){

            // Check if use is shortest
            uint32_t duDist;
            duDist = trueDefUseDist(currDist, fcnt);
            if (!ins->getDefUseDist() || ins->getDefUseDist() > duDist) {
                ins->setDefUseDist(duDist);
            }

            // If dist has increased beyond size of function, we must be looping?
            if (currDist > fcnt) {
                ins->setDefXIter();
                break;
            }

            // Stop searching along this path
            continue;
        }

        // Check if any defines are overwritten
        i2defs = allidefs[cand->getBaseAddress()];
        newdefs = removeInvalidated(idefs, i2defs);

        // If all definitions killed, stop searching along this path
        if (newdefs == NULL)
            continue;

        allDefLists.insert(newdefs);

        // end of block that is a branch
        if (cand->usesControlTarget() && !cand->isCall()){
            BasicBlock* tgtBlock = bpebil_map_type[cand->getTargetAddress()];
            if (tgtBlock && !blockTouched[tgtBlock->getIndex()] && flowsInDefUseScope(tgtBlock, loop)){
                blockTouched[tgtBlock->getIndex()] = true;
                if (tgtBlock->getBaseAddress() == loopLeader){
                    paths.insert(new path(tgtBlock->getLeader(), newdefs), loopXDefUseDist(currDist + 1, fcnt));
                } else {
                    paths.insert(new path(tgtBlock->getLeader(), newdefs), currDist + 1);
                }
            }
        }

        // non-branching control
        if (cand->controlFallsThrough()){
            BasicBlock* tgtBlock = bpebil_map_type[cand->getBaseAddress() + cand->getSizeInBytes()];
            if (tgtBlock && flowsInDefUseScope(tgtBlock, loop)){
                X86Instruction* ftTarget = ipebil_map_type[cand->getBaseAddress() + cand->getSizeInBytes()];
                if (ftTarget){
                    if (ftTarget->isLeader()){
                        if (!blockTouched[tgtBlock->getIndex()]){
                            blockTouched[tgtBlock->getIndex()] = true;
                            if (ftTarget->getBaseAddress() == loopLeader){
                                paths.insert(new path(ftTarget, newdefs), loopXDefUseDist(currDist + 1, fcnt));
                            } else {
                                paths.insert(new path(ftTarget, newdefs), currDist + 1);
                            }
                        }
                    } else {
                        paths.insert(new path(ftTarget, newdefs), currDist + 1);
                    }
                }
            }
        }
        
    }
    if (!paths.isEmpty()){
        ins->setDefUseDist(0);
    }
    while (!paths.isEmpty()){
        delete paths.deleteMin(NULL);
    }

    while (!allDefs->empty()){
        delete allDefs->shift();
    }
    for(set<LinkedList<X86Instruction::ReachingDefinition*>*>::iterator it = allDefLists.begin(); it != allDefLists.end(); ++it){
        delete *it;
    }
}
Exemplo n.º 17
0
vector<Node *> dijkstrasAlgorithm(BasicGraph& graph, Vertex* start, Vertex* end) {
    graph.resetData();
    //set as predescessor if that is undefined
    Vertex* unDefined;

    //the current node we are checking
    Vertex*  currentNode;

    //sets startnode cost to zero
    start->cost=0.0;

    //create prioqueue
    PriorityQueue<Vertex*> vertexPrioQueue;

    //used to keep track of all predeccesors
    map<Vertex*,Vertex*> predecessor;

    //set all costs, sets predecessor and adds the to the queue
    for (Node *node :graph.getNodeSet()){
        //all nodes but start should have infinity cost
        if (node!=start){
            node->cost=INFINITY;
            predecessor[node]=unDefined;
        }
        //add all nodes to queue
        vertexPrioQueue.enqueue(node,node->cost);

    }
    //keep track of the alternative cost
    double alt;
    //while the queue is not empty
    while (!vertexPrioQueue.isEmpty()){
        //put current node to the one with highest priority
        currentNode= vertexPrioQueue.front();
        vertexPrioQueue.dequeue();
        currentNode->setColor(YELLOW);
        currentNode->visited=true;
        if (currentNode==end){
            break;
        }

        //check all the node's neighbors
        for(Node *node :graph.getNeighbors(currentNode)){
            //if we have not visited that node
            if (!node->visited){
                //we check the alternative cost
                alt=currentNode->cost+graph.getArc(currentNode,node)->cost;
                //if the alternative cost is lower then we set that to our new cost
                if (alt<node->cost){
                    node->cost=alt;
                    predecessor[node]=currentNode;
                    vertexPrioQueue.changePriority(node,alt);

