//--------------------------------------------------------------------------
// test the simple rounding cut generators methods.
void
CglSimpleRoundingUnitTest(
  const OsiSolverInterface * baseSiP,
  const std::string mpsDir )
{

  // Test default constructor
  {
    CglSimpleRounding cg;
  }

  // Test copy & assignment
  {
    CglSimpleRounding rhs;
    {
      CglSimpleRounding cg;
      CglSimpleRounding cgC(cg);
      rhs=cg;
    }
  }

  // Test gcd and gcdn
  {
    CglSimpleRounding cg;
    int v = cg.gcd(122,356);
    assert(v==2);
    v=cg.gcd(356,122);
    assert(v==2);
    v=cg.gcd(54,67);
    assert(v==1);
    v=cg.gcd(67,54);
    assert(v==1);
    v=cg.gcd(485,485);
    assert(v==485);
    v=cg.gcd(17*13,17*23);
    assert( v==17);
    v=cg.gcd(17*13*5,17*23);
    assert( v==17);
    v=cg.gcd(17*13*23,17*23);
    assert(v==17*23);

    int a[4] = {12, 20, 32, 400};
    v= cg.gcdv(4,a);
    assert(v== 4);
    int b[4] = {782, 4692, 51, 2754};
    v= cg.gcdv(4,b);
    assert(v== 17);
    int c[4] = {50, 40, 30, 10};
    v= cg.gcdv(4,c);
    assert(v== 10);
  }


  // Test generate cuts method on exmip1.5.mps
  {
    CglSimpleRounding cg;
    
    OsiSolverInterface * siP = baseSiP->clone();
    std::string fn = mpsDir+"exmip1.5.mps";
    siP->readMps(fn.c_str(),"");
    OsiCuts cuts;
    cg.generateCuts(*siP,cuts);

    // there should be 3 cuts
    int nRowCuts = cuts.sizeRowCuts();
    assert(nRowCuts==3);

    // get the last "sr"=simple rounding cut that was derived
    OsiRowCut srRowCut2 = cuts.rowCut(2); 
    CoinPackedVector srRowCutPV2 = srRowCut2.row();

    // this is what the last cut should look like: i.e. the "solution"
    const int solSize = 2;
    int solCols[solSize]={2,3};
    double solCoefs[solSize]={5.0, 4.0};
    OsiRowCut solRowCut;
    solRowCut.setRow(solSize,solCols,solCoefs);
    solRowCut.setLb(-COIN_DBL_MAX);
    solRowCut.setUb(2.0);

    // Test for equality between the derived cut and the solution cut

    // Note: testing two OsiRowCuts are equal invokes testing two
    // CoinPackedVectors are equal which invokes testing two doubles
    // are equal.  Usually not a good idea to test that two doubles are equal, 
    // but in this cut the "doubles" represent integer values. Also allow that
    // different solvers have different orderings in packed vectors, which may
    // not match the ordering defined for solRowCut.

    assert(srRowCut2.OsiCut::operator==(solRowCut)) ;
    assert(srRowCut2.row().isEquivalent(solRowCut.row())) ;
    assert(srRowCut2.lb() == solRowCut.lb()) ;
    assert(srRowCut2.ub() == solRowCut.ub()) ;

    delete siP;
  }

  // Test generate cuts method on p0033
  {
    CglSimpleRounding cg;
    
    OsiSolverInterface * siP = baseSiP->clone();
    std::string fn = mpsDir+"p0033";
    siP->readMps(fn.c_str(),"mps");
    OsiCuts cuts;
    cg.generateCuts(*siP,cuts);

    // p0033 is the optimal solution to p0033
    int objIndices[14] = { 
       0,  6,  7,  9, 13, 17, 18,
      22, 24, 25, 26, 27, 28, 29 };
    CoinPackedVector p0033(14,objIndices,1.0);

    // test that none of the generated cuts
    // chops off the optimal solution
    int nRowCuts = cuts.sizeRowCuts();
    OsiRowCut rcut;
    CoinPackedVector rpv;
    int i;
    for (i=0; i<nRowCuts; i++){
      rcut = cuts.rowCut(i);
      rpv = rcut.row();
      double p0033Sum = (rpv*p0033).sum();
      double rcutub = rcut.ub();
      assert (p0033Sum <= rcutub);
    }

    // test that the cuts improve the 
    // lp objective function value
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
    siP->resolve();
    double lpRelaxAfter=siP->getObjValue(); 
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
    printf("Final LP min=%f\n\n",lpRelaxAfter);
#endif
    assert( lpRelaxBefore < lpRelaxAfter );

    delete siP;

  }


}
Example #2
0
int main( int argc, char **argv )
{
    if ( argc < 2 )
    {
        printf("Invalid number of parameters!\n");
        exit( EXIT_FAILURE );
    }

    char problemName[ 256 ];
    getFileName( problemName, argv[1] );

    clock_t start = clock();
    OsiClpSolverInterface *realSolver = new OsiClpSolverInterface();
    realSolver->getModelPtr()->setPerturbation(50); /* makes CLP faster for hard instances */
    OsiSolverInterface *solver = (OsiSolverInterface*) realSolver;

    parseParameters( argc, argv );
    readLP( solver, argv[1] );

    FILE *log = NULL;
    if(!output.empty())
    {
        log = fopen(output.c_str(), "a");
        if(!log)
        {
            printf("Could not open the file!\n");
            exit(EXIT_FAILURE);
        }
    }

    const int numCols = solver->getNumCols(), numRows = solver->getNumRows();
    int pass = 0, newCuts = 0, totalCuts = 0;
    double pTime, opt, cgTime;
    CGraph *cgraph = NULL;

    if(sepMethod == Npsep)
    	cgraph = build_cgraph_osi( solver );

    if(!optFile.empty())
    {
        getOptimals();
        if(optimals.find(problemName) == optimals.end())
        {
            fprintf(stderr, "ERROR: optimal value not found!\n");
            exit(EXIT_FAILURE);
        }
        opt = optimals[problemName];
    }

    solver->initialSolve();

    if (!solver->isProvenOptimal())
    {
        if (solver->isAbandoned())
        {
            fprintf( stderr, "LP solver abandoned due to numerical dificulties.\n" );
            exit( EXIT_FAILURE );
        }
        if (solver->isProvenPrimalInfeasible())
        {
            fprintf( stderr, "LP solver says PRIMAL INFEASIBLE.\n" );
            exit( EXIT_FAILURE );
        }
        if (solver->isProvenDualInfeasible())
        {
            fprintf( stderr, "LP solver says DUAL INFEASIBLE.\n" );
            exit( EXIT_FAILURE );
        }
        if (solver->isPrimalObjectiveLimitReached())
        {
            fprintf( stderr, "LP solver says isPrimalObjectiveLimitReached.\n" );
            exit( EXIT_FAILURE );
        }
        if (solver->isDualObjectiveLimitReached())
        {
            fprintf( stderr, "LP solver says isDualObjectiveLimitReached.\n" );
            exit( EXIT_FAILURE );
        }
        if (solver->isIterationLimitReached())
        {
            fprintf( stderr, "LP solver says isIterationLimitReached.\n" );
            exit( EXIT_FAILURE );
        }

        fprintf( stderr, "ERROR: Could not solve LP relaxation to optimality. Checking status...\n" );
        exit( EXIT_FAILURE );
    }

    double initialBound = solver->getObjValue();
    printf("%.2lf %d %d %.7lf", ((double)(clock()-start)) / ((double)CLOCKS_PER_SEC), pass, 0, solver->getObjValue());
    if(!optFile.empty())
    {
        printf(" %.7lf %.7lf", opt, abs_mip_gap(solver->getObjValue(), opt));
    }
    printf("\n");

    do
    {
        clock_t startSep = clock();
        newCuts = 0;

        switch (sepMethod)
        {
            case Npsep:
            {
                CglEClique cliqueGen;
                OsiCuts cuts;
                CglTreeInfo info;
                info.level = 0;
                info.pass = 1;
                vector<string> varNames = getVarNames(solver->getColNames(), numCols);
                cliqueGen.parseParameters( argc, (const char**)argv );
                cliqueGen.setCGraph( cgraph );
                cliqueGen.setGenOddHoles( true ); //allow (or not) inserting odd hole cuts
                cliqueGen.colNames = &varNames;
                cliqueGen.generateCuts( *solver, cuts, info );
                newCuts = cuts.sizeCuts();
                solver->applyCuts( cuts );
            }
            break;

            case CglSepM:
            {
                CglClique cliqueGen;
                OsiCuts cuts;
                CglTreeInfo info;
                info.level = 0;
                info.pass = 1;
                cliqueGen.setMinViolation( MIN_VIOLATION );
                cliqueGen.setStarCliqueReport(false);
                cliqueGen.setRowCliqueReport(false);
                cliqueGen.generateCuts( *solver, cuts, info );
                newCuts = cuts.sizeCuts();
                solver->applyCuts( cuts );
            }
            break;

            Default:
            {
            	fprintf( stderr, "Separation Method does not recognized!\n" );
                exit( EXIT_FAILURE );
            }
        }

        pTime = ((double)(clock()-start)) / ((double)CLOCKS_PER_SEC);
        if(pTime > MAX_TIME) break;

        totalCuts += newCuts;
        ++pass;

        if (newCuts)
        {
            solver->resolve();
            if (!solver->isProvenOptimal())
            {
                if (solver->isAbandoned())
                {
                    fprintf( stderr, "LP solver abandoned due to numerical dificulties.\n" );
                    exit( EXIT_FAILURE );
                }
                if (solver->isProvenPrimalInfeasible())
                {
                    fprintf( stderr, "LP solver says PRIMAL INFEASIBLE.\n" );
                    exit( EXIT_FAILURE );
                }
                if (solver->isProvenDualInfeasible())
                {
                    fprintf( stderr, "LP solver says DUAL INFEASIBLE.\n" );
                    exit( EXIT_FAILURE );
                }
                if (solver->isPrimalObjectiveLimitReached())
                {
                    fprintf( stderr, "LP solver says isPrimalObjectiveLimitReached.\n" );
                    exit( EXIT_FAILURE );
                }
                if (solver->isDualObjectiveLimitReached())
                {
                    fprintf( stderr, "LP solver says isDualObjectiveLimitReached.\n" );
                    exit( EXIT_FAILURE );
                }
                if (solver->isIterationLimitReached())
                {
                    fprintf( stderr, "LP solver says isIterationLimitReached.\n" );
                    exit( EXIT_FAILURE );
                }

                fprintf( stderr, "ERROR: Could not solve LP relaxation. Exiting.\n" );
                exit( EXIT_FAILURE );
            }

            pTime = ((double)(clock()-start)) / ((double)CLOCKS_PER_SEC);
            if(pTime > MAX_TIME) break;

            double sepTime = ((double)(clock()-startSep)) / ((double)CLOCKS_PER_SEC);
            printf("%.2lf %d %d %.7lf", sepTime, pass, newCuts, solver->getObjValue());
            if(!optFile.empty())
                printf(" %.7lf %.7lf", opt, abs_mip_gap(solver->getObjValue(), opt));
            printf("\n");
        }
    }
    while ( (newCuts>0) && (pass<MAX_PASSES) ) ;

    if(log)
    {
        double totalTime = ((double)(clock()-start)) / ((double)CLOCKS_PER_SEC);
        fprintf(log, "%s %.2lf %d %d %.7lf", problemName, totalTime, pass - 1, totalCuts, solver->getObjValue());
        if(!optFile.empty())
            fprintf(log, " %.7lf", abs_mip_gap(solver->getObjValue(), opt));
        fprintf(log, "\n");
    }

    if(cgraph)
    	cgraph_free( &cgraph );

   	delete realSolver;

    return EXIT_SUCCESS;
}
Example #3
0
void
CglTwomirUnitTest(const OsiSolverInterface *baseSiP,
		  const std::string mpsDir)
{
  // Test default constructor
  {
    CglTwomir aGenerator;
  }
  
  // Test copy & assignment
  {
    CglTwomir rhs;
    {
      CglTwomir bGenerator;
      CglTwomir cGenerator(bGenerator);
      rhs=bGenerator;
    }
  }

  // Test get/set methods
  {
    CglTwomir getset;
    
    int gtmin = getset.getTmin() + 1;
    int gtmax = getset.getTmax() + 1;
    getset.setMirScale(gtmin, gtmax);
    double gtmin2 = getset.getTmin();
    double gtmax2 = getset.getTmax();
    assert(gtmin == gtmin2);
    assert(gtmax == gtmax2);

    int gamax = 2 * getset.getAmax() + 1;
    getset.setAMax(gamax);
    int gamax2 = getset.getAmax();
    assert(gamax == gamax2);
  }

  // Test generateCuts
  {
    CglTwomir gct;
    OsiSolverInterface  *siP = baseSiP->clone();
    std::string fn = mpsDir+"capPlan1";
    std::string fn2 = mpsDir+"capPlan1.mps";
    FILE *in_f = fopen(fn2.c_str(), "r");
    if(in_f == NULL) {
      std::cout<<"Can not open file "<<fn2<<std::endl<<"Skip test of CglTwomir::generateCuts()"<<std::endl;
    }
    else {
      fclose(in_f);
      siP->readMps(fn.c_str(),"mps");
 
      siP->initialSolve();
      double lpRelax = siP->getObjValue();
      
      OsiCuts cs;
      gct.generateCuts(*siP, cs);
      int nRowCuts = cs.sizeRowCuts();
      std::cout<<"There are "<<nRowCuts<<" Twomir cuts"<<std::endl;
      assert(cs.sizeRowCuts() > 0);
      OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cs);
      
      siP->resolve();
      
      double lpRelaxAfter= siP->getObjValue(); 
      std::cout<<"Initial LP value: "<<lpRelax<<std::endl;
      std::cout<<"LP value with cuts: "<<lpRelaxAfter<<std::endl;
      assert( lpRelax < lpRelaxAfter );
      assert(lpRelaxAfter < 964);
    }
    delete siP;
  }

