void CLAYER_TRIANGLES::AddToMiddleContourns( const SHAPE_POLY_SET &aPolySet,
                                             float zBot,
                                             float zTop,
                                             double aBiuTo3Du,
                                             bool aInvertFaceDirection )
{
    wxASSERT( aPolySet.OutlineCount() > 0 );

    if( aPolySet.OutlineCount() == 0 )
        return;

    // Calculate an estimation of points to reserve
    unsigned int nrContournPointsToReserve = 0;

    for( int i = 0; i < aPolySet.OutlineCount(); ++i )
    {
        const SHAPE_LINE_CHAIN& pathOutline = aPolySet.COutline( i );

        nrContournPointsToReserve += pathOutline.PointCount();

        for( int h = 0; h < aPolySet.HoleCount( i ); ++h )
        {
            const SHAPE_LINE_CHAIN &hole = aPolySet.CHole( i, h );

            nrContournPointsToReserve += hole.PointCount();
        }
    }

    // Request to reserve more space
    m_layer_middle_contourns_quads->Reserve_More( nrContournPointsToReserve * 2,
                                                  true );

    #pragma omp parallel for
    for( signed int i = 0; i < aPolySet.OutlineCount(); ++i )
    {
        // Add outline
        const SHAPE_LINE_CHAIN& pathOutline = aPolySet.COutline( i );

        AddToMiddleContourns( pathOutline, zBot, zTop, aBiuTo3Du, aInvertFaceDirection );

        // Add holes for this outline
        for( int h = 0; h < aPolySet.HoleCount( i ); ++h )
        {
            const SHAPE_LINE_CHAIN &hole = aPolySet.CHole( i, h );
            AddToMiddleContourns( hole, zBot, zTop, aBiuTo3Du, aInvertFaceDirection );
        }
    }
}
void Convert_shape_line_polygon_to_triangles( const SHAPE_POLY_SET &aPolyList,
                                              CGENERICCONTAINER2D &aDstContainer,
                                              float aBiuTo3DunitsScale ,
                                              const BOARD_ITEM &aBoardItem )
{
    unsigned int nOutlines = aPolyList.OutlineCount();


    for( unsigned int idx = 0; idx < nOutlines; ++idx )
    {
        const SHAPE_LINE_CHAIN &outlinePath = aPolyList.COutline( idx );

        wxASSERT( outlinePath.PointCount() >= 3 );

        std::vector<SFVEC2I64> scaledOutline;
        scaledOutline.resize( outlinePath.PointCount() );

        // printf("\nidx: %u\n", idx);

        // Apply a scale to the points
        for( unsigned int i = 0;
             i < (unsigned int)outlinePath.PointCount();
             ++i )
        {
            const VECTOR2I& a = outlinePath.CPoint( i );

#ifdef APPLY_EDGE_SHRINK
            scaledOutline[i] = SFVEC2I64( (glm::int64)a.x * POLY_SCALE_FACT,
                                          (glm::int64)a.y * POLY_SCALE_FACT );
#else
            scaledOutline[i] = SFVEC2I64( (glm::int64)a.x,
                                          (glm::int64)a.y );
#endif
        }

#ifdef APPLY_EDGE_SHRINK
        // Apply a modification to the points
        EdgeShrink( scaledOutline );
#endif
        // Copy to a array of pointers
        std::vector<p2t::Point*> polyline;
        polyline.resize( outlinePath.PointCount() );

        for( unsigned int i = 0;
             i < (unsigned int)scaledOutline.size();
             ++i )
        {
            const SFVEC2I64 &a = scaledOutline[i];

            //printf("%lu %lu\n", a.x, a.y);

            polyline[i] = new p2t::Point( (double)a.x,
                                          (double)a.y );
        }

        // Start creating the structured to be triangulated
        p2t::CDT* cdt = new p2t::CDT( polyline );

        // Add holes for this outline
        unsigned int nHoles = aPolyList.HoleCount( idx );

        std::vector< std::vector<p2t::Point*> > polylineHoles;

        polylineHoles.resize( nHoles );

        for( unsigned int idxHole = 0; idxHole < nHoles; ++idxHole )
        {
            const SHAPE_LINE_CHAIN &outlineHoles = aPolyList.CHole( idx,
                                                                    idxHole );

            wxASSERT( outlineHoles.PointCount() >= 3 );

            std::vector<SFVEC2I64> scaledHole;
            scaledHole.resize( outlineHoles.PointCount() );