                }
            }
        }
        currentNode->setColor(GREEN);

    }
    //if we havent found end
    if(predecessor[end]==unDefined){
        vector<Vertex*> path;
        return path;
    }
    else{
        //if we have found end we trace through the predecessor map to find the path
        stack<Vertex*> vertexStack;
        vector<Vertex*> path;
        currentNode=end;
        while (currentNode!=start){
            vertexStack.push(currentNode);
            currentNode=predecessor[currentNode];

        }
        vertexStack.push(start);
        while (!vertexStack.empty()){
            path.push_back(vertexStack.top());
            vertexStack.pop();
        }
        return path;
    }
}
Exemplo n.º 18
0
/* main() manages the user interface;
 * instantiates priority queue object, then operates loop to read input 
 * from user and call the appropriate priority queue method
 */
int main() {
   PriorityQueue pq;
   TokenScanner scanner;
   while (true) {
      string line = getLine("> ");
      scanner.setInput(line);
      scanner.ignoreWhitespace();
      string cmd=scanner.nextToken();
      if (cmd == "help") {
         helpCommand();
      }      
      else if (cmd == "enqueue") {
	if(scanner.hasMoreTokens()){
	  string value=scanner.nextToken();
	  if(scanner.hasMoreTokens()){
	    scanner.scanNumbers();
	    string priorityStr=scanner.nextToken();
	    double priority=stringToDouble(priorityStr);	
	    pq.enqueue(value,priority);
	  }
	  else
	    pq.enqueue(value);
	}
      }    
      else if (cmd == "dequeue") {
	if(pq.isEmpty())
	  cout<<"The queue is empty"<<endl;
	else
	  cout<<pq.dequeue()<<endl;
      }
      else if (cmd == "peek") {
	if(pq.isEmpty())
	  cout<<"The queue is empty"<<endl;
	else
	  cout<<pq.peek()<<endl;
      }
      else if (cmd == "peekPriority"||cmd=="peekpriority") {
	if(pq.isEmpty())
	  cout<<"The queue is empty"<<endl;
	else
	  cout<<pq.peekPriority()<<endl;
      }
      else if (cmd == "clear") {
	pq.clear();
      }
      else if (cmd == "size") {
	cout<<pq.size()<<endl;
      }
      else if (cmd == "isEmpty"||cmd=="isempty") {
	if(pq.isEmpty())
	  cout<<"true";
	else
	  cout<<"false";
	cout<<endl;
      }
      else if(cmd=="list")
	list(pq);
      else {
         cout << "Undefined command: " << cmd << endl;
      }
   }
   return 0;
}
int main()
{
  // problem setup goes here
  bool test1=true, test2=true;
  PriorityQueue<double> pq;
  int i, REPS = 1000000;
  srand (time(NULL));


  while(test1) // operator[] assignment at zeroth index, O(1)
  {
	cout << "\n  Test 1 - enqueue, O(log n)\n\n";
    // programmer customizations go here
    double n = 500000; // THE STARTING PROBLEM SIZE
    string bigOh = "O(log n)"; // YOUR PREDICTION: O(1), O(log n), O(n), O(n log n), or O(n squared)
	
    int elapsedTimeTicksNorm;
    double expectedTimeTicks, m;
    for (int cycle=0; cycle<4; cycle++, n*=2)
    {
      // more problem setup goes here -- the stuff not timed
	  for(i=0; i<n; i++)
	    pq.enqueue(rand() % RAND_MAX);
	  long elapsedTimeTicks = 0;
	  for (i=0; i<REPS; i++) 
      { 
		m = rand() % RAND_MAX;
	    assert(pq.size()==n);

	    // initize the timer
        clock_t startTime = clock();

        // do something where n is the "size" of the problem
	    pq.enqueue(m);

        // compute timing results
        clock_t endTime = clock(); 
        elapsedTimeTicks += (long)(endTime - startTime);
		pq.dequeue(m);
	  }

      double factor = pow(2.0, cycle);
      if (cycle == 0)
        elapsedTimeTicksNorm = elapsedTimeTicks;
      else if (bigOh == "O(1)")
        expectedTimeTicks = elapsedTimeTicksNorm;
      else if (bigOh == "O(log n)")
        expectedTimeTicks = log(double(n)) / log(n / factor) * elapsedTimeTicksNorm;
      else if (bigOh == "O(n)")
        expectedTimeTicks = factor * elapsedTimeTicksNorm;
      else if (bigOh == "O(n log n)")
        expectedTimeTicks = factor * log(double(n)) / log(n / factor) * elapsedTimeTicksNorm;
      else if (bigOh == "O(n squared)")
        expectedTimeTicks = factor * factor * elapsedTimeTicksNorm;