}
void 
HeuristicInnerApproximation::extractInnerApproximation(Bonmin::OsiTMINLPInterface & nlp, OsiSolverInterface &si,
  const double * x, bool getObj) {
   printf("************  Start extracting inner approx");
   int n;
   int m;
   int nnz_jac_g;
   int nnz_h_lag;
   Ipopt::TNLP::IndexStyleEnum index_style;
   Bonmin::TMINLP2TNLP * problem = nlp.problem(); 
   //Get problem information
   problem->get_nlp_info(n, m, nnz_jac_g, nnz_h_lag, index_style);
   
   Bonmin::vector<int> jRow(nnz_jac_g);
   Bonmin::vector<int> jCol(nnz_jac_g);
   Bonmin::vector<double> jValues(nnz_jac_g);
   problem->eval_jac_g(n, NULL, 0, m, nnz_jac_g, jRow(), jCol(), NULL);
   if(index_style == Ipopt::TNLP::FORTRAN_STYLE)//put C-style
   {
     for(int i = 0 ; i < nnz_jac_g ; i++){
       jRow[i]--;
       jCol[i]--;
     }
   }
   
   //get Jacobian
   problem->eval_jac_g(n, x, 1, m, nnz_jac_g, NULL, NULL,
       jValues());
   
   Bonmin::vector<double> g(m);
   problem->eval_g(n, x, 1, m, g());
   
   Bonmin::vector<int> nonLinear(m);
   //store non linear constraints (which are to be removed from IA)
   int numNonLinear = 0;
   const double * rowLower = nlp.getRowLower();
   const double * rowUpper = nlp.getRowUpper();
   const double * colLower = nlp.getColLower();
   const double * colUpper = nlp.getColUpper();
   assert(m == nlp.getNumRows());
   double infty = si.getInfinity();
   double nlp_infty = nlp.getInfinity();
   Bonmin::vector<Ipopt::TNLP::LinearityType>  constTypes(m);
   Bonmin::vector<Ipopt::TNLP::LinearityType>  varTypes(n);
   problem->get_constraints_linearity(m, constTypes());
   problem->get_variables_linearity(n, varTypes());
   for (int i = 0; i < m; i++) {
     if (constTypes[i] == Ipopt::TNLP::NON_LINEAR) {
       nonLinear[numNonLinear++] = i;
     }
   }
   Bonmin::vector<double> rowLow(m - numNonLinear);
   Bonmin::vector<double> rowUp(m - numNonLinear);
   int ind = 0;
   for (int i = 0; i < m; i++) {
     if (constTypes[i] != Ipopt::TNLP::NON_LINEAR) {
       if (rowLower[i] > -nlp_infty) {
         //   printf("Lower %g ", rowLower[i]);
         rowLow[ind] = (rowLower[i]);
       } else
         rowLow[ind] = -infty;
       if (rowUpper[i] < nlp_infty) {
         //   printf("Upper %g ", rowUpper[i]);
         rowUp[ind] = (rowUpper[i]);
       } else
         rowUp[ind] = infty;
       ind++;
     }
   
   }
   
   CoinPackedMatrix mat(true, jRow(), jCol(), jValues(), nnz_jac_g);
   mat.setDimensions(m, n); // In case matrix was empty, this should be enough
   
   //remove non-linear constraints
   mat.deleteRows(numNonLinear, nonLinear());
   
   int numcols = nlp.getNumCols();
   Bonmin::vector<double> obj(numcols);
   for (int i = 0; i < numcols; i++)
     obj[i] = 0.;
   
   si.loadProblem(mat, nlp.getColLower(), nlp.getColUpper(), 
                  obj(), rowLow(), rowUp());
   const Bonmin::TMINLP::VariableType* variableType = problem->var_types();
   for (int i = 0; i < n; i++) {
     if ((variableType[i] == Bonmin::TMINLP::BINARY) || (variableType[i] == Bonmin::TMINLP::INTEGER))
       si.setInteger(i);
   }
   if (getObj) {
     bool addObjVar = false;
     if (problem->hasLinearObjective()) {
       double zero;
       Bonmin::vector<double> x0(n, 0.);
       problem->eval_f(n, x0(), 1, zero);
       si.setDblParam(OsiObjOffset, -zero);
       //Copy the linear objective and don't create a dummy variable.
       problem->eval_grad_f(n, x, 1, obj());
       si.setObjective(obj());
     } else {
       addObjVar = true;
     }
   
     if (addObjVar) {
       nlp.addObjectiveFunction(si, x);
     }
   }
   
   // Hassan IA initial description
   int InnerDesc = 1;
   if (InnerDesc == 1) {
     OsiCuts cs;
   
     double * p = CoinCopyOfArray(colLower, n);
     double * pp = CoinCopyOfArray(colLower, n);
     double * up = CoinCopyOfArray(colUpper, n);
   
     for (int i = 0; i < n; i++) {
       if (p[i] < -1e3){
          p[i] = pp[i] = -1e3;
       }
       if (up[i] > 1e2){
          up[i] = 1e2;
       }
     } 

     const int& nbAp = nbAp_;
     printf("Generating approximation with %i points.\n", nbAp);
   
     std::vector<double> step(n);
     int n_lin = 0;
   
     for (int i = 0; i < n; i++) {
       //if ((variableType[i] == Bonmin::TMINLP::BINARY) || (variableType[i] == Bonmin::TMINLP::INTEGER)) {
       if (varTypes[i] == Ipopt::TNLP::LINEAR) {
         n_lin ++;
         step[i] = 0;
         p[i] = pp[i] = up[i] = 0;
       }
       else {
         step[i] = (up[i] - p[i]) / (nbAp);
       }
     }
     printf("Number of linears %i\n", n_lin);
   
     for (int j = 1; j < nbAp; j++) {
   
       for (int i = 0; i < n; i++) {
         pp[i] += step[i];
       }
   
       for (int i = 0; (i < m ); i++) {
         if (constTypes[i] == Ipopt::TNLP::LINEAR) continue;
         bool status = getMyInnerApproximation(nlp, cs, i, p, pp);// Generate a chord connecting the two points
         if(status == false){
           printf("Error in generating inner approximation\n");
           exit(1);
         }
       }
       std::copy(pp, pp+n, p);
      
     }
   
     for(int i = 0; (i< m); i++) {
         if (constTypes[i] == Ipopt::TNLP::LINEAR) continue;
         getMyInnerApproximation(nlp, cs, i, p, up);// Generate a chord connecting the two points
     }

        delete [] p; 
        delete [] pp;
        delete [] up; 
     si.applyCuts(cs);
   }
   printf("************  Done extracting inner approx ********");
  }
void
CglResidualCapacityUnitTest(const OsiSolverInterface *baseSiP,
			    const std::string mpsDir)
{
  // Test default constructor
  {
    CglResidualCapacity aGenerator;
  }
  
  // Test copy & assignment
  {
    CglResidualCapacity rhs;
    {
      CglResidualCapacity bGenerator;
      CglResidualCapacity cGenerator(bGenerator);
      rhs=bGenerator;
    }
  }

  // Test get/set methods
  {
    CglResidualCapacity getset;
    
    double geps = 10 * getset.getEpsilon();
    getset.setEpsilon(geps);
    double geps2 = getset.getEpsilon();
    assert(geps == geps2);

    double gtol = 10 * getset.getTolerance();
    getset.setTolerance(gtol);
    double gtol2 = getset.getTolerance();
    assert(gtol == gtol2);

    int gpre = getset.getDoPreproc();
    gpre = (gpre + 1) % 3 - 1;
    getset.setDoPreproc(gpre);
    int gpre2 = getset.getDoPreproc();
    assert(gpre == gpre2);
  }

  // Test generateCuts
  {
    CglResidualCapacity gct;
    OsiSolverInterface  *siP = baseSiP->clone();
    std::string fn = mpsDir+"capPlan1";
    std::string fn2 = mpsDir+"capPlan1.mps";
    FILE *in_f = fopen(fn2.c_str(), "r");
    if(in_f == NULL) {
      std::cout<<"Can not open file "<<fn2<<std::endl<<"Skip test of CglResidualCapacity::generateCuts()"<<std::endl;
    }
    else {
      fclose(in_f);
      siP->readMps(fn.c_str(),"mps");
 
      siP->initialSolve();
      double lpRelax = siP->getObjValue();
      
      OsiCuts cs;
      gct.setDoPreproc(1); // Needed for DyLP
      gct.generateCuts(*siP, cs);
      int nRowCuts = cs.sizeRowCuts();
      std::cout<<"There are "<<nRowCuts<<" Residual Capacity cuts"<<std::endl;
      assert(cs.sizeRowCuts() > 0);
      OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cs);
      
      siP->resolve();
      
      double lpRelaxAfter= siP->getObjValue(); 
      std::cout<<"Initial LP value: "<<lpRelax<<std::endl;
      std::cout<<"LP value with cuts: "<<lpRelaxAfter<<std::endl;
      assert( lpRelax < lpRelaxAfter );
      assert(lpRelaxAfter < 964);
    }
    delete siP;
  }

}
Example #6
0
void
CglCliqueUnitTest(const OsiSolverInterface *baseSiP,
			    const std::string mpsDir)
{
  // Test default constructor
  {
    CglClique aGenerator;
  }

  // Test copy & assignment
  {
    CglClique rhs;
    {
      CglClique bGenerator;
      CglClique cGenerator(bGenerator);
      //rhs=bGenerator;
    }
  }

  // Test get/set methods
  {
    CglClique getset;
    // None to test
  }

  // Test generateCuts
  {
    CglClique gct;
    OsiSolverInterface  *siP = baseSiP->clone();
    std::string fn = mpsDir+"l152lav";
    std::string fn2 = mpsDir+"l152lav.mps";
    FILE *in_f = fopen(fn2.c_str(), "r");
    if(in_f == NULL) {
      std::cout<<"Can not open file "<<fn2<<std::endl<<"Skip test of CglClique::generateCuts()"<<std::endl;
    }
    else {
      fclose(in_f);
      siP->readMps(fn.c_str(),"mps");

      siP->initialSolve();
      double lpRelax = siP->getObjValue();

      OsiCuts cs;
      gct.generateCuts(*siP, cs);
      int nRowCuts = cs.sizeRowCuts();
      std::cout<<"There are "<<nRowCuts<<" Clique cuts"<<std::endl;
      assert(cs.sizeRowCuts() > 0);
      OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cs);

      siP->resolve();

      double lpRelaxAfter= siP->getObjValue();
      std::cout<<"Initial LP value: "<<lpRelax<<std::endl;
      std::cout<<"LP value with cuts: "<<lpRelaxAfter<<std::endl;
      assert( lpRelax < lpRelaxAfter );
      assert(lpRelaxAfter < 4722.1);
    }
    delete siP;
  }

}
void 
HeuristicInnerApproximation::extractInnerApproximation(OsiTMINLPInterface & nlp, OsiSolverInterface &si,
                                                       const double * x, bool getObj) {
   int n;
   int m;
   int nnz_jac_g;
   int nnz_h_lag;
   Ipopt::TNLP::IndexStyleEnum index_style;
   TMINLP2TNLP * problem = nlp.problem(); 
   //Get problem information
   problem->get_nlp_info(n, m, nnz_jac_g, nnz_h_lag, index_style);
   
   vector<int> jRow(nnz_jac_g);
   vector<int> jCol(nnz_jac_g);
   vector<double> jValues(nnz_jac_g);
   problem->eval_jac_g(n, NULL, 0, m, nnz_jac_g, jRow(), jCol(), NULL);
   if(index_style == Ipopt::TNLP::FORTRAN_STYLE)//put C-style
   {
     for(int i = 0 ; i < nnz_jac_g ; i++){
       jRow[i]--;
       jCol[i]--;
     }
   }
   
   //get Jacobian
   problem->eval_jac_g(n, x, 1, m, nnz_jac_g, NULL, NULL,
       jValues());
   
   vector<double> g(m);
   problem->eval_g(n, x, 1, m, g());
   
   vector<int> nonLinear(m);
   //store non linear constraints (which are to be removed from IA)
   int numNonLinear = 0;
   const double * rowLower = nlp.getRowLower();
   const double * rowUpper = nlp.getRowUpper();
   const double * colLower = nlp.getColLower();
   const double * colUpper = nlp.getColUpper();
   assert(m == nlp.getNumRows());
   double infty = si.getInfinity();
   double nlp_infty = nlp.getInfinity();
   vector<Ipopt::TNLP::LinearityType>  constTypes(m);
   problem->get_constraints_linearity(m, constTypes());
   for (int i = 0; i < m; i++) {
     if (constTypes[i] == Ipopt::TNLP::NON_LINEAR) {
       nonLinear[numNonLinear++] = i;
     }
   }
   vector<double> rowLow(m - numNonLinear);
   vector<double> rowUp(m - numNonLinear);
   int ind = 0;
   for (int i = 0; i < m; i++) {
     if (constTypes[i] != Ipopt::TNLP::NON_LINEAR) {
       if (rowLower[i] > -nlp_infty) {
         //   printf("Lower %g ", rowLower[i]);
         rowLow[ind] = (rowLower[i]);
       } else
         rowLow[ind] = -infty;
       if (rowUpper[i] < nlp_infty) {
         //   printf("Upper %g ", rowUpper[i]);
         rowUp[ind] = (rowUpper[i]);
       } else
         rowUp[ind] = infty;
       ind++;
     }
   
   }
   
   CoinPackedMatrix mat(true, jRow(), jCol(), jValues(), nnz_jac_g);
   mat.setDimensions(m, n); // In case matrix was empty, this should be enough
   