            // Apply a scale to the points
            for( unsigned int i = 0;
                 i < (unsigned int)outlineHoles.PointCount();
                 ++i )
            {
                const VECTOR2I &h = outlineHoles.CPoint( i );
#ifdef APPLY_EDGE_SHRINK
                scaledHole[i] = SFVEC2I64( (glm::int64)h.x * POLY_SCALE_FACT,
                                           (glm::int64)h.y * POLY_SCALE_FACT );
#else
                scaledHole[i] = SFVEC2I64( (glm::int64)h.x,
                                           (glm::int64)h.y );
#endif
            }

#ifdef APPLY_EDGE_SHRINK
            // Apply a modification to the points
            EdgeShrink( scaledHole );
#endif

            // Resize and reserve space
            polylineHoles[idxHole].resize( outlineHoles.PointCount() );

            for( unsigned int i = 0;
                 i < (unsigned int)outlineHoles.PointCount();
                 ++i )
            {
                const SFVEC2I64 &h = scaledHole[i];

                polylineHoles[idxHole][i] = new p2t::Point( h.x, h.y );
            }

            cdt->AddHole( polylineHoles[idxHole] );
        }

        // Triangulate
        cdt->Triangulate();

        // Hint: if you find any crashes on the triangulation poly2tri library,
        // you can use the following site to debug the points and it will mark
        // the errors in the polygon:
        // http://r3mi.github.io/poly2tri.js/


        // Get and add triangles
        std::vector<p2t::Triangle*> triangles;
        triangles = cdt->GetTriangles();

#ifdef APPLY_EDGE_SHRINK
        const double conver_d = (double)aBiuTo3DunitsScale *
                                POLY_SCALE_FACT_INVERSE;
#else
        const double conver_d = (double)aBiuTo3DunitsScale;
#endif
        for( unsigned int i = 0; i < triangles.size(); ++i )
        {
            p2t::Triangle& t = *triangles[i];

            p2t::Point& a = *t.GetPoint( 0 );
            p2t::Point& b = *t.GetPoint( 1 );
            p2t::Point& c = *t.GetPoint( 2 );

            aDstContainer.Add( new CTRIANGLE2D( SFVEC2F( a.x * conver_d,
                                                        -a.y * conver_d ),
                                                SFVEC2F( b.x * conver_d,
                                                        -b.y * conver_d ),
                                                SFVEC2F( c.x * conver_d,
                                                        -c.y * conver_d ),
                                                aBoardItem ) );
        }

        // Delete created data
        delete cdt;

        // Free points
        FreeClear(polyline);

        for( unsigned int idxHole = 0; idxHole < nHoles; ++idxHole )
        {
            FreeClear( polylineHoles[idxHole] );
        }
    }
}
Exemplo n.º 3
0
void Convert_path_polygon_to_polygon_blocks_and_dummy_blocks(
        const SHAPE_POLY_SET &aMainPath,
        CGENERICCONTAINER2D &aDstContainer,
        float aBiuTo3DunitsScale,
        float aDivFactor,
        const BOARD_ITEM &aBoardItem )
{
    BOX2I pathBounds = aMainPath.BBox();

    // Get the path

    wxASSERT( aMainPath.OutlineCount() == 1 );
    const SHAPE_POLY_SET::POLYGON& curr_polywithholes = aMainPath.CPolygon( 0 );

    wxASSERT( curr_polywithholes.size() == 1 );
    const SHAPE_LINE_CHAIN& path = curr_polywithholes[0];   // a simple polygon

    // Convert the points to segments class
    CBBOX2D bbox;
    bbox.Reset();

    // Contains the main list of segments and each segment normal interpolated
    SEGMENTS_WIDTH_NORMALS segments_and_normals;

    // Contains a closed polygon used to calc if points are inside
    SEGMENTS segments;

    segments_and_normals.resize( path.PointCount() );
    segments.resize( path.PointCount() );

    for( int i = 0; i < path.PointCount(); i++ )
    {
        const VECTOR2I& a = path.CPoint( i );

        const SFVEC2F point ( (float)( a.x) * aBiuTo3DunitsScale,
                              (float)(-a.y) * aBiuTo3DunitsScale );

        bbox.Union( point );
        segments_and_normals[i].m_Start = point;
        segments[i].m_Start = point;
    }

    bbox.ScaleNextUp();


    // Calc the slopes, normals and some statistics about this polygon
    unsigned int i;
    unsigned int j = segments_and_normals.size() - 1;