      // reporting block
      cout << elapsedTimeTicks;
      if (cycle == 0) cout << " (expected " << bigOh << ')';
      else cout << " (expected " << expectedTimeTicks << ')';
      cout << " for n=" << n << endl;
	  pq.makeEmpty();
      assert(pq.isEmpty());
    }
    test1=false;
  }


  REPS = 500000;

  while(test2) // operator[] assignment at 100th index, O(1)
  {
	cout << "\n\n  Test 2 - dequeue, O(log n)\n\n";
    // programmer customizations go here
    double n = 500000; // THE STARTING PROBLEM SIZE
    string bigOh = "O(log n)"; // YOUR PREDICTION: O(1), O(log n), O(n), O(n log n), or O(n squared)


    int elapsedTimeTicksNorm;
    double expectedTimeTicks;
    for (int cycle=0; cycle<4; cycle++, n*=2)
	{
      // more problem setup goes here -- the stuff not timed
      for(i=0; i<n; i++)
	    pq.enqueue(rand() % RAND_MAX); // fill pq 
	  long elapsedTimeTicks = 0;
	  clock_t startTime, endTime;
	  double j;
	  for (i=0; i<REPS; i++) 
	  {
	    assert(pq.size()==n);
        // initize the timer
        startTime = clock();

        // do something where n is the "size" of the problem
	    pq.dequeue(j);

        // compute timing results
        endTime = clock(); 
	    elapsedTimeTicks += (long)(endTime - startTime);
		pq.enqueue(j);
	  }
	  double factor = pow(2.0, cycle);
      if (cycle == 0)
        elapsedTimeTicksNorm = elapsedTimeTicks;
      else if (bigOh == "O(1)")
        expectedTimeTicks = elapsedTimeTicksNorm;
      else if (bigOh == "O(log n)")
        expectedTimeTicks = log(double(n)) / log(n / factor) * elapsedTimeTicksNorm;
      else if (bigOh == "O(n)")
        expectedTimeTicks = factor * elapsedTimeTicksNorm;
      else if (bigOh == "O(n log n)")
        expectedTimeTicks = factor * log(double(n)) / log(n / factor) * elapsedTimeTicksNorm;
      else if (bigOh == "O(n squared)")
        expectedTimeTicks = factor * factor * elapsedTimeTicksNorm;

      // reporting block
      cout << elapsedTimeTicks;
      if (cycle == 0) cout << " (expected " << bigOh << ')';
      else cout << " (expected " << expectedTimeTicks << ')';
      cout << " for n=" << n << endl;
	  pq.makeEmpty();
      assert(pq.isEmpty());
    }
    test2=false;
  }
	 
  cout << endl;
  return 0;
}
Exemplo n.º 20
0
//this is the same as dijkstrasAlgorithm except for one thing which is commented
vector<Node *> aStar(BasicGraph& graph, Vertex* start, Vertex* end) {
    graph.resetData();
    Vertex* unDefined;
    Vertex*  currentNode;
    start->cost=0.0;
    PriorityQueue<Vertex*> vertexPrioQueue;
    map<Vertex*,Vertex*> predecessor;
    for (Node *node :graph.getNodeSet()){
        if (node!=start){
            node->cost=INFINITY;
            predecessor[node]=unDefined;
        }
        vertexPrioQueue.enqueue(node,node->cost);;

    }
    double alt;
    while (!vertexPrioQueue.isEmpty()){
        currentNode= vertexPrioQueue.front();

        vertexPrioQueue.dequeue();
        currentNode->setColor(YELLOW);
        currentNode->visited=true;
        if (currentNode==end){
            break;
        }
        for(Node *node :graph.getNeighbors(currentNode)){
            if (!node->visited){
                alt=currentNode->cost+graph.getArc(currentNode,node)->cost;
                if (alt<node->cost){
                    node->cost=alt;
                    predecessor[node]=currentNode;
                    //this is the change, the queuepriority comes from the node cost + the heuristic
                    vertexPrioQueue.changePriority(node,node->cost+node->heuristic((end)));

                }
            }
        }
        currentNode->setColor(GREEN);