   //remove non-linear constraints
   mat.deleteRows(numNonLinear, nonLinear());
   
   int numcols = nlp.getNumCols();
   vector<double> obj(numcols);
   for (int i = 0; i < numcols; i++)
     obj[i] = 0.;
   
   si.loadProblem(mat, nlp.getColLower(), nlp.getColUpper(), 
                  obj(), rowLow(), rowUp());
   const Bonmin::TMINLP::VariableType* variableType = problem->var_types();
   for (int i = 0; i < n; i++) {
     if ((variableType[i] == TMINLP::BINARY) || (variableType[i]
         == TMINLP::INTEGER))
       si.setInteger(i);
   }
   if (getObj) {
     bool addObjVar = false;
     if (problem->hasLinearObjective()) {
       double zero;
       vector<double> x0(n, 0.);
       problem->eval_f(n, x0(), 1, zero);
       si.setDblParam(OsiObjOffset, -zero);
       //Copy the linear objective and don't create a dummy variable.
       problem->eval_grad_f(n, x, 1, obj());
       si.setObjective(obj());
     } else {
       addObjVar = true;
     }
   
     if (addObjVar) {
       nlp.addObjectiveFunction(si, x);
     }
   }
   
   // Hassan IA initial description
   int InnerDesc = 1;
   if (InnerDesc == 1) {
     OsiCuts cs;
   
     double * p = CoinCopyOfArray(colLower, n);
     double * pp = CoinCopyOfArray(colLower, n);
     double * up = CoinCopyOfArray(colUpper, n);
   
     const int& nbAp = nbAp_;
     std::vector<int> nbG(m, 0);// Number of generated points for each nonlinear constraint
   
     std::vector<double> step(n);
   
     for (int i = 0; i < n; i++) {
   
       if (colUpper[i] > 1e08) {
         up[i] = 0;
       }
   
       if (colUpper[i] > 1e08 || colLower[i] < -1e08 || (variableType[i]
           == TMINLP::BINARY) || (variableType[i] == TMINLP::INTEGER)) {
         step[i] = 0;
       } else
         step[i] = (up[i] - colLower[i]) / (nbAp);
   
       if (colLower[i] < -1e08) {
         p[i] = 0;
         pp[i] = 0;
       }
   
     }
     vector<double> g_p(m);
     vector<double> g_pp(m);
   
     for (int j = 1; j <= nbAp; j++) {
   
       for (int i = 0; i < n; i++) {
         pp[i] += step[i];
       }
   
       problem->eval_g(n, p, 1, m, g_p());
       problem->eval_g(n, pp, 1, m, g_pp());
       double diff = 0;
       int varInd = 0;
       for (int i = 0; (i < m && constTypes[i] == Ipopt::TNLP::NON_LINEAR); i++) {
         if (varInd == n - 1)
           varInd = 0;
         diff = std::abs(g_p[i] - g_pp[i]);
         if (nbG[i] < nbAp - 1) {
           getMyInnerApproximation(nlp, cs, i, p, pp);// Generate a chord connecting the two points
           p[varInd] = pp[varInd];
           nbG[i]++;
         }
         varInd++;
       }
     }
   
     for(int i = 0; (i< m && constTypes[i] == Ipopt::TNLP::NON_LINEAR); i++) {
      //  getConstraintOuterApproximation(cs, i, colUpper, NULL, true);// Generate Tangents at current point
         getMyInnerApproximation(nlp, cs, i, p, up);// Generate a chord connecting the two points
     }

        delete [] p; 
        delete [] pp;
        delete [] up; 
     si.applyCuts(cs);
   }
  }
void
CglMixedIntegerRoundingUnitTest(const OsiSolverInterface *baseSiP,
			    const std::string mpsDir)
{
  // Test default constructor
  {
    CglMixedIntegerRounding aGenerator;
  }

  // Test copy & assignment
  {
    CglMixedIntegerRounding rhs;
    {
      CglMixedIntegerRounding bGenerator;
      CglMixedIntegerRounding cGenerator(bGenerator);
      rhs=bGenerator;
    }
  }

  // Test get/set methods
  {
    CglMixedIntegerRounding getset;

    int gagg = 10 * getset.getMAXAGGR_();
    getset.setMAXAGGR_(gagg);
    int gagg2 = getset.getMAXAGGR_();
    assert(gagg == gagg2);

    bool gmult = !getset.getMULTIPLY_();
    getset.setMULTIPLY_(gmult);
    bool gmult2 = getset.getMULTIPLY_();
    assert(gmult == gmult2);

    int gcrit = getset.getCRITERION_();
    gcrit = (gcrit) % 3 + 1;
    getset.setCRITERION_(gcrit);
    int gcrit2 = getset.getCRITERION_();
    assert(gcrit == gcrit2);

    int gpre = getset.getDoPreproc();
    gpre = (gpre + 1) % 3 - 1;
    getset.setDoPreproc(gpre);
    int gpre2 = getset.getDoPreproc();
    assert(gpre == gpre2);
  }

  // Test generateCuts
  {
    CglMixedIntegerRounding gct;
    OsiSolverInterface  *siP = baseSiP->clone();
    std::string fn = mpsDir+"capPlan1";
    std::string fn2 = mpsDir+"capPlan1.mps";
    FILE *in_f = fopen(fn2.c_str(), "r");
    if(in_f == NULL) {
      std::cout<<"Can not open file "<<fn2<<std::endl<<"Skip test of CglMixedIntegerRounding::generateCuts()"<<std::endl;
    }
    else {
      fclose(in_f);
      siP->readMps(fn.c_str(),"mps");

      siP->initialSolve();
      double lpRelax = siP->getObjValue();

      OsiCuts cs;
      gct.generateCuts(*siP, cs);
      int nRowCuts = cs.sizeRowCuts();
      std::cout<<"There are "<<nRowCuts<<" MIR cuts"<<std::endl;
      assert(cs.sizeRowCuts() > 0);
      OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cs);

      siP->resolve();

      double lpRelaxAfter= siP->getObjValue();
      std::cout<<"Initial LP value: "<<lpRelax<<std::endl;
      std::cout<<"LP value with cuts: "<<lpRelaxAfter<<std::endl;
      assert( lpRelax < lpRelaxAfter );
      assert(lpRelaxAfter < 964);
    }
    delete siP;
  }

}
Example #9
0
//--------------------------------------------------------------------------
// ** At present this does not use any solver
void
CglGomoryUnitTest(
  const OsiSolverInterface * baseSiP,
  const std::string mpsDir )
{
  CoinRelFltEq eq(0.000001);

  // Test default constructor
  {
    CglGomory aGenerator;
    assert (aGenerator.getLimit()==50);
    assert (aGenerator.getAway()==0.05);
  }
  
  // Test copy & assignment etc
  {
    CglGomory rhs;
    {
      CglGomory bGenerator;
      bGenerator.setLimit(99);
      bGenerator.setAway(0.2);
      CglGomory cGenerator(bGenerator);
      rhs=bGenerator;
      assert (rhs.getLimit()==99);
      assert (rhs.getAway()==0.2);
    }
  }

  // Test explicit form - all integer (pg 125 Wolsey)
  if (1) {
    OsiCuts osicuts;
    CglGomory test1;
    int i;
    int nOldCuts=0,nRowCuts;
 
    // matrix data
    //deliberate hiccup of 2 between 0 and 1
    CoinBigIndex start[5]={0,4,7,8,9};
    int length[5]={2,3,1,1,1};
    int rows[11]={0,2,-1,-1,0,1,2,0,1,2};
    double elements[11]={7.0,2.0,1.0e10,1.0e10,-2.0,1.0,-2.0,1,1,1};
    CoinPackedMatrix matrix(true,3,5,8,elements,rows,start,length);
    
    // rim data (objective not used just yet)
    double rowLower[5]={14.0,3.0,3.0,1.0e10,1.0e10};
    double rowUpper[5]={14.0,3.0,3.0,-1.0e10,-1.0e10};
    double colLower[7]={0.0,0.0,0.0,0.0,0.0,0.0,0.0};
    double colUpper[7]={100.0,100.0,100.0,100.0,100.0,100.0,100.0};
  
    // integer
    char intVar[7]={2,2,2,2,2,2,2};

    // basis 1
    int rowBasis1[3]={-1,-1,-1};
    int colBasis1[5]={1,1,-1,-1,1};
    CoinWarmStartBasis warm;
    warm.setSize(5,3);
    for (i=0;i<3;i++) {
      if (rowBasis1[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<5;i++) {
      if (colBasis1[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 1
    double colsol1[5]={20.0/7.0,3.0,0.0,0.0,23.0/7.0};
    test1.generateCuts(NULL, osicuts, matrix,
		       /*objective,*/ colsol1,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==2);
    // cuts always <=
    int testCut=0; // test first cut as stronger
    double rhs=-6.0;
    double testCut1[5]={0.0,0.0,-1.0,-2.0,0.0};
    double * cut = testCut1;
    double * colsol = colsol1;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==2);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	// explicit slack
	matrix.setDimensions(-1,6);
	rpv.insert(5,1.0*7.0); // to get cut in book
	rowLower[3]=ub;
	rowUpper[3]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 2
    int rowBasis2[4]={-1,-1,-1,-1};
    int colBasis2[6]={1,1,1,1,-1,-1};
    warm.setSize(6,4);
    for (i=0;i<4;i++) {
      if (rowBasis2[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<6;i++) {
      if (colBasis2[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 2
    double colsol2[6]={2.0,0.5,1.0,2.5,0.0,0.0};
    test1.generateCuts(NULL, osicuts, matrix,
		       /*objective,*/ colsol2,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts-nOldCuts==2);
    // cuts always <=
    testCut=0; // test first cut as stronger
    rhs=-1.0;
    double testCut2[6]={0.0,0.0,0.0,0.0,-1.0,0.0};
    cut = testCut2;
    colsol = colsol2;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==1);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	// explicit slack
	matrix.setDimensions(-1,7);
	rpv.insert(6,1.0);
	rowLower[4]=ub;
	rowUpper[4]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 3
    int rowBasis3[5]={-1,-1,-1,-1,-1};
    int colBasis3[7]={1,1,1,1,1,-1,-1};
    warm.setSize(7,5);
    for (i=0;i<5;i++) {
      if (rowBasis3[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<7;i++) {
      if (colBasis3[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 3
    double colsol3[7]={2.0,1.0,2.0,2.0,1.0,0.0,0.0};
    test1.generateCuts(NULL, osicuts, matrix,
		       /*objective,*/ colsol3,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==nOldCuts);
    
  }
  // Test explicit form - this time with x4 flipped
  if (1) {
    OsiCuts osicuts;
    CglGomory test1;
    int i;
    int nOldCuts=0,nRowCuts;
 
    // matrix data
    //deliberate hiccup of 2 between 0 and 1
    CoinBigIndex start[5]={0,4,7,8,9};
    int length[5]={2,3,1,1,1};
    int rows[11]={0,2,-1,-1,0,1,2,0,1,2};
    double elements[11]={7.0,2.0,1.0e10,1.0e10,-2.0,1.0,-2.0,1,-1,1};
    CoinPackedMatrix matrix(true,3,5,8,elements,rows,start,length);
    
    // rim data (objective not used just yet)
    double rowLower[5]={14.0,-5.0,3.0,1.0e10,1.0e10};
    double rowUpper[5]={14.0,-5.0,3.0,-1.0e10,-1.0e10};
    double colLower[7]={0.0,0.0,0.0,0.0,0.0,0.0,0.0};
    double colUpper[7]={100.0,100.0,100.0,8.0,100.0,100.0,100.0};
  
    // integer
    char intVar[7]={2,2,2,2,2,2,2};

    // basis 1
    int rowBasis1[3]={-1,-1,-1};
    int colBasis1[5]={1,1,-1,-1,1};
    CoinWarmStartBasis warm;
    warm.setSize(5,3);
    for (i=0;i<3;i++) {
      if (rowBasis1[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<5;i++) {
      if (colBasis1[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 1
    double colsol1[5]={20.0/7.0,3.0,0.0,8.0,23.0/7.0};
    test1.generateCuts(NULL, osicuts, matrix,
		       /*objective,*/ colsol1,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==2);
    // cuts always <=
    int testCut=0; // test first cut as stronger
    double rhs=10.0;
    double testCut1[5]={0.0,0.0,-1.0,2.0,0.0};
    double * cut = testCut1;
    double * colsol = colsol1;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==2);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	// explicit slack
	matrix.setDimensions(-1,6);
	rpv.insert(5,1.0*7.0); // to get cut in book
	rowLower[3]=ub;
	rowUpper[3]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 2
    int rowBasis2[4]={-1,-1,-1,-1};
    int colBasis2[6]={1,1,1,1,-1,-1};
    warm.setSize(6,4);
    for (i=0;i<4;i++) {
      if (rowBasis2[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<6;i++) {
      if (colBasis2[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 2
    double colsol2[6]={2.0,0.5,1.0,5.5,0.0,0.0};
    test1.generateCuts(NULL, osicuts, matrix,
		       /*objective,*/ colsol2,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts-nOldCuts==2);
    // cuts always <=
    testCut=0; // test first cut as stronger
    rhs=-1.0;
    double testCut2[6]={0.0,0.0,0.0,0.0,-1.0,0.0};
    cut = testCut2;
    colsol = colsol2;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==1);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	// explicit slack
	matrix.setDimensions(-1,7);
	rpv.insert(6,1.0);
	rowLower[4]=ub;
	rowUpper[4]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 3
    int rowBasis3[5]={-1,-1,-1,-1,-1};
    int colBasis3[7]={1,1,1,1,1,-1,-1};
    warm.setSize(7,5);
    for (i=0;i<5;i++) {
      if (rowBasis3[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<7;i++) {
      if (colBasis3[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 3
    double colsol3[7]={2.0,1.0,2.0,6.0,1.0,0.0,0.0};
    test1.generateCuts(NULL, osicuts, matrix,
		       /*objective,*/ colsol3,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==nOldCuts);
    
  }
  // Test with slacks 
  if (1) {
    OsiCuts osicuts;
    CglGomory test1;
    int i;
    int nOldCuts=0,nRowCuts;
 
    // matrix data
    //deliberate hiccup of 2 between 0 and 1
    CoinBigIndex start[5]={0,4};
    int length[5]={2,3};
    int rows[11]={0,2,-1,-1,0,1,2};
    double elements[11]={7.0,2.0,1.0e10,1.0e10,-2.0,1.0,-2.0};
    CoinPackedMatrix matrix(true,3,2,5,elements,rows,start,length);
    