    // Temporary normal to the segment, it will later be used for interpolation
    std::vector< SFVEC2F >  tmpSegmentNormals;
    tmpSegmentNormals.resize( segments_and_normals.size() );

    float medOfTheSquaresSegmentLength = 0.0f;
#ifdef PRINT_STATISTICS_3D_VIEWER
    float minLength = FLT_MAX;
#endif

    for( i = 0; i < segments_and_normals.size(); j = i++ )
    {
        const SFVEC2F slope = segments_and_normals[j].m_Start -
                              segments_and_normals[i].m_Start;

        segments_and_normals[i].m_Precalc_slope = slope;

        // Calculate constants for each segment
        segments[i].m_inv_JY_minus_IY = 1.0f / ( segments_and_normals[j].m_Start.y -
                                                 segments_and_normals[i].m_Start.y );

        segments[i].m_JX_minus_IX = ( segments_and_normals[j].m_Start.x -
                                      segments_and_normals[i].m_Start.x );

        // The normal orientation expect a fixed polygon orientation (!TODO: which one?)
        //tmpSegmentNormals[i] = glm::normalize( SFVEC2F( -slope.y, +slope.x ) );
        tmpSegmentNormals[i] = glm::normalize( SFVEC2F( slope.y, -slope.x ) );

        const float length = slope.x * slope.x + slope.y * slope.y;

#ifdef PRINT_STATISTICS_3D_VIEWER
        if( length < minLength )
            minLength = length;
#endif

        medOfTheSquaresSegmentLength += length;
    }

#ifdef PRINT_STATISTICS_3D_VIEWER
    float minSegmentLength = sqrt( minLength );
#endif

    // This calc an approximation of medium lengths, that will be used to calc
    // the size of the division.
    medOfTheSquaresSegmentLength /= segments_and_normals.size();
    medOfTheSquaresSegmentLength = sqrt( medOfTheSquaresSegmentLength );


    // Compute the normal interpolation
    // If calculate the dot between the segments, if they are above/below some
    // threshould it will not interpolated it (ex: if you are in a edge corner
    // or in a smooth transaction)
    j = segments_and_normals.size() - 1;
    for( i = 0; i < segments_and_normals.size(); j = i++ )
    {
        const SFVEC2F normalBeforeSeg = tmpSegmentNormals[j];
        const SFVEC2F normalSeg       = tmpSegmentNormals[i];
        const SFVEC2F normalAfterSeg  = tmpSegmentNormals[ (i + 1) %
                                                           segments_and_normals.size() ];

        const float dotBefore = glm::dot( normalBeforeSeg, normalSeg );
        const float dotAfter  = glm::dot( normalAfterSeg,  normalSeg );

        if( dotBefore < 0.7f )
            segments_and_normals[i].m_Normals.m_Start = normalSeg;
        else
            segments_and_normals[i].m_Normals.m_Start =
                glm::normalize( (((normalBeforeSeg * dotBefore ) + normalSeg) * 0.5f) );

        if( dotAfter < 0.7f )
            segments_and_normals[i].m_Normals.m_End = normalSeg;
        else
            segments_and_normals[i].m_Normals.m_End =
                glm::normalize( (((normalAfterSeg  * dotAfter  ) + normalSeg) * 0.5f) );
    }

    if( aDivFactor == 0.0f )
        aDivFactor = medOfTheSquaresSegmentLength;

    SFVEC2UI grid_divisions;
    grid_divisions.x = (unsigned int)( (bbox.GetExtent().x / aDivFactor) );
    grid_divisions.y = (unsigned int)( (bbox.GetExtent().y / aDivFactor) );

    grid_divisions = glm::clamp( grid_divisions ,
                                 SFVEC2UI( 1, 1 ),
                                 SFVEC2UI( MAX_NR_DIVISIONS, MAX_NR_DIVISIONS ) );

    // Calculate the steps advance of the grid
    SFVEC2F blockAdvance;

    blockAdvance.x = bbox.GetExtent().x / (float)grid_divisions.x;
    blockAdvance.y = bbox.GetExtent().y / (float)grid_divisions.y;

    wxASSERT( blockAdvance.x > 0.0f );
    wxASSERT( blockAdvance.y > 0.0f );

    const int leftToRight_inc = (pathBounds.GetRight()  - pathBounds.GetLeft()) /
                                grid_divisions.x;

    const int topToBottom_inc = (pathBounds.GetBottom() - pathBounds.GetTop())  /
                                grid_divisions.y;