    }

    if(predecessor[end]==unDefined){
        vector<Vertex*> path;
        return path;
    }
    else{
        stack<Vertex*> vertexStack;
        vector<Vertex*> path;
        currentNode=end;
        while (currentNode!=start){
            vertexStack.push(currentNode);
            currentNode=predecessor[currentNode];

        }
        vertexStack.push(start);
        while (!vertexStack.empty()){
            path.push_back(vertexStack.top());
            vertexStack.pop();
        }
        return path;
    }
}
Exemplo n.º 21
0
/*
 * Function: kruskal
 * --------------------
 * This function implements kruskal algorithm to create a minimum graph with all
 * vertexes connected with least cost or number of edges
 *
 * Preconditions:
 *
 *  @param: graph: The graph to be minimized
 *
 *  @return: returns a set of edges in the MST
 */
Set<Edge*> kruskal(BasicGraph& graph) {

    graph.resetData(); // Reset data jic

    PriorityQueue<Edge*> pq; // pq to hold the edges with least cost first
    Map<Vertex*, Set<Vertex*>*> mp; // Our cluster storing structure
    Set<Edge*> mst; // Our edge return set

    // PLace all edges into a pq with cost=priority
    for(Edge* e:graph.getEdgeSet()){
        pq.add(e,e->cost);
    }

    // Make clusters through map structure
    for(Vertex* v:graph.getVertexSet()){
        Set<Vertex*>* clusterSet = new Set<Vertex*>;
        clusterSet->add(v);

        mp.add(v,clusterSet);
    }

    // While the priority queue is not empty
    while(!pq.isEmpty()){
        Edge* e = pq.dequeue();
        Vertex* v1 = e->start;
        Vertex* v2 = e->end;

        // If the pointers point to the same Set, they must
        // be connected
        if(mp[v1]!=mp[v2]){

            // Make a temporary pointer to v2's Set
            Set<Vertex*>* tempPointer = mp[v2];

            // Set all clusters in v2's set to point to v1's set
            for(Vertex* v:*tempPointer){
                mp[v1]->add(v);
                Set<Vertex*>* tempPointer2 = mp[v];
                mp[v] = mp[v1];

                // Dont delete same pointer twice
                if(tempPointer2!=tempPointer)
                    delete tempPointer2;
            }

            // Delete abandoned memory
            delete tempPointer;

            // Add edge e to MST
            mst.add(e);
        }
    }

    // Free large cluster of memory
    for(Vertex* v:mp){
        Set<Vertex*>* toDelete = mp[v];
        delete toDelete;
        break;
    }

    return mst;
}
Exemplo n.º 22
0
/*
 * Function: aStar
 * --------------------
 * This function implements aStar search (variation of dijkstras with a heuristic)
 *
 * Preconditions:
 *
 *  @param: graph: The graph to be searched
 *          start: The start vertex
 *          end:The end vertex
 *  @return: returns a vector of vertexes containing the path (empty if no path)
 */
Vector<Vertex*> aStar(BasicGraph& graph, Vertex* start, Vertex* end) {

    graph.resetData(); // reset
    Vector<Vertex*> path; // the return path
    Set<Vertex*> inQueue; // A vector holding the values that we have already put into the queue

    // INitialize every vertex to have infinite cost
    for(Vertex* s:graph.getVertexSet()){
        s->cost = POSITIVE_INFINITY;
    }

    PriorityQueue<Vertex*> pq; // A pq to see where to search next (cost+heuristic = priority)
    // Set start's cost to 0 + heuristicFxn val
    start->cost = 0 + heuristicFunction(start,end);
    // Enqueue start vertex
    pq.enqueue(start,0);
    start->setColor(YELLOW);
    inQueue.add(start);

    // While there are still elements in the pq to try
    while(!pq.isEmpty()){
        Vertex* v = pq.dequeue();
        inQueue.remove(v);

        v->visited = true;
        v->setColor(GREEN);

        // We can stop (reached end)
        if(v == end){
            // We have reached the end, deconstruct
            path.clear();

            Vertex* temp = v;
            path.insert(0,temp);

            while(temp->previous!=NULL){ // deconstruct
                temp = temp->previous;
                path.insert(0,temp);
            }
            break;
        }
        // For each unvisited neighbor of v vertex
        for (Vertex* n: graph.getNeighbors(v)){
            // And it's unvisited
            if(n->visited == false){
                // v's cost plus weight of edge
                Edge* e = graph.getEdge(v,n);
                double edgeCost = e->cost;
                double costToVertexN = v->cost + edgeCost;
                // If the costToVertexN < n->cost, we know this is a better way to get to
                // vertex n
                if(costToVertexN < n->cost){
                    n->cost = costToVertexN;
                    n->previous = v;
                    n->setColor(YELLOW);