    // rim data (objective not used just yet)
    double rowLower[5]={-1.0e10,-1.0e10,-1.0e10,1.0e10,1.0e10};
    double rowUpper[5]={14.0,3.0,3.0,-1.0e10,-1.0e10};
    double colLower[2]={0.0,0.0};
    double colUpper[2]={100.0,100.0};
  
    // integer
    char intVar[2]={2,2};

    // basis 1
    int rowBasis1[3]={-1,-1,1};
    int colBasis1[2]={1,1};
    CoinWarmStartBasis warm;
    warm.setSize(2,3);
    for (i=0;i<3;i++) {
      if (rowBasis1[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<2;i++) {
      if (colBasis1[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 1
    double colsol1[2]={20.0/7.0,3.0};
    test1.generateCuts(NULL, osicuts, matrix,
		       /* objective,*/ colsol1,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==1);
    // cuts always <=
    int testCut=0; // test first cut as stronger
    double rhs=2.0;
    double testCut1[2]={1.0,0.0};
    double * cut = testCut1;
    double * colsol = colsol1;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==1);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	rowLower[3]=-1.0e100;
	rowUpper[3]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 2
    int rowBasis2[4]={1,1,-1,-1};
    int colBasis2[2]={1,1};
    warm.setSize(2,4);
    for (i=0;i<4;i++) {
      if (rowBasis2[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<2;i++) {
      if (colBasis2[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 2
    double colsol2[2]={2.0,0.5};
    test1.generateCuts(NULL, osicuts, matrix,
		       /*objective,*/ colsol2,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts-nOldCuts==1);
    // cuts always <=
    testCut=0; // test first cut as stronger
    rhs=1.0;
    double testCut2[2]={1.0,-1.0};
    cut = testCut2;
    colsol = colsol2;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==2);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	rowLower[4]=-1.0e100;
	rowUpper[4]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 3
    int rowBasis3[5]={1,1,1,-1,-1};
    int colBasis3[2]={1,1};
    warm.setSize(2,5);
    for (i=0;i<5;i++) {
      if (rowBasis3[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<2;i++) {
      if (colBasis3[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 3
    double colsol3[2]={2.0,1.0};
    test1.generateCuts(NULL, osicuts, matrix,
		       /*objective,*/ colsol3,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==nOldCuts);
    
  }
  // swap some rows to G
  if (1) {
    OsiCuts osicuts;
    CglGomory test1;
    int i;
    int nOldCuts=0,nRowCuts;
 
    // matrix data
    //deliberate hiccup of 2 between 0 and 1
    CoinBigIndex start[5]={0,4};
    int length[5]={2,3};
    int rows[11]={0,2,-1,-1,0,1,2};
    double elements[11]={-7.0,-2.0,1.0e10,1.0e10,+2.0,1.0,+2.0};
    CoinPackedMatrix matrix(true,3,2,5,elements,rows,start,length);
    
    // rim data (objective not used just yet)
    double rowUpper[5]={1.0e10,3.0,1.0e10,-1.0e10,-1.0e10};
    double rowLower[5]={-14.0,-1.0e10,-3.0,1.0e10,1.0e10};
    double colLower[2]={0.0,0.0};
    double colUpper[2]={100.0,100.0};
  
    // integer
    char intVar[2]={2,2};

    // basis 1
    int rowBasis1[3]={-1,-1,1};
    int colBasis1[2]={1,1};
    CoinWarmStartBasis warm;
    warm.setSize(2,3);
    for (i=0;i<3;i++) {
      if (rowBasis1[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<2;i++) {
      if (colBasis1[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 1
    double colsol1[2]={20.0/7.0,3.0};
    test1.generateCuts(NULL, osicuts, matrix,
		 /*objective,*/ colsol1,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==1);
    // cuts always <=
    int testCut=0; // test first cut as stronger
    double rhs=2.0;
    double testCut1[2]={1.0,0.0};
    double * cut = testCut1;
    double * colsol = colsol1;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==1);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	rowLower[3]=-1.0e100;
	rowUpper[3]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 2
    int rowBasis2[4]={1,1,-1,-1};
    int colBasis2[2]={1,1};
    warm.setSize(2,4);
    for (i=0;i<4;i++) {
      if (rowBasis2[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<2;i++) {
      if (colBasis2[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 2
    double colsol2[2]={2.0,0.5};
    test1.generateCuts(NULL, osicuts, matrix,
		 /*objective,*/ colsol2,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts-nOldCuts==1);
    // cuts always <=
    testCut=0; // test first cut as stronger
    rhs=1.0;
    double testCut2[2]={1.0,-1.0};
    cut = testCut2;
    colsol = colsol2;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==2);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	rowLower[4]=-1.0e100;
	rowUpper[4]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 3
    int rowBasis3[5]={1,1,1,-1,-1};
    int colBasis3[2]={1,1};
    warm.setSize(2,5);
    for (i=0;i<5;i++) {
      if (rowBasis3[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<2;i++) {
      if (colBasis3[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 3
    double colsol3[2]={2.0,1.0};
    test1.generateCuts(NULL, osicuts, matrix,
		 /*objective,*/ colsol3,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==nOldCuts);
    
  }


  // NOW mixed integer gomory cuts

  // Test explicit form - (pg 130 Wolsey)
  // Some arrays left same size as previously although not used in full
  if (1) {
    OsiCuts osicuts;
    CglGomory test1;
    int i;
    int nOldCuts=0,nRowCuts;
 
    // matrix data
    //deliberate hiccup of 2 between 0 and 1
    CoinBigIndex start[5]={0,4,7,8,9};
    int length[5]={2,3,1,1,1};
    int rows[11]={0,2,-1,-1,0,1,2,0,1,2};
    double elements[11]={7.0,2.0,1.0e10,1.0e10,-2.0,1.0,-2.0,1,1,1};
    CoinPackedMatrix matrix(true,3,5,8,elements,rows,start,length);
    
    // rim data (objective not used just yet)
    double rowLower[5]={14.0,3.0,3.0,1.0e10,1.0e10};
    double rowUpper[5]={14.0,3.0,3.0,-1.0e10,-1.0e10};
    double colLower[7]={0.0,0.0,0.0,0.0,0.0,0.0,0.0};
    double colUpper[7]={100.0,100.0,100.0,100.0,100.0,100.0,100.0};
  
    // integer
    char intVar[7]={2,0,0,0,0,0,0};

    // basis 1
    int rowBasis1[3]={-1,-1,-1};
    int colBasis1[5]={1,1,-1,-1,1};
    CoinWarmStartBasis warm;
    warm.setSize(5,3);
    for (i=0;i<3;i++) {
      if (rowBasis1[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<5;i++) {
      if (colBasis1[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 1
    double colsol1[5]={20.0/7.0,3.0,0.0,0.0,23.0/7.0};
    test1.generateCuts(NULL, osicuts, matrix,
		 /*objective,*/ colsol1,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==1);
    // cuts always <=
    int testCut=0; // test first cut as stronger
    double rhs=-6.0/7.0;
    double testCut1[5]={0.0,0.0,-1.0/7.0,-2.0/7.0,0.0};
    double * cut = testCut1;
    double * colsol = colsol1;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==2);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	// explicit slack
	matrix.setDimensions(-1,6);
	rpv.insert(5,1.0); // to get cut in book
	rowLower[3]=ub;
	rowUpper[3]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 2
    int rowBasis2[4]={-1,-1,-1,-1};
    int colBasis2[6]={1,1,1,1,-1,-1};
    warm.setSize(6,4);
    for (i=0;i<4;i++) {
      if (rowBasis2[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<6;i++) {
      if (colBasis2[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 2
    double colsol2[6]={2.0,0.5,1.0,2.5,0.0,0.0};
    test1.generateCuts(NULL, osicuts, matrix,
		 /*objective,*/ colsol2,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==nOldCuts);
    
  }
  // Test explicit form - this time with x4 flipped 
  if (1) {
    OsiCuts osicuts;
    CglGomory test1;
    int i;
    int nOldCuts=0,nRowCuts;
 
    // matrix data
    //deliberate hiccup of 2 between 0 and 1
    CoinBigIndex start[5]={0,4,7,8,9};
    int length[5]={2,3,1,1,1};
    int rows[11]={0,2,-1,-1,0,1,2,0,1,2};
    double elements[11]={7.0,2.0,1.0e10,1.0e10,-2.0,1.0,-2.0,1,-1,1};
    CoinPackedMatrix matrix(true,3,5,8,elements,rows,start,length);
    
    // rim data (objective not used just yet)
    double rowLower[5]={14.0,-5.0,3.0,1.0e10,1.0e10};
    double rowUpper[5]={14.0,-5.0,3.0,-1.0e10,-1.0e10};
    double colLower[7]={0.0,0.0,0.0,0.0,0.0,0.0,0.0};
    double colUpper[7]={100.0,100.0,100.0,8.0,100.0,100.0,100.0};
  
    // integer
    char intVar[7]={2,0,0,0,0,0,0};

    // basis 1
    int rowBasis1[3]={-1,-1,-1};
    int colBasis1[5]={1,1,-1,-1,1};
    CoinWarmStartBasis warm;
    warm.setSize(5,3);
    for (i=0;i<3;i++) {
      if (rowBasis1[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<5;i++) {
      if (colBasis1[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 1
    double colsol1[5]={20.0/7.0,3.0,0.0,8.0,23.0/7.0};
    test1.generateCuts(NULL, osicuts, matrix,
		 /*objective,*/ colsol1,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==1);
    // cuts always <=
    int testCut=0; 
    double rhs=10.0/7.0;
    double testCut1[5]={0.0,0.0,-1.0/7.0,2.0/7.0,0.0};
    double * cut = testCut1;
    double * colsol = colsol1;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==2);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	// explicit slack
	matrix.setDimensions(-1,6);
	rpv.insert(5,1.0); // to get cut in book
	rowLower[3]=ub;
	rowUpper[3]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 2
    int rowBasis2[4]={-1,-1,-1,-1};
    int colBasis2[6]={1,1,1,1,-1,-1};
    warm.setSize(6,4);
    for (i=0;i<4;i++) {
      if (rowBasis2[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<6;i++) {
      if (colBasis2[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 2
    double colsol2[6]={2.0,0.5,1.0,5.5,0.0,0.0};
    test1.generateCuts(NULL, osicuts, matrix,
		 /*objective,*/ colsol2,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==nOldCuts);
    
  }
  // Test with slacks 
  if (1) {
    OsiCuts osicuts;
    CglGomory test1;
    int i;
    int nOldCuts=0,nRowCuts;
 
    // matrix data
    //deliberate hiccup of 2 between 0 and 1
    CoinBigIndex start[5]={0,4};
    int length[5]={2,3};
    int rows[11]={0,2,-1,-1,0,1,2};
    double elements[11]={7.0,2.0,1.0e10,1.0e10,-2.0,1.0,-2.0};
    CoinPackedMatrix matrix(true,3,2,5,elements,rows,start,length);
    
    // rim data (objective not used just yet)
    double rowLower[5]={-1.0e10,-1.0e10,-1.0e10,1.0e10,1.0e10};
    double rowUpper[5]={14.0,3.0,3.0,-1.0e10,-1.0e10};
    double colLower[2]={0.0,0.0};
    double colUpper[2]={100.0,100.0};
  
    // integer
    char intVar[2]={2,0};

    // basis 1
    int rowBasis1[3]={-1,-1,1};
    int colBasis1[2]={1,1};
    CoinWarmStartBasis warm;
    warm.setSize(2,3);
    for (i=0;i<3;i++) {
      if (rowBasis1[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<2;i++) {
      if (colBasis1[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 1
    double colsol1[2]={20.0/7.0,3.0};
    test1.generateCuts(NULL, osicuts, matrix,
		 /*objective,*/ colsol1,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==1);
    // cuts always <=
    int testCut=0; // test first cut as stronger
    double rhs=2.0;
    double testCut1[2]={1.0,0.0};
    double * cut = testCut1;
    double * colsol = colsol1;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==1);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	rowLower[3]=-1.0e100;
	rowUpper[3]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 2
    int rowBasis2[4]={1,1,-1,-1};
    int colBasis2[2]={1,1};
    warm.setSize(2,4);
    for (i=0;i<4;i++) {
      if (rowBasis2[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<2;i++) {
      if (colBasis2[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 2
    double colsol2[2]={2.0,0.5};
    test1.generateCuts(NULL, osicuts, matrix,
		       /*objective,*/ colsol2,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==nOldCuts);
    
  }
  // swap some rows to G
  if (1) {
    OsiCuts osicuts;
    CglGomory test1;
    int i;
    int nOldCuts=0,nRowCuts;
 
    // matrix data
    //deliberate hiccup of 2 between 0 and 1
    CoinBigIndex start[5]={0,4};
    int length[5]={2,3};
    int rows[11]={0,2,-1,-1,0,1,2};
    double elements[11]={-7.0,-2.0,1.0e10,1.0e10,+2.0,1.0,+2.0};
    CoinPackedMatrix matrix(true,3,2,5,elements,rows,start,length);
    
    // rim data (objective not used just yet)
    double rowUpper[5]={1.0e10,3.0,1.0e10,-1.0e10,-1.0e10};
    double rowLower[5]={-14.0,-1.0e10,-3.0,1.0e10,1.0e10};
    double colLower[2]={0.0,0.0};
    double colUpper[2]={100.0,100.0};
  
    // integer
    char intVar[2]={2,0};