    // Statistics
    unsigned int stats_n_empty_blocks = 0;
    unsigned int stats_n_dummy_blocks = 0;
    unsigned int stats_n_poly_blocks = 0;
    unsigned int stats_sum_size_of_polygons = 0;


    // Step by each block of a grid trying to extract segments and create
    // polygon blocks

    int topToBottom = pathBounds.GetTop();
    float blockY = bbox.Max().y;

    for( unsigned int iy = 0; iy < grid_divisions.y; iy++ )
    {

        int leftToRight = pathBounds.GetLeft();
        float blockX = bbox.Min().x;

        for( unsigned int ix = 0; ix < grid_divisions.x; ix++ )
        {
            CBBOX2D blockBox( SFVEC2F( blockX,
                                       blockY - blockAdvance.y ),
                              SFVEC2F( blockX + blockAdvance.x,
                                       blockY                  ) );

            // Make the box large to it will catch (intersect) the edges
            blockBox.ScaleNextUp();
            blockBox.ScaleNextUp();
            blockBox.ScaleNextUp();

            SEGMENTS_WIDTH_NORMALS extractedSegments;

            extractPathsFrom( segments_and_normals, blockBox, extractedSegments );


            if( extractedSegments.empty() )
            {

                SFVEC2F p1( blockBox.Min().x, blockBox.Min().y );
                SFVEC2F p2( blockBox.Max().x, blockBox.Min().y );
                SFVEC2F p3( blockBox.Max().x, blockBox.Max().y );
                SFVEC2F p4( blockBox.Min().x, blockBox.Max().y );

                if( polygon_IsPointInside( segments, p1 ) ||
                    polygon_IsPointInside( segments, p2 ) ||
                    polygon_IsPointInside( segments, p3 ) ||
                    polygon_IsPointInside( segments, p4 ) )
                {
                    // In this case, the segments are not intersecting the
                    // polygon, so it means that if any point is inside it,
                    // then all other are inside the polygon.
                    // This is a full bbox inside, so add a dummy box

                    aDstContainer.Add( new CDUMMYBLOCK2D( blockBox, aBoardItem ) );
                    stats_n_dummy_blocks++;
                }
                else
                {
                    // Points are outside, so this block complety missed the polygon
                    // In this case, no objects need to be added
                    stats_n_empty_blocks++;
                }
            }
            else
            {
                // At this point, the borders of polygon were intersected by the
                // bounding box, so we must calculate a new polygon that will
                // close that small block.
                // This block will be used to calculate if points are inside
                // the (sub block) polygon.

                SHAPE_POLY_SET subBlockPoly;

                SHAPE_LINE_CHAIN sb = SHAPE_LINE_CHAIN(
                                        VECTOR2I( leftToRight,
                                                  topToBottom ),
                                        VECTOR2I( leftToRight + leftToRight_inc,
                                                  topToBottom ),
                                        VECTOR2I( leftToRight + leftToRight_inc,
                                                  topToBottom + topToBottom_inc ),
                                        VECTOR2I( leftToRight,
                                                  topToBottom + topToBottom_inc ) );

                //sb.Append( leftToRight, topToBottom );
                sb.SetClosed( true );

                subBlockPoly.AddOutline( sb );

                // We need here a strictly simple polygon with outlines and holes
                SHAPE_POLY_SET solution;
                solution.BooleanIntersection( aMainPath,
                                              subBlockPoly,
                                              SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );

                OUTERS_AND_HOLES outersAndHoles;

                outersAndHoles.m_Holes.clear();
                outersAndHoles.m_Outers.clear();

                for( int idx = 0; idx < solution.OutlineCount(); idx++ )
                {
                    const SHAPE_LINE_CHAIN & outline = solution.Outline( idx );

                    SEGMENTS solutionSegment;

                    polygon_Convert( outline, solutionSegment, aBiuTo3DunitsScale );
                    outersAndHoles.m_Outers.push_back( solutionSegment );

                    stats_sum_size_of_polygons += solutionSegment.size();

                    for( int holeIdx = 0;
                         holeIdx < solution.HoleCount( idx );
                         holeIdx++ )
                    {
                        const SHAPE_LINE_CHAIN & hole = solution.Hole( idx, holeIdx );

                        polygon_Convert( hole, solutionSegment, aBiuTo3DunitsScale );
                        outersAndHoles.m_Holes.push_back( solutionSegment );
                        stats_sum_size_of_polygons += solutionSegment.size();
                    }