                    // Check to see if pq already contains n
                    if(inQueue.contains(n)){ // Priority now includes heuristic
                        pq.changePriority(n,costToVertexN + heuristicFunction(n,end));
                    } else {
                        pq.enqueue(n,costToVertexN + heuristicFunction(n,end));
                    }
                }

            }
        }

    }
    return path;
}
Exemplo n.º 23
0
int main() 
{  	
		int comps=0;	//BH comparisons
		string txt;
		cout << "Enter name of txt file without extension: " << endl;
		cin >> txt;
		string str(txt + ".txt");
		Graph graph(str);
		graph.PrintGraph();
		
		int sVert, dVert;
		cout << "Enter the source vertex: " << endl;
		cin >> sVert;
		cout << "Enter the destination vertex: " << endl;
		cin >> dVert;
		cout << " " << endl;
		
		
		// for storing distances and extracting the minimum;  equivalent to Q and d[] on the slides
		PriorityQueue<int> pq;
		
		int size = graph.getSize();		//graph size
		int kArray[size];
		for(int i = 0; i < size; i++)	 {kArray[i] = INT_MAX;}	//key/weight
		int xArray[size];
		for(int i = 1; i <= size; i++) {xArray[i-1] = i;}		//element
		
		pq.createPriorityQueue(kArray, xArray, xArray, size);
		// for storing the parent (previous node) on the path; equivalent to pi[] on the slides
		int* shortestPathParent = new int[size + 1];
		for(int i = 0; i < size; i++) 	{shortestPathParent[i] = 0;}
		
		
		// Dijkstra's algorithm
		Locator sl = pq.getLocator(sVert);	//locator keeps track of element's memory address
		pq.replaceKey(sl,0);
		if(sVert > size || dVert > size || sVert < 0 || dVert < 0) throw "No such vertex exists";
		vector<Vertex*> del; // removed vertices
		vector<Vertex*> vertList = graph.getVertices();
		
		while( !pq.isEmpty()) {
			Vertex* u = vertList[pq.minElement() - 1];
			Locator locu = pq.getLocator(u->getID());
			int ukey = pq.getKey(locu);
			pq.removeMin();
			del.push_back(u);
			vector<Edge*> edges = u->getOutEdges();
			for( int i = 0; i < edges.size(); i++ ) {
				Vertex* v = edges[i] -> geteVertP();
				int w = edges[i] -> getWeight();
				Locator locv = pq.getLocator(v->getID());
				if(comps++, pq.getKey(locv) > (ukey + w)) 			//if (d[b] > d[a] + w(a,b))
				{
					pq.replaceKey(locv, ukey + w);		  			//d[b] = d[a] + w(a,b)
					shortestPathParent[v->getID()] = u->getID();	//P[b] = a
				}
			}
		}
	
		Vertex* d = graph.getVertex(dVert);
		Vertex* s = graph.getVertex(sVert);
		vector<int>vers, wt;
		vector<Edge*> e = vertList[dVert-1]->getInEdges();
		int c = 0;
		vers.push_back(dVert);
		if (sVert == dVert)
		{
			vers.push_back(dVert);
			wt.push_back(0);
		}
		else
		{
			while (c != sVert)
			{
				//compare edges
				int minw = e[0]->getWeight();
				int minv = e[0]->getsVertP()->getID();

				for (int i = 0; i < e.size(); i++)
				{
					if(e[i]->getWeight() < minw)
					{
						minw = e[i]->getWeight();
						minv = e[i]->getsVertP()->getID();
					}
				}
				wt.push_back(minw);
				vers.push_back(minv);
				c = vertList[minv-1]->getID();
				e = vertList[minv-1]->getInEdges();
			}
		reverse(wt.begin(),wt.end());
		reverse(vers.begin(),vers.end());
		}
		for (int i = 0; i < vers.size()-1; i++)
		{
			cout << vers[i] << "--[" << wt[i] << "]-->";
		}
			cout << dVert << endl;
			
		int dist = 0;
		for (int i = 0; i < wt.size(); i++)
		{
			dist = dist + wt[i];
		}
		cout << " " << endl;
		cout << "Total weight of the shortest path from " << sVert << " to " << dVert << " = " << dist << endl;
		cout << "Total number of comparisons needed to decrease key values: " << comps;
		
		return 0;
	}