    // basis 1
    int rowBasis1[3]={-1,-1,1};
    int colBasis1[2]={1,1};
    CoinWarmStartBasis warm;
    warm.setSize(2,3);
    for (i=0;i<3;i++) {
      if (rowBasis1[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<2;i++) {
      if (colBasis1[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 1
    double colsol1[2]={20.0/7.0,3.0};
    test1.generateCuts(NULL, osicuts, matrix,
		       /*objective,*/ colsol1,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==1);
    // cuts always <=
    int testCut=0; // test first cut as stronger
    double rhs=2.0;
    double testCut1[2]={1.0,0.0};
    double * cut = testCut1;
    double * colsol = colsol1;
    for (i=nOldCuts; i<nRowCuts; i++){
      OsiRowCut rcut;
      CoinPackedVector rpv;
      rcut = osicuts.rowCut(i);
      rpv = rcut.row();
      const int n = rpv.getNumElements();
      const int * indices = rpv.getIndices();
      double* elements = rpv.getElements();
      double sum2=0.0;
      int k=0;
      for (k=0; k<n; k++){
	int column=indices[k];
	sum2 += colsol[column]*elements[k];
      }

      double ub=rcut.ub();

#ifdef CGL_DEBUG
      double lb=rcut.lb();
      if (sum2 >ub + 1.0e-7 ||sum2 < lb - 1.0e-7) {
	std::cout<<"Cut "<<i<<" lb "<<lb<<" solution "<<sum2<<" ub "<<ub<<std::endl;
	for (k=0; k<n; k++){
	  int column=indices[k];
	  std::cout<<"(col="<<column<<",el="<<elements[k]<<",sol="<<
	    colsol[column]<<") ";
	}
	std::cout <<std::endl;
      }
#endif

      if (i-nOldCuts==testCut) {
	assert( eq(rhs,ub));
	assert(n==1);
	for (k=0; k<n; k++){
	  int column=indices[k];
	  assert (eq(cut[column],elements[k]));
	}
	// add cut
	rowLower[3]=-1.0e100;
	rowUpper[3]=ub;
	matrix.appendRow(rpv);
      }
    }
    nOldCuts=nRowCuts;
    // basis 2
    int rowBasis2[4]={1,1,-1,-1};
    int colBasis2[2]={1,1};
    warm.setSize(2,4);
    for (i=0;i<4;i++) {
      if (rowBasis2[i]<0) {
	warm.setArtifStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setArtifStatus(i,CoinWarmStartBasis::basic);
      }
    }
    for (i=0;i<2;i++) {
      if (colBasis2[i]<0) {
	warm.setStructStatus(i,CoinWarmStartBasis::atLowerBound);
      } else {
	warm.setStructStatus(i,CoinWarmStartBasis::basic);
      }
    }

    // solution 2
    double colsol2[2]={2.0,0.5};
    test1.generateCuts(NULL, osicuts, matrix,
		 /*objective,*/ colsol2,
		 colLower, colUpper,
		 rowLower, rowUpper, intVar, &warm);
    nRowCuts = osicuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" gomory cuts"<<std::endl;
    assert (nRowCuts==nOldCuts);
    
  }

  // Miplib3 problem p0033
  if (1) {
    // Setup
    OsiSolverInterface  * siP = baseSiP->clone();
    std::string fn(mpsDir+"p0033");
    siP->readMps(fn.c_str(),"mps");
    siP->activateRowCutDebugger("p0033");
    CglGomory test;

    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparison 
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    std::cout<<"Initial LP value: "<<lpRelaxBefore<<std::endl;
    assert( eq(lpRelaxBefore, 2520.5717391304347) );

    // Fails with OsiCpx, OsiXpr:
    /**********
    double mycs[] = {0, 1, 0, 0, -2.0837010502455788e-19, 1, 0, 0, 1,
		       0.021739130434782594, 0.35652173913043478, 
		       -6.7220534694101275e-18, 5.3125906451789717e-18, 
		       1, 0, 1.9298798670241979e-17, 0, 0, 0,
		       7.8875708048320448e-18, 0.5, 0, 
		       0.85999999999999999, 1, 1, 0.57999999999999996,
		       1, 0, 1, 0, 0.25, 0, 0.67500000000000004};
    siP->setColSolution(mycs);
    ****/

    OsiCuts cuts;    
    
    // Test generateCuts method
    test.generateCuts(*siP,cuts);
    int nRowCuts = cuts.sizeRowCuts();
    std::cout<<"There are "<<nRowCuts<<" Gomory cuts"<<std::endl;
    assert(cuts.sizeRowCuts() > 0);
    OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
    
    siP->resolve();
    double lpRelaxAfter=siP->getObjValue(); 
    std::cout<<"LP value with cuts: "<<lpRelaxAfter<<std::endl;
    //assert( eq(lpRelaxAfter, 2592.1908295194507) );
    assert( lpRelaxAfter> 2550.0 );
    assert( lpRelaxBefore < lpRelaxAfter );
    assert(lpRelaxAfter < 3089.1);
    
    delete siP;
  } 
}
Example #10
0
void
CglRedSplitUnitTest(const OsiSolverInterface *baseSiP,
		    const std::string mpsDir)
{
  // Test default constructor
  {
    CglRedSplit aGenerator;
  }
  
  // Test copy & assignment
  {
    CglRedSplit rhs;
    {
      CglRedSplit bGenerator;
      CglRedSplit cGenerator(bGenerator);
      rhs=bGenerator;
    }
  }

  // Test get/set methods
  {
    CglRedSplit getset;
    CglRedSplitParam gsparam = getset.getParam();
    
    double geps = 10 * gsparam.getEPS();
    gsparam.setEPS(geps);
    double geps2 = gsparam.getEPS();
    assert(geps == geps2);

    double gepse = 10 * gsparam.getEPS_ELIM();
    gsparam.setEPS_ELIM(gepse);
    double gepse2 = gsparam.getEPS_ELIM();
    assert(gepse == gepse2);

    double gmv = 10 * gsparam.getMINVIOL();
    gsparam.setMINVIOL(gmv);
    double gmv2 = gsparam.getMINVIOL();
    assert(gmv == gmv2);

    int gucg = gsparam.getUSE_CG2();
    gucg = 1 - gucg;
    gsparam.setUSE_CG2(gucg);
    int gucg2 = gsparam.getUSE_CG2();
    assert(gucg == gucg2);
  }

  // Test generateCuts
  {
    CglRedSplit gct;
    OsiSolverInterface  *siP = baseSiP->clone();
    std::string fn = mpsDir+"p0033";
    std::string fn2 = mpsDir+"p0033.mps";
    FILE *in_f = fopen(fn2.c_str(), "r");
    if(in_f == NULL) {
      std::cout<<"Can not open file "<<fn2<<std::endl<<"Skip test of CglRedSplit::generateCuts()"<<std::endl;
    }
    else {
      fclose(in_f);
      siP->readMps(fn.c_str(),"mps");
 
      siP->initialSolve();
      double lpRelax = siP->getObjValue();
      
      OsiCuts cs;
      gct.getParam().setMAX_SUPPORT(34);
      gct.getParam().setUSE_CG2(1);
      //      gct.getParam().setUSE_CG2(1);
      gct.generateCuts(*siP, cs);
      int nRowCuts = cs.sizeRowCuts();
      std::cout<<"There are "<<nRowCuts<<" Reduce-and-Split cuts"<<std::endl;
      assert(cs.sizeRowCuts() > 0);
      OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cs);
      
      siP->resolve();
      
      double lpRelaxAfter= siP->getObjValue(); 
      std::cout<<"Initial LP value: "<<lpRelax<<std::endl;
      std::cout<<"LP value with cuts: "<<lpRelaxAfter<<std::endl;
      assert( lpRelax < lpRelaxAfter );
      assert(lpRelaxAfter < 3089.1);
    }
    delete siP;
  }

}
Example #11
0
void
CglLandPUnitTest(
    OsiSolverInterface * si,
    const std::string &mpsDir)
{
    CoinRelFltEq eq(1e-05);
    // Test default constructor
    {
        CglLandP aGenerator;
        assert(aGenerator.parameter().pivotLimit==20);
        assert(aGenerator.parameter().maxCutPerRound==5000);
        assert(aGenerator.parameter().failedPivotLimit==1);
        assert(aGenerator.parameter().degeneratePivotLimit==0);
        assert(eq(aGenerator.parameter().pivotTol, 1e-04));
        assert(eq(aGenerator.parameter().away, 5e-04));
        assert(eq(aGenerator.parameter().timeLimit, COIN_DBL_MAX));
        assert(eq(aGenerator.parameter().singleCutTimeLimit, COIN_DBL_MAX));
        assert(aGenerator.parameter().useTableauRow==true);
        assert(aGenerator.parameter().modularize==false);
        assert(aGenerator.parameter().strengthen==true);
        assert(aGenerator.parameter().perturb==true);
        assert(aGenerator.parameter().pivotSelection==CglLandP::mostNegativeRc);
    }


    // Test copy constructor
    {
        CglLandP a;
        {
            CglLandP b;
            b.parameter().pivotLimit = 100;
            b.parameter().maxCutPerRound = 100;
            b.parameter().failedPivotLimit = 10;
            b.parameter().degeneratePivotLimit = 10;
            b.parameter().pivotTol = 1e-07;
            b.parameter().away = 1e-10;
            b.parameter().timeLimit = 120;
            b.parameter().singleCutTimeLimit = 15;
            b.parameter().useTableauRow = true;
            b.parameter().modularize = true;
            b.parameter().strengthen = false;
            b.parameter().perturb = false;
            b.parameter().pivotSelection=CglLandP::bestPivot;
            //Test Copy
            CglLandP c(b);
            assert(c.parameter().pivotLimit == 100);
            assert(c.parameter().maxCutPerRound == 100);
            assert(c.parameter().failedPivotLimit == 10);
            assert(c.parameter().degeneratePivotLimit == 10);
            assert(c.parameter().pivotTol == 1e-07);
            assert(c.parameter().away == 1e-10);
            assert(c.parameter().timeLimit == 120);
            assert(c.parameter().singleCutTimeLimit == 15);
            assert(c.parameter().useTableauRow == true);
            assert(c.parameter().modularize == true);
            assert(c.parameter().strengthen == false);
            assert(c.parameter().perturb == false);
            assert(c.parameter().pivotSelection == CglLandP::bestPivot);
            a=b;
            assert(a.parameter().pivotLimit == 100);
            assert(a.parameter().maxCutPerRound == 100);
            assert(a.parameter().failedPivotLimit == 10);
            assert(a.parameter().degeneratePivotLimit == 10);
            assert(a.parameter().pivotTol == 1e-07);
            assert(a.parameter().away == 1e-10);
            assert(a.parameter().timeLimit == 120);
            assert(a.parameter().singleCutTimeLimit == 15);
            assert(a.parameter().useTableauRow == true);
            assert(a.parameter().modularize == true);
            assert(a.parameter().strengthen == false);
            assert(a.parameter().perturb == false);
            assert(a.parameter().pivotSelection == CglLandP::bestPivot);
        }
    }

    {
        //  Maximize  2 x2
        // s.t.
        //    2x1 +  2x2 <= 3
        //   -2x1 +  2x2 <= 1
        //    7x1 +  4x2 <= 8
        //   -7x1 +  4x2 <= 1
        //     x1, x2 >= 0 and x1, x2 integer
        // Slacks are s1, s2, s3, s4



        //Test that problem is correct
        // Optimal Basis is x1, x2, s3, s4 with tableau
        //    x1            0.25 s1  -0.25 s2             =  0.5
        //           x2     0.25 s1   0.25 s2             =  1
        //                 -2.75 s1   0.75 s2    s3       =  0.5
        //                  0.75 s1  -2.75 s2        s4   =  0.5
        // z=              -0.25 s1  -0.25 s2             =  -1
        // Gomory cut from variable x1 is x2 <= 0.5
        // Can be improved by first pivoting s2 in and s4 out, then s1 in and s3 out
        // to x2 <= 0.25
        {
            int start[2] = {0,4};
            int length[2] = {4,4};
            int rows[8] = {0,1,2,3,0,1,2,3};
            double elements[8] = {2.0,-2.0,7.0,-7.0,2.0,2.0,4.0,4.0};
            CoinPackedMatrix  columnCopy(true,4,2,8,elements,rows,start,length);

            double rowLower[4]={-COIN_DBL_MAX,-COIN_DBL_MAX,
                                -COIN_DBL_MAX,-COIN_DBL_MAX};
            double rowUpper[4]={3.,1.,8.,1.};
            double colLower[2]={0.0,0.0};
            double colUpper[2]={1.0,1.0};
            double obj[2]={-1,-1};
            int intVar[2]={0,1};

            OsiSolverInterface  * siP = si->clone();
            siP->loadProblem(columnCopy, colLower, colUpper, obj, rowLower, rowUpper);
            siP->setInteger(intVar,2);
            CglLandP test;
            test.setLogLevel(2);
            test.parameter().sepSpace = CglLandP::Full;
            siP->resolve();
            // Test generateCuts method
            {
                OsiCuts cuts;
                test.generateCuts(*siP,cuts);
                cuts.printCuts();
                assert(cuts.sizeRowCuts()==1);
                OsiRowCut aCut = cuts.rowCut(0);
                assert(eq(aCut.lb(), -.0714286));
                CoinPackedVector row = aCut.row();
                if (row.getNumElements() == 1)
                {
                    assert(row.getIndices()[0]==1);
                    assert(eq(row.getElements()[0], -4*.0714286));
                }
                else if (row.getNumElements() == 2)
                {
                    assert(row.getIndices()[0]==0);
                    assert(eq(row.getElements()[0], 0.));
                    assert(row.getIndices()[1]==1);
                    assert(eq(row.getElements()[1], -1));
                }
                OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);

                siP->resolve();
            }
            if (0)
            {
                OsiCuts cuts;
                test.generateCuts(*siP,cuts);
                cuts.printCuts();
                assert(cuts.sizeRowCuts()==1);
                OsiRowCut aCut = cuts.rowCut(0);
                CoinPackedVector row = aCut.row();
                if (row.getNumElements() == 1)
                {
                    assert(row.getIndices()[0]==1);
                    assert(eq(row.getElements()[0], -1));
                }
                else if (row.getNumElements() == 2)
                {
                    assert(row.getIndices()[0]==0);
                    assert(eq(row.getElements()[0], 0.));
                    assert(row.getIndices()[1]==1);
                    assert(eq(row.getElements()[1], -1));
                }
                assert(eq(aCut.lb(), 0.));
                OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);

                siP->resolve();
            }
            delete siP;
        }
    }

    if (1)  //Test on p0033
    {
        // Setup
        OsiSolverInterface  * siP = si->clone();
        std::string fn(mpsDir+"p0033");
        siP->readMps(fn.c_str(),"mps");
        siP->activateRowCutDebugger("p0033");
        CglLandP test;