                }

                if( !outersAndHoles.m_Outers.empty() )
                {
                    aDstContainer.Add( new CPOLYGONBLOCK2D( extractedSegments,
                                                            outersAndHoles,
                                                            aBoardItem ) );
                    stats_n_poly_blocks++;
                }
            }

            blockX += blockAdvance.x;
            leftToRight += leftToRight_inc;
        }

        blockY -= blockAdvance.y;
        topToBottom += topToBottom_inc;
    }

#ifdef PRINT_STATISTICS_3D_VIEWER
    printf( "////////////////////////////////////////////////////////////////////////////////\n" );
    printf( "Convert_path_polygon_to_polygon_blocks_and_dummy_blocks\n" );
    printf( "  grid_divisions (%u, %u)\n", grid_divisions.x, grid_divisions.y );
    printf( "  N Total Blocks %u\n", grid_divisions.x * grid_divisions.y );
    printf( "  N Empty Blocks %u\n", stats_n_empty_blocks );
    printf( "  N Dummy Blocks %u\n", stats_n_dummy_blocks );
    printf( "  N Polyg Blocks %u\n", stats_n_poly_blocks );
    printf( "  Med N Seg Poly %u\n", stats_sum_size_of_polygons / stats_n_poly_blocks );
    printf( "  medOfTheSquaresSegmentLength %f\n", medOfTheSquaresSegmentLength );
    printf( "  minSegmentLength             %f\n", minSegmentLength );
    printf( "  aDivFactor                   %f\n", aDivFactor );
    printf( "////////////////////////////////////////////////////////////////////////////////\n" );
#endif
}
Exemplo n.º 4
0
/* Plot outlines of copper, for copper layer
 */
void PlotLayerOutlines( BOARD* aBoard, PLOTTER* aPlotter,
                        LSET aLayerMask, const PCB_PLOT_PARAMS& aPlotOpt )
{

    BRDITEMS_PLOTTER itemplotter( aPlotter, aBoard, aPlotOpt );
    itemplotter.SetLayerSet( aLayerMask );

    SHAPE_POLY_SET outlines;

    for( LSEQ seq = aLayerMask.Seq( plot_seq, DIM( plot_seq ) );  seq;  ++seq )
    {
        LAYER_ID layer = *seq;

        outlines.RemoveAllContours();
        aBoard->ConvertBrdLayerToPolygonalContours( layer, outlines );

        outlines.Simplify();

        // Plot outlines
        std::vector< wxPoint > cornerList;

        // Now we have one or more basic polygons: plot each polygon
        for( int ii = 0; ii < outlines.OutlineCount(); ii++ )
        {
            for(int kk = 0; kk <= outlines.HoleCount (ii); kk++ )
            {
                cornerList.clear();
                const SHAPE_LINE_CHAIN& path = (kk == 0) ? outlines.COutline( ii ) : outlines.CHole( ii, kk - 1 );

                for( int jj = 0; jj < path.PointCount(); jj++ )
                    cornerList.push_back( wxPoint( path.CPoint( jj ).x , path.CPoint( jj ).y ) );


                // Ensure the polygon is closed
                if( cornerList[0] != cornerList[cornerList.size() - 1] )
                    cornerList.push_back( cornerList[0] );

                aPlotter->PlotPoly( cornerList, NO_FILL );
            }
        }

        // Plot pad holes
        if( aPlotOpt.GetDrillMarksType() != PCB_PLOT_PARAMS::NO_DRILL_SHAPE )
        {
            for( MODULE* module = aBoard->m_Modules; module; module = module->Next() )
            {
                for( D_PAD* pad = module->Pads(); pad; pad = pad->Next() )
                {
                    wxSize hole = pad->GetDrillSize();

                    if( hole.x == 0 || hole.y == 0 )
                        continue;

                    if( hole.x == hole.y )
                        aPlotter->Circle( pad->GetPosition(), hole.x, NO_FILL );
                    else
                    {
                        wxPoint drl_start, drl_end;
                        int width;
                        pad->GetOblongDrillGeometry( drl_start, drl_end, width );
                        aPlotter->ThickSegment( pad->GetPosition() + drl_start,
                                                pad->GetPosition() + drl_end, width, SKETCH );
                    }
                }
            }
        }

        // Plot vias holes
        for( TRACK* track = aBoard->m_Track; track; track = track->Next() )
        {
            const VIA* via = dyn_cast<const VIA*>( track );

            if( via && via->IsOnLayer( layer ) )    // via holes can be not through holes
            {
                aPlotter->Circle( via->GetPosition(), via->GetDrillValue(), NO_FILL );
            }
        }
    }
}