        // Solve the LP relaxation of the model and
        // print out ofv for sake of comparison
        siP->initialSolve();
        double lpRelaxBefore=siP->getObjValue();
        assert( eq(lpRelaxBefore, 2520.5717391304347) );
#ifdef CGL_DEBUG
        printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif

        OsiCuts cuts;

        // Test generateCuts method
        test.generateCuts(*siP,cuts);
        OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);

        siP->resolve();
        double lpRelaxAfter=siP->getObjValue();
        //assert( eq(lpRelaxAfter, 2592.1908295194507) );

        std::cout<<"Relaxation after "<<lpRelaxAfter<<std::endl;
        assert( lpRelaxAfter> 2840. );
#ifdef CGL_DEBUG
        printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
        printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
        assert( lpRelaxBefore < lpRelaxAfter );

        delete siP;
    }
    if (1)  //test again with modularization
    {
        // Setup
        OsiSolverInterface  * siP = si->clone();
        std::string fn(mpsDir+"p0033");
        siP->readMps(fn.c_str(),"mps");
        siP->activateRowCutDebugger("p0033");
        CglLandP test;
        test.parameter().modularize = true;
        // Solve the LP relaxation of the model and
        // print out ofv for sake of comparison
        siP->initialSolve();
        double lpRelaxBefore=siP->getObjValue();
        assert( eq(lpRelaxBefore, 2520.5717391304347) );
#ifdef CGL_DEBUG
        printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif

        OsiCuts cuts;

        // Test generateCuts method
        test.generateCuts(*siP,cuts);
        OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);

        siP->resolve();
        double lpRelaxAfter=siP->getObjValue();
        //assert( eq(lpRelaxAfter, 2592.1908295194507) );

        std::cout<<"Relaxation after "<<lpRelaxAfter<<std::endl;
        assert( lpRelaxAfter> 2840. );
#ifdef CGL_DEBUG
        printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
        printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
        assert( lpRelaxBefore < lpRelaxAfter );

        delete siP;
    }
    if (1)  //test again with alternate pivoting rule
    {
        // Setup
        OsiSolverInterface  * siP = si->clone();
        std::string fn(mpsDir+"p0033");
        siP->readMps(fn.c_str(),"mps");
        siP->activateRowCutDebugger("p0033");
        CglLandP test;
        test.parameter().pivotSelection = CglLandP::bestPivot;
        // Solve the LP relaxation of the model and
        // print out ofv for sake of comparison
        siP->initialSolve();
        double lpRelaxBefore=siP->getObjValue();
        assert( eq(lpRelaxBefore, 2520.5717391304347) );
#ifdef CGL_DEBUG
        printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif

        OsiCuts cuts;

        // Test generateCuts method
        test.generateCuts(*siP,cuts);
        OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);

        siP->resolve();
        double lpRelaxAfter=siP->getObjValue();
        //assert( eq(lpRelaxAfter, 2592.1908295194507) );

        std::cout<<"Relaxation after "<<lpRelaxAfter<<std::endl;
        assert( lpRelaxAfter> 2840. );
#ifdef CGL_DEBUG
        printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
        printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
        assert( lpRelaxBefore < lpRelaxAfter );

        delete siP;
    }

    if (1)  //Finally test code in documentation
    {
        // Setup
        OsiSolverInterface  * siP = si->clone();
        std::string fn(mpsDir+"p0033");
        siP->readMps(fn.c_str(),"mps");
        siP->activateRowCutDebugger("p0033");
        CglLandP landpGen;

        landpGen.parameter().timeLimit = 10.;
        landpGen.parameter().pivotLimit = 2;


        // Solve the LP relaxation of the model and
        // print out ofv for sake of comparison
        siP->initialSolve();
        double lpRelaxBefore=siP->getObjValue();
        assert( eq(lpRelaxBefore, 2520.5717391304347) );
#ifdef CGL_DEBUG
        printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif

        OsiCuts cuts;

        // Test generateCuts method
        landpGen.generateCuts(*siP, cuts);
        OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);

        siP->resolve();
        double lpRelaxAfter=siP->getObjValue();
        //assert( eq(lpRelaxAfter, 2592.1908295194507) );

        std::cout<<"Relaxation after "<<lpRelaxAfter<<std::endl;
        assert( lpRelaxAfter> 2840. );
#ifdef CGL_DEBUG
        printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
        printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
        assert( lpRelaxBefore < lpRelaxAfter );

        delete siP;
    }
}
//--------------------------------------------------------------------------
void
CglKnapsackCoverUnitTest(
  const OsiSolverInterface * baseSiP,
  const std::string mpsDir )
{
  int i;
  CoinRelFltEq eq(0.000001);

  // Test default constructor
  {
    CglKnapsackCover kccGenerator;
  }
  
  // Test copy & assignment
  {
    CglKnapsackCover rhs;
    {
      CglKnapsackCover kccGenerator;
      CglKnapsackCover cgC(kccGenerator);
      rhs=kccGenerator;
    }
  }


  // test exactSolveKnapsack
  {  
    CglKnapsackCover kccg;
    const int n=7;
    double c=50;
    double p[n] = {70,20,39,37,7,5,10};
    double w[n] = {31, 10, 20, 19, 4, 3, 6};
    double z;
    int x[n];
    int exactsol = kccg.exactSolveKnapsack(n, c, p, w, z, x);
    assert(exactsol==1);
    assert (z == 107);
    assert (x[0]==1);
    assert (x[1]==0);
    assert (x[2]==0);
    assert (x[3]==1);
    assert (x[4]==0);
    assert (x[5]==0);
    assert (x[6]==0);
  }

  /*
  // Testcase /u/rlh/osl2/mps/scOneInt.mps
  // Model has 3 continous, 2 binary, and 1 general
  // integer variable.
  {
    OsiSolverInterface  * siP = baseSiP->clone();
    int * complement=NULL;
    double * xstar=NULL;

    siP->readMps("../Mps/scOneInt","mps");
    CglKnapsackCover kccg;
    int nCols=siP->getNumCols();
    
    // Test the siP methods for detecting
    // variable type
    int numCont=0, numBinary=0, numIntNonBinary=0, numInt=0;
    for (int thisCol=0; thisCol<nCols; thisCol++) {
      if ( siP->isContinuous(thisCol) ) numCont++;
      if ( siP->isBinary(thisCol) ) numBinary++;
      if ( siP->isIntegerNonBinary(thisCol) ) numIntNonBinary++;
      if ( siP->isInteger(thisCol) ) numInt++;
    }
    assert(numCont==3);
    assert(numBinary==2);
    assert(numIntNonBinary==1);
    assert(numInt==3);
    
    
    // Test initializeCutGenerator
    siP->initialSolve();
    assert(xstar !=NULL);
    for (i=0; i<nCols; i++){
      assert(complement[i]==0);
    }
    int nRows=siP->getNumRows();
    for (i=0; i<nRows; i++){
    int vectorsize = siP->getMatrixByRow()->vectorSize(i);
    assert(vectorsize==2);
    }
    
    kccg.cleanUpCutGenerator(complement,xstar);
    delete siP;
  }
  */  
  
  // Testcase /u/rlh/osl2/mps/tp3.mps
  // Models has 3 cols, 3 rows
  // Row 0 yields a knapsack, others do not.
  {
    // setup
    OsiSolverInterface  * siP = baseSiP->clone();
    std::string fn(mpsDir+"tp3");
    siP->readMps(fn.c_str(),"mps");     
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));  
    OsiCuts cs;
    CoinPackedVector krow;
    double b=0;
    int nCols=siP->getNumCols();
    int * complement=new int [nCols];
    double * xstar=new double [nCols];

    CglKnapsackCover kccg;

    // solve LP relaxation
    // a "must" before calling initialization
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    std::cout<<"Initial LP value: "<<lpRelaxBefore<<std::endl;
    assert( eq(siP->getObjValue(), 97.185) );
    double mycs[] = {.627, .667558333333, .038};
    siP->setColSolution(mycs);
    const double *colsol = siP->getColSolution(); 
    int k;
    for (k=0; k<nCols; k++){
      xstar[k]=colsol[k];
      complement[k]=0;
    }
    
    // test deriveAKnapsack
    int rind = ( siP->getRowSense()[0] == 'N' ) ? 1 : 0;
    const CoinShallowPackedVector reqdBySunCC = siP->getMatrixByRow()->getVector(rind) ;
    int deriveaknap = kccg.deriveAKnapsack(*siP, cs, krow,b,complement,xstar,rind,reqdBySunCC);
    assert(deriveaknap ==1);
    assert(complement[0]==0);
    assert(complement[1]==1);
    assert(complement[2]==1);
    int inx[3] = {0,1,2};
    double el[3] = {161, 120, 68};
    CoinPackedVector r;
    r.setVector(3,inx,el);
    assert (krow == r);
    //assert (b == 183.0); ????? but x1 and x2 at 1 is valid 
    
    // test findGreedyCover 
    CoinPackedVector cover,remainder;
#if 0
    int findgreedy =  kccg.findGreedyCover( 0, krow, b, xstar, cover, remainder );
    assert( findgreedy == 1 );
    int coveri = cover.getNumElements();
    assert( cover.getNumElements() == 2);
    coveri = cover.getIndices()[0];
    assert( cover.getIndices()[0] == 0);
    assert( cover.getIndices()[1] == 1);
    assert( cover.getElements()[0] == 161.0);
    assert( cover.getElements()[1] == 120.0);
    assert( remainder.getNumElements() == 1);
    assert( remainder.getIndices()[0] == 2);
    assert( remainder.getElements()[0] == 68.0);

    // test liftCoverCut
    CoinPackedVector cut;
    double * rowupper = ekk_rowupper(model);
    double cutRhs = cover.getNumElements() - 1.0;
    kccg.liftCoverCut(b, krow.getNumElements(),
      cover, remainder,
      cut);
    assert ( cut.getNumElements() == 3 );
    assert ( cut.getIndices()[0] == 0 );
    assert ( cut.getIndices()[1] == 1 );
    assert ( cut.getIndices()[2] == 2 );
    assert( cut.getElements()[0] == 1 );
    assert( cut.getElements()[1] == 1 );
    assert( eq(cut.getElements()[2], 0.087719) );
    
    // test liftAndUncomplementAndAdd
    OsiCuts cuts;    
    kccg.liftAndUncomplementAndAdd(*siP.getRowUpper()[0],krow,b,complement,0,
      cover,remainder,cuts);   
    int sizerowcuts = cuts.sizeRowCuts();
    assert ( sizerowcuts== 1 );
    OsiRowCut testRowCut = cuts.rowCut(0);
    CoinPackedVector testRowPV = testRowCut.row(); 
    OsiRowCut sampleRowCut;
    const int sampleSize = 3;
    int sampleCols[sampleSize]={0,1,2};
    double sampleElems[sampleSize]={1.0,-1.0,-0.087719};
    sampleRowCut.setRow(sampleSize,sampleCols,sampleElems);
    sampleRowCut.setLb(-DBL_MAX);
    sampleRowCut.setUb(-0.087719);
    bool equiv =  testRowPV.equivalent(sampleRowCut.row(),CoinRelFltEq(1.0e-05) );
    assert ( equiv );
#endif
    
    // test find PseudoJohnAndEllisCover
    cover.setVector(0,NULL, NULL);
    remainder.setVector(0,NULL,NULL);

    rind = ( siP->getRowSense()[0] == 'N' ) ? 1 : 0;
    int findPJE =  kccg.findPseudoJohnAndEllisCover( rind, krow, 
						     b, xstar, cover, remainder );
    assert( findPJE == 1 );
    assert ( cover.getIndices()[0] == 0 );
    assert ( cover.getIndices()[1] == 2 );
    assert ( cover.getElements()[0] == 161 );    
    assert ( cover.getElements()[1] == 68 );    
    assert ( remainder.getIndices()[0] == 1 );
    assert ( remainder.getElements()[0] == 120 );    
    OsiCuts cuts;    
    kccg.liftAndUncomplementAndAdd((*siP).getRowUpper()[rind],krow,b, complement, rind,
      cover,remainder,cuts);   
    assert (cuts.sizeRowCuts() == 1 );

    OsiRowCut testRowCut = cuts.rowCut(0);
    CoinPackedVector testRowPV = testRowCut.row();


    const int sampleSize = 3;
    int sampleCols[sampleSize]={0,1,2};
    double sampleElems[sampleSize]={1.0, -1.0, -1.0};
    OsiRowCut sampleRowCut;
    sampleRowCut.setRow(sampleSize,sampleCols,sampleElems);
    sampleRowCut.setLb(-COIN_DBL_MAX);
    sampleRowCut.setUb(-1.0);
    
    // test for 'close enough'
    assert( testRowPV.isEquivalent(sampleRowCut.row(),CoinRelFltEq(1.0e-05) ) );
    // Reset complement & test next row
    for (i=0; i<nCols; i++){
      complement[i]=0;
    }

    rind++;
    const CoinShallowPackedVector reqdBySunCC2 = siP->getMatrixByRow()->getVector(rind) ;
    deriveaknap = kccg.deriveAKnapsack(*siP,cuts,krow,b,complement,xstar,rind,reqdBySunCC2);
    assert(deriveaknap==0);
    
    // Reset complement & test next row
    for (i=0; i<nCols; i++){
      complement[i]=0;
    }
    const CoinShallowPackedVector reqdBySunCC3 = siP->getMatrixByRow()->getVector(2) ;
    deriveaknap = kccg.deriveAKnapsack(*siP,cuts,krow,b,complement,xstar,2,
				       reqdBySunCC3);
    assert(deriveaknap == 0);
    
    // Clean up
    delete [] complement;
    delete [] xstar;
    
    delete siP;
  }

#if 0
  // Testcase /u/rlh/osl2/mps/tp4.mps
  // Models has 6 cols, 1 knapsack row and 
  // 3 rows explicily bounding variables
  // Row 0 yields a knapsack cover cut 
  // using findGreedyCover which moves the 
  // LP objective function value.
  {
    // Setup
    EKKContext * env=ekk_initializeContext();
    EKKModel * model = ekk_newModel(env,"");
    OsiSolverInterface si(model);
    ekk_importModel(model, "tp4.mps");
    CglKnapsackCover kccg;
    kccg.ekk_validateIntType(si);     
    
    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparison 
    ekk_allSlackBasis(model);
    ekk_crash(model,1); 
    ekk_primalSimplex(model,1);
    double lpRelaxBefore=ekk_getRobjvalue(model);
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif
    
    // Determine if lp sol is ip optimal
    // Note: no ekk_function to do this
    int nCols=ekk_getInumcols(model);
    double * optLpSol = ekk_colsol(model);
    int ipOpt = 1;
    i=0;
    while (i++<nCols && ipOpt){
      if(optLpSol[i] < 1.0-1.0e-08 && optLpSol[i]> 1.0e-08) ipOpt = 0;
    }
    
    if (ipOpt){
#ifdef CGL_DEBUG
      printf("Lp solution is within ip optimality tolerance\n");
#endif
    }    
    else {
      OsiSolverInterface iModel(model);
      OsiCuts cuts;    
      
      // Test generateCuts method
      kccg.generateCuts(iModel,cuts);
      OsiSolverInterface::ApplyCutsReturnCode rc = iModel.applyCuts(cuts);
      
      ekk_mergeBlocks(model,1);         
      ekk_dualSimplex(model);
      double lpRelaxAfter=ekk_getRobjvalue(model); 
#ifdef CGL_DEBUG
      printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
      assert( lpRelaxBefore < lpRelaxAfter );
      
      // This may need to be updated as other 
      // minimal cover finders are added
      assert( cuts.sizeRowCuts() == 1 );
      OsiRowCut testRowCut = cuts.rowCut(0);
      CoinPackedVector testRowPV = testRowCut.row();
      
      OsiRowCut sampleRowCut;
      const int sampleSize = 6;
      int sampleCols[sampleSize]={0,1,2,3,4,5};
      double sampleElems[sampleSize]={1.0,1.0,1.0,1.0,0.5, 2.0};
      sampleRowCut.setRow(sampleSize,sampleCols,sampleElems);
      sampleRowCut.setLb(-DBL_MAX);
      sampleRowCut.setUb(3.0);
      bool equiv = testRowPV.equivalent(sampleRowCut.row(),CoinRelFltEq(1.0e-05) );
      assert( testRowPV.equivalent(sampleRowCut.row(),CoinRelFltEq(1.0e-05) ) );
    }
    
    // Exit out of OSL
    ekk_deleteModel(model);
    ekk_endContext(env);
    
  }
#endif


  // Testcase /u/rlh/osl2/mps/tp5.mps
  // Models has 6 cols, 1 knapsack row and 
  // 3 rows explicily bounding variables
  // Row 0 yields a knapsack cover cut 
  // using findGreedyCover which moves the 
  // LP objective function value.
  {
    // Setup
    OsiSolverInterface  * siP = baseSiP->clone();
    std::string fn(mpsDir+"tp5");
    siP->readMps(fn.c_str(),"mps");
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));  
    CglKnapsackCover kccg;
    
    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparison 
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    assert( eq(lpRelaxBefore, -51.66666666667) );
    double mycs[] = {.8999999999, .899999999999, .89999999999, 1.110223e-16, .5166666666667, 0};
    siP->setColSolution(mycs);
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif
    
    // Determine if lp sol is 0/1 optimal
    int nCols=siP->getNumCols();
    const double * optLpSol = siP->getColSolution();
    bool ipOpt = true;
    i=0;
    while (i++<nCols && ipOpt){
      if(optLpSol[i] > kccg.epsilon_ && optLpSol[i] < kccg.onetol_) ipOpt = false;
    }
    
    if (ipOpt){
#ifdef CGL_DEBUG
      printf("Lp solution is within ip optimality tolerance\n");
#endif
    }    
    else {
      // set up
      OsiCuts cuts;    
      CoinPackedVector krow;
      double b=0.0;
      int * complement=new int[nCols];
      double * xstar=new double[nCols];
      // initialize cut generator
      const double *colsol = siP->getColSolution(); 
      for (i=0; i<nCols; i++){
	xstar[i]=colsol[i];
	complement[i]=0;
      }
      int row = ( siP->getRowSense()[0] == 'N' ) ? 1 : 0;
      // transform row into canonical knapsack form
      const CoinShallowPackedVector reqdBySunCC = siP->getMatrixByRow()->getVector(row) ;
      if (kccg.deriveAKnapsack(*siP, cuts, krow, b, complement, xstar, row,reqdBySunCC)){
        CoinPackedVector cover, remainder;  
        // apply greedy logic to detect violated minimal cover inequalities
        if (kccg.findGreedyCover(row, krow, b, xstar, cover, remainder) == 1){
          // lift, uncomplements, and add cut to cut set
          kccg.liftAndUncomplementAndAdd((*siP).getRowUpper()[row],krow, b, complement, row, cover, remainder, cuts);   
        }  
        // reset optimal column solution (xstar) information in OSL     
        const double * rowupper = siP->getRowUpper();
	int k;
        if (fabs(b-rowupper[row]) > 1.0e-05) {
          for(k=0; k<krow.getNumElements(); k++) {
            if (complement[krow.getIndices()[k]]){
              xstar[krow.getIndices()[k]]= 1.0-xstar[krow.getIndices()[k]];
              complement[krow.getIndices()[k]]=0;
            }
          }
        }  
        // clean up
        delete [] complement;
	delete [] xstar;
      }
      // apply the cuts
      OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
      
      siP->resolve();
      double lpRelaxAfter=siP->getObjValue();
      assert( eq(lpRelaxAfter, -30.0) );
#ifdef CGL_DEBUG
      printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
      // test that expected cut was detected
      assert( lpRelaxBefore < lpRelaxAfter );
      assert( cuts.sizeRowCuts() == 1 );
      OsiRowCut testRowCut = cuts.rowCut(0);
      CoinPackedVector testRowPV = testRowCut.row();
      OsiRowCut sampleRowCut;
      const int sampleSize = 6;
      int sampleCols[sampleSize]={0,1,2,3,4,5};
      double sampleElems[sampleSize]={1.0,1.0,1.0,0.25,1.0,2.0};
      sampleRowCut.setRow(sampleSize,sampleCols,sampleElems);
      sampleRowCut.setLb(-COIN_DBL_MAX);
      sampleRowCut.setUb(3.0);
      assert(testRowPV.isEquivalent(sampleRowCut.row(),CoinRelFltEq(1.0e-05)));
    }
    
    delete siP;
  }
 

  // Testcase /u/rlh/osl2/mps/p0033
  // Miplib3 problem p0033
  // Test that no cuts chop off the optimal solution
  {
    // Setup
    OsiSolverInterface  * siP = baseSiP->clone();
    std::string fn(mpsDir+"p0033");
    siP->readMps(fn.c_str(),"mps");
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));  
    int nCols=siP->getNumCols();
    CglKnapsackCover kccg;

    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparison 
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    assert( eq(lpRelaxBefore, 2520.5717391304347) );
    double mycs[] = {0, 1, 0, 0, -2.0837010502455788e-19, 1, 0, 0, 1,
		       0.021739130434782594, 0.35652173913043478, 
		       -6.7220534694101275e-18, 5.3125906451789717e-18, 
		       1, 0, 1.9298798670241979e-17, 0, 0, 0,
		       7.8875708048320448e-18, 0.5, 0, 
		       0.85999999999999999, 1, 1, 0.57999999999999996,
		       1, 0, 1, 0, 0.25, 0, 0.67500000000000004};
    siP->setColSolution(mycs);
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif
    
    OsiCuts cuts;    
    
    // Test generateCuts method
    kccg.generateCuts(*siP,cuts);
    OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
    
    siP->resolve();
    double lpRelaxAfter=siP->getObjValue(); 
    assert( eq(lpRelaxAfter, 2829.0597826086955) );
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
    printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
    assert( lpRelaxBefore < lpRelaxAfter );
    
    // the CoinPackedVector p0033 is the optimal
    // IP solution to the miplib problem p0033
    int objIndices[14] = { 
       0,  6,  7,  9, 13, 17, 18,
      22, 24, 25, 26, 27, 28, 29 };
    CoinPackedVector p0033(14,objIndices,1.0);

    // Sanity check
    const double *  objective=siP->getObjCoefficients();
    double ofv =0 ;
    int r;
    for (r=0; r<nCols; r++){
      ofv=ofv + p0033[r]*objective[r];
    }
    CoinRelFltEq eq;
    assert( eq(ofv,3089.0) );

    int nRowCuts = cuts.sizeRowCuts();
    OsiRowCut rcut;
    CoinPackedVector rpv;
    for (i=0; i<nRowCuts; i++){
      rcut = cuts.rowCut(i);
      rpv = rcut.row();
      double p0033Sum = (rpv*p0033).sum();
      assert (p0033Sum <= rcut.ub() );
    }
  
    delete siP;
  } 

  // if a debug file is there then look at it
  {
    FILE * fp = fopen("knapsack.debug","r");
    if (fp) {
      int ncol,nel;
      double up;
      int x = fscanf(fp,"%d %d %lg",&ncol,&nel,&up);
      if (x<=0)
	throw("bad fscanf");
      printf("%d columns, %d elements, upper %g\n",ncol,nel,up);
      double * sol1 = new double[nel];
      double * el1 = new double[nel];
      int * col1 = new int[nel];
      CoinBigIndex * start = new CoinBigIndex [ncol+1];
      memset(start,0,ncol*sizeof(CoinBigIndex ));
      int * row = new int[nel];
      int i;
      for (i=0;i<nel;i++) {
	x=fscanf(fp,"%d %lg %lg",col1+i,el1+i,sol1+i);
	if (x<=0)
	  throw("bad fscanf");
	printf("[%d, e=%g, v=%g] ",col1[i],el1[i],sol1[i]);
	start[col1[i]]=1;
	row[i]=0;
      }
      printf("\n");
      // Setup
      OsiSolverInterface  * siP = baseSiP->clone();
      
      double lo=-1.0e30;
      double * upper = new double[ncol];
      start[ncol]=nel;
      int last=0;
      for (i=0;i<ncol;i++) {
	upper[i]=1.0;
	int marked=start[i];
	start[i]=last;
	if (marked)
	  last++;
      }
      siP->loadProblem(ncol,1,start,row,el1,NULL,upper,NULL,&lo,&up);
      // use upper for solution
      memset(upper,0,ncol*sizeof(double));
      for (i=0;i<nel;i++) {
	int icol=col1[i];
	upper[icol]=sol1[i];
	siP->setInteger(icol);
      }
      siP->setColSolution(upper);
      delete [] sol1;
      delete [] el1;
      delete [] col1;
      delete [] start;
      delete [] row;
      delete [] upper;
      CglKnapsackCover kccg;
      
      OsiCuts cuts;    
      
      // Test generateCuts method
      kccg.generateCuts(*siP,cuts);
      // print out and compare to known cuts
      int numberCuts = cuts.sizeRowCuts();
      if (numberCuts) {
	for (i=0;i<numberCuts;i++) {
	  OsiRowCut * thisCut = cuts.rowCutPtr(i);
	  int n=thisCut->row().getNumElements();
	  printf("Cut %d has %d entries, rhs %g %g =>",i,n,thisCut->lb(),
		 thisCut->ub());
	  int j;
	  const int * index = thisCut->row().getIndices();
	  const double * element = thisCut->row().getElements();
	  for (j=0;j<n;j++) {
	    printf(" (%d,%g)",index[j],element[j]);
	  }
	  printf("\n");
	}
      }
      fclose(fp);
    }
  }

  // Testcase /u/rlh/osl2/mps/p0201
  // Miplib3 problem p0282
  // Test that no cuts chop off the optimal ip solution
  {
    // Setup
    OsiSolverInterface  * siP = baseSiP->clone();
    std::string fn(mpsDir+"p0201");
    siP->readMps(fn.c_str(),"mps");
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));    

    const int nCols=siP->getNumCols();
    CglKnapsackCover kccg;
    
    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparisn 
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    assert( eq(lpRelaxBefore, 6875.) );
    double mycs[] =
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
       0, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 
       0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 
       0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 
       0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 
       0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 
       0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
       0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
       1};
    siP->setColSolution(mycs);
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif
    
    OsiCuts cuts;    
    
    // Test generateCuts method
    kccg.generateCuts(*siP,cuts);
    OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
    
    siP->resolve();
    double lpRelaxAfter=siP->getObjValue(); 
    assert( eq(lpRelaxAfter, 7125) );
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
    printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
    assert( lpRelaxBefore < lpRelaxAfter );
 
    // Optimal IP solution to p0201    
    int objIndices[22] = { 8, 10,  21,  38,  39,  56,
      60,   74, 79,  92, 94, 110, 111, 128, 132, 146, 
      151,164, 166, 182,183, 200 };
    CoinPackedVector p0201(22,objIndices,1.0);
    
    // Sanity check
    const double *  objective=siP->getObjCoefficients();
    double ofv =0 ;
    int r;
    for (r=0; r<nCols; r++){
      ofv=ofv + p0201[r]*objective[r];
    }
    CoinRelFltEq eq;
    assert( eq(ofv,7615.0) );
    //printf("p0201 optimal ofv = %g\n",ofv); 

    int nRowCuts = cuts.sizeRowCuts();
    OsiRowCut rcut;
    CoinPackedVector rpv;
    for (i=0; i<nRowCuts; i++){
      rcut = cuts.rowCut(i);
      rpv = rcut.row();
      double p0201Sum = (rpv*p0201).sum();
      assert (p0201Sum <= rcut.ub() );
    }
  
    delete siP;
  } 

 
  // see if I get the same covers that N&W get
  {
    OsiSolverInterface * siP=baseSiP->clone();
    std::string fn(mpsDir+"nw460");
    siP->readMps(fn.c_str(),"mps");   
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));  
    CglKnapsackCover kccg;
    
    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparison 
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    assert( eq(lpRelaxBefore, -225.68951787852194) );
    double mycs[] = {0.7099213482046447, 0, 0.34185802225477174, 1, 1, 0, 1, 1, 0};
    siP->setColSolution(mycs);

    OsiCuts cuts;    
    
    // Test generateCuts method
    kccg.generateCuts(*siP,cuts);
    OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
    
    siP->resolve();
    double lpRelaxAfter=siP->getObjValue(); 
    assert( eq(lpRelaxAfter, -176) );
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
    printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
#ifdef MJS
    assert( lpRelaxBefore < lpRelaxAfter );
#endif    
    
    int nRowCuts = cuts.sizeRowCuts();
    OsiRowCut rcut;
    CoinPackedVector rpv;
    for (i=0; i<nRowCuts; i++){
      rcut = cuts.rowCut(i);
      rpv = rcut.row();
      int j;
      printf("Row cut number %i has rhs = %g\n",i,rcut.ub());
      for (j=0; j<rpv.getNumElements(); j++){
        printf("index %i, element %g\n", rpv.getIndices()[j], rpv.getElements()[j]);
      }
      printf("\n");
    }
    delete siP; 
  }

  // Debugging: try "exmip1.mps"
  {
    // Setup
    OsiSolverInterface  * siP = baseSiP->clone();
    std::string fn(mpsDir+"exmip1");
    siP->readMps(fn.c_str(),"mps");   
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));  
    CglKnapsackCover kccg;
    
    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparison 
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    assert( eq(lpRelaxBefore, 3.2368421052631575) );
    double mycs[] = {2.5, 0, 0, 0.6428571428571429, 0.5, 4, 0, 0.26315789473684253};
    siP->setColSolution(mycs);
    // Test generateCuts method
    OsiCuts cuts;    
    kccg.generateCuts(*siP,cuts);
    OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
    
    siP->resolve();
    double lpRelaxAfter=siP->getObjValue();
    assert( eq(lpRelaxAfter, 3.2368421052631575) );
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
    printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
    assert( lpRelaxBefore <= lpRelaxAfter );

    delete siP;
  } 

#ifdef CGL_DEBUG
  // See what findLPMostViolatedMinCover for knapsack with 2 elements does
  {
    int nCols = 2;
    int row = 1;
    CoinPackedVector krow;
    double e[2] = {5,10};
    int ii[2] = {0,1};
    krow.setVector(nCols,ii,e);
    double b=11;
    double xstar[2] = {.2,.9};
    CoinPackedVector cover;
    CoinPackedVector remainder;
    CglKnapsackCover kccg;
    kccg.findLPMostViolatedMinCover(nCols, row, krow, b, xstar, cover, remainder);
    printf("num in cover = %i\n",cover.getNumElements());
    int j;
    for (j=0; j<cover.getNumElements(); j++){
      printf(" index %i element % g\n", cover.getIndices()[j], cover.getElements()[j]);
    }
  }
#endif 

#ifdef CGL_DEBUG
  // see what findLPMostViolatedMinCover does
  {
    int nCols = 5;
    int row = 1;
    CoinPackedVector krow;
    double e[5] = {1,1,1,1,10};
    int ii[5] = {0,1,2,3,4};
    krow.setVector(nCols,ii,e);
    double b=11;
    double xstar[5] = {.9,.9,1,1,.1};
    CoinPackedVector cover;
    CoinPackedVector remainder;
    CglKnapsackCover kccg;
    kccg.findLPMostViolatedMinCover(nCols, row, krow, b, xstar, cover, remainder);
    printf("num in cover = %i\n",cover.getNumElements());
    int j;
    for (j=0; j<cover.getNumElements(); j++){
      printf(" index %i element % g\n", cover.getIndices()[j], cover.getElements()[j]);
    }
  }
#endif

}
Example #13
0
  int
  MilpRounding::solution(double &solutionValue, double *betterSolution)
  {
    if(model_->getCurrentPassNumber() > 1) return 0;
    if (model_->currentDepth() > 2 && (model_->getNodeCount()%howOften_)!=0)
      return 0;
 
    int returnCode = 0; // 0 means it didn't find a feasible solution

    OsiTMINLPInterface * nlp = NULL;
    if(setup_->getAlgorithm() == B_BB)
      nlp = dynamic_cast<OsiTMINLPInterface *>(model_->solver()->clone());
    else
      nlp = dynamic_cast<OsiTMINLPInterface *>(setup_->nonlinearSolver()->clone());

    TMINLP2TNLP* minlp = nlp->problem();
 
    // set tolerances
    double integerTolerance = model_->getDblParam(CbcModel::CbcIntegerTolerance);
    //double primalTolerance = 1.0e-6;

    int n;
    int m;
    int nnz_jac_g;
    int nnz_h_lag;
    Ipopt::TNLP::IndexStyleEnum index_style;
    minlp->get_nlp_info(n, m, nnz_jac_g,
			nnz_h_lag, index_style);

    const Bonmin::TMINLP::VariableType* variableType = minlp->var_types();
    const double* x_sol = minlp->x_sol();
    const double* g_l = minlp->g_l();
    const double* g_u = minlp->g_u();

    const double * colsol = model_->solver()->getColSolution();


    // Get information about the linear and nonlinear part of the instance
    TMINLP* tminlp = nlp->model();
    vector<Ipopt::TNLP::LinearityType> c_lin(m);
    tminlp->get_constraints_linearity(m, c_lin());
    vector<int> c_idx(m);
    int n_lin = 0;
    for (int i=0;i<m;i++) {
      if (c_lin[i]==Ipopt::TNLP::LINEAR)
	c_idx[i] = n_lin++;
      else
	c_idx[i] = -1;
    }


    // Get the structure of the jacobian
    vector<int> indexRow(nnz_jac_g);
    vector<int> indexCol(nnz_jac_g);
    minlp->eval_jac_g(n, x_sol, false,
		      m, nnz_jac_g,
		      indexRow(), indexCol(), 0);

    // get the jacobian values 
    vector<double> jac_g(nnz_jac_g);
    minlp->eval_jac_g(n, x_sol, false,
                      m, nnz_jac_g,
                      NULL, NULL, jac_g());

    // Sort the matrix to column ordered
    vector<int> sortedIndex(nnz_jac_g);
    CoinIotaN(sortedIndex(), nnz_jac_g, 0);
    MatComp c;
    c.iRow = indexRow();
    c.jCol = indexCol();
    std::sort(sortedIndex.begin(), sortedIndex.end(), c);

    vector<int> row (nnz_jac_g);
    vector<double> value (nnz_jac_g);
    vector<int> columnStart(n,0); 
    vector<int> columnLength(n,0);
    int indexCorrection = (index_style == Ipopt::TNLP::C_STYLE) ? 0 : 1;
    int iniCol = -1;
    int nnz = 0;
    for(int i=0; i<nnz_jac_g; i++) {
      int thisIndexCol = indexCol[sortedIndex[i]]-indexCorrection;
      int thisIndexRow = c_idx[indexRow[sortedIndex[i]] - indexCorrection];
      if(thisIndexCol != iniCol) {
	iniCol = thisIndexCol;
	columnStart[thisIndexCol] = nnz;
	columnLength[thisIndexCol] = 0;
      }
      if(thisIndexRow == -1) continue;
      columnLength[thisIndexCol]++;
      row[nnz] = thisIndexRow;
      value[nnz] = jac_g[i];
      nnz++;
    }

    // Build the row lower and upper bounds
    vector<double> newRowLower(n_lin);
    vector<double> newRowUpper(n_lin);
    for(int i = 0 ; i < m ; i++){
      if(c_idx[i] == -1) continue;
      newRowLower[c_idx[i]] = g_l[i];
      newRowUpper[c_idx[i]] = g_u[i];
    }

    // Get solution array for heuristic solution
    vector<double> newSolution(n);
    std::copy(x_sol, x_sol + n, newSolution.begin());

    // Define the constraint matrix for MILP
    CoinPackedMatrix matrix(true,n_lin,n, nnz, value(), row(), columnStart(), columnLength());

      // create objective function and columns lower and upper bounds for MILP
      // and create columns for matrix in MILP
      //double alpha = 0;
      double beta = 1;
      vector<double> objective(n);
      vector<int> idxIntegers;
      idxIntegers.reserve(n);
      for(int i = 0 ; i < n ; i++){
         if(variableType[i] != Bonmin::TMINLP::CONTINUOUS){
            idxIntegers.push_back(i);
            objective[i] = beta*(1 - 2*colsol[i]);
         }
      }

#if 0
      // Get dual multipliers and build gradient of the lagrangean
      const double * duals = nlp->getRowPrice() + 2 *n;
      vector<double> grad(n, 0); 
      vector<int> indices(n, 0);
      tminlp->eval_grad_f(n, x_sol, false, grad());
      for(int i = 0 ; i < m ; i++){
        if(c_lin[i] == Ipopt::TNLP::LINEAR) continue;
        int nnz;
        tminlp->eval_grad_gi(n, x_sol, false, i, nnz, indices(), NULL);  
        tminlp->eval_grad_gi(n, x_sol, false, i, nnz, NULL, grad());
        for(int k = 0 ; k < nnz ; k++){
          objective[indices[k]] += alpha *duals[i] * grad[k];
        } 
      }
      for(int i = 0 ; i < n ; i++){
         if(variableType[i] != Bonmin::TMINLP::CONTINUOUS)
         objective[i] += alpha * grad[i];
         //if(fabs(objective[i]) < 1e-4) objective[i] = 0;
         else objective[i] = 0;
      }
      std::copy(objective.begin(), objective.end(), std::ostream_iterator<double>(std::cout, " "));
      std::cout<<std::endl;
#endif

      // load the problem to OSI
      OsiSolverInterface *si = mip_->solver();
      assert(si != NULL);
      CoinMessageHandler * handler = model_->messageHandler()->clone();
      si->passInMessageHandler(handler);
      si->messageHandler()->setLogLevel(1);

      si->loadProblem(matrix, model_->solver()->getColLower(), model_->solver()->getColUpper(), objective(), 
                      newRowLower(), newRowUpper());
      si->setInteger(idxIntegers(), static_cast<int>(idxIntegers.size()));
      si->applyCuts(noGoods);

      bool hasFractionnal = true;
      while(hasFractionnal){
        mip_->optimize(DBL_MAX, 0, 60);
        hasFractionnal = false;
#if 0
        bool feasible = false;
        if(mip_->getLastSolution()) {
  	const double* solution = mip_->getLastSolution();
          std::copy(solution, solution + n, newSolution.begin());
  	feasible = true;
  
        }

    if(feasible) {
      // fix the integer variables and solve the NLP
      // also add no good cut
      CoinPackedVector v;
      double lb = 1;
      for (int iColumn=0;iColumn<n;iColumn++) {
	if (variableType[iColumn] != Bonmin::TMINLP::CONTINUOUS) {
	  double value=newSolution[iColumn];
	  if (fabs(floor(value+0.5)-value)>integerTolerance) {
#ifdef DEBUG_BON_HEURISTIC_DIVE_MIP
	    cout<<"It should be infeasible because: "<<endl;
	    cout<<"variable "<<iColumn<<" is not integer"<<endl;
#endif
	    feasible = false;
	    break;
	  }
	  else {
	    value=floor(newSolution[iColumn]+0.5);
            if(value > 0.5){
              v.insert(iColumn, -1);
              lb -= value;
            }
	    minlp->SetVariableUpperBound(iColumn, value);
	    minlp->SetVariableLowerBound(iColumn, value);
	  }
	}
      }
      }
#endif
      }
      bool feasible = false;
      if(mip_->getLastSolution()) {
	const double* solution = mip_->getLastSolution();
        std::copy(solution, solution + n, newSolution.begin());
	feasible = true;

        delete handler;
      }
      

    if(feasible) {
      // fix the integer variables and solve the NLP
      // also add no good cut
      CoinPackedVector v;
      double lb = 1;
      for (int iColumn=0;iColumn<n;iColumn++) {
	if (variableType[iColumn] != Bonmin::TMINLP::CONTINUOUS) {
	  double value=newSolution[iColumn];
	  if (fabs(floor(value+0.5)-value)>integerTolerance) {
	    feasible = false;
	    break;
	  }
	  else {
	    value=floor(newSolution[iColumn]+0.5);
            if(value > 0.5){
              v.insert(iColumn, -1);
              lb -= value;
            }
	    minlp->SetVariableUpperBound(iColumn, value);
	    minlp->SetVariableLowerBound(iColumn, value);
	  }
	}
      }
      OsiRowCut c;
      c.setRow(v);
      c.setLb(lb);
      c.setUb(DBL_MAX);
      noGoods.insert(c);
      if(feasible) {
	nlp->initialSolve();
	if(minlp->optimization_status() != Ipopt::SUCCESS) {
	  feasible = false;
	}
	std::copy(x_sol,x_sol+n, newSolution.begin());
      }
    }
    if(feasible) {
      double newSolutionValue;
      minlp->eval_f(n, newSolution(), true, newSolutionValue); 
      if(newSolutionValue < solutionValue) {
        std::copy(newSolution.begin(), newSolution.end(), betterSolution);
	solutionValue = newSolutionValue;
	returnCode = 1;
      }
    }

    delete nlp;

#ifdef DEBUG_BON_HEURISTIC_DIVE_MIP
    std::cout<<"DiveMIP returnCode = "<<returnCode<<std::endl;
#endif

    return returnCode;
  }