Example #1
0
// Apply bounds
void OsiSolverBranch::applyBounds(OsiSolverInterface &solver, int way) const
{
  int base = way + 1;
  assert(way == -1 || way == 1);
  int numberColumns = solver.getNumCols();
  const double *columnLower = solver.getColLower();
  int i;
  for (i = start_[base]; i < start_[base + 1]; i++) {
    int iColumn = indices_[i];
    if (iColumn < numberColumns) {
      double value = CoinMax(bound_[i], columnLower[iColumn]);
      solver.setColLower(iColumn, value);
    } else {
      int iRow = iColumn - numberColumns;
      const double *rowLower = solver.getRowLower();
      double value = CoinMax(bound_[i], rowLower[iRow]);
      solver.setRowLower(iRow, value);
    }
  }
  const double *columnUpper = solver.getColUpper();
  for (i = start_[base + 1]; i < start_[base + 2]; i++) {
    int iColumn = indices_[i];
    if (iColumn < numberColumns) {
      double value = CoinMin(bound_[i], columnUpper[iColumn]);
      solver.setColUpper(iColumn, value);
    } else {
      int iRow = iColumn - numberColumns;
      const double *rowUpper = solver.getRowUpper();
      double value = CoinMin(bound_[i], rowUpper[iRow]);
      solver.setRowUpper(iRow, value);
    }
  }
}
Example #2
0
void
CglClique::selectRowCliques(const OsiSolverInterface& si,int numOriginalRows)
{
   const int numrows = si.getNumRows();
   std::vector<int> clique(numrows, 1);

   int i, j, k;
   
   // First scan through the binary fractional variables and see where do they
   // have a 1 coefficient
   const CoinPackedMatrix& mcol = *si.getMatrixByCol();
   for (j = 0; j < sp_numcols; ++j) {
      const CoinShallowPackedVector& vec = mcol.getVector(sp_orig_col_ind[j]);
      const int* ind = vec.getIndices();
      const double* elem = vec.getElements();
      for (i = vec.getNumElements() - 1; i >= 0; --i) {
	 if (elem[i] != 1.0) {
	    clique[ind[i]] = 0;
	 }
      }
   }

   // Now check the sense and rhs (by checking rowupper) and the rest of the
   // coefficients 
   const CoinPackedMatrix& mrow = *si.getMatrixByRow();
   const double* rub = si.getRowUpper();
   for (i = 0; i < numrows; ++i) {
      if (rub[i] != 1.0||i>=numOriginalRows) {
	 clique[i] = 0;
	 continue;
      }
      if (clique[i] == 1) {
	 const CoinShallowPackedVector& vec = mrow.getVector(i);
	 const double* elem = vec.getElements();
	 for (j = vec.getNumElements() - 1; j >= 0; --j) {
	    if (elem[j] < 0) {
	       clique[i] = 0;
	       break;
	    }
	 }
      }
   }

   // Finally collect the still standing rows into sp_orig_row_ind
   sp_numrows = std::accumulate(clique.begin(), clique.end(), 0);
   sp_orig_row_ind = new int[sp_numrows];
   for (i = 0, k = 0; i < numrows; ++i) {
      if (clique[i] == 1) {
	 sp_orig_row_ind[k++] = i;
      }
   }
}
Example #3
0
// Useful constructor
CbcFollowOn::CbcFollowOn (CbcModel * model)
        : CbcObject(model)
{
    assert (model);
    OsiSolverInterface * solver = model_->solver();
    matrix_ = *solver->getMatrixByCol();
    matrix_.removeGaps();
    matrix_.setExtraGap(0.0);
    matrixByRow_ = *solver->getMatrixByRow();
    int numberRows = matrix_.getNumRows();

    rhs_ = new int[numberRows];
    int i;
    const double * rowLower = solver->getRowLower();
    const double * rowUpper = solver->getRowUpper();
    // Row copy
    const double * elementByRow = matrixByRow_.getElements();
    const int * column = matrixByRow_.getIndices();
    const CoinBigIndex * rowStart = matrixByRow_.getVectorStarts();
    const int * rowLength = matrixByRow_.getVectorLengths();
    for (i = 0; i < numberRows; i++) {
        rhs_[i] = 0;
        double value = rowLower[i];
        if (value == rowUpper[i]) {
            if (floor(value) == value && value >= 1.0 && value < 10.0) {
                // check elements
                bool good = true;
                for (int j = rowStart[i]; j < rowStart[i] + rowLength[i]; j++) {
                    int iColumn = column[j];
                    if (!solver->isBinary(iColumn))
                        good = false;
                    double elValue = elementByRow[j];
                    if (floor(elValue) != elValue || value < 1.0)
                        good = false;
                }
                if (good)
                    rhs_[i] = static_cast<int> (value);
            }
        }
    }
}
Example #4
0
// Generate cuts
void
CglFakeClique::generateCuts(const OsiSolverInterface& si, OsiCuts & cs,
			const CglTreeInfo info)
{
  if (fakeSolver_) {
    assert (si.getNumCols()==fakeSolver_->getNumCols());
    fakeSolver_->setColLower(si.getColLower());
    const double * solution = si.getColSolution();
    fakeSolver_->setColSolution(solution);
    fakeSolver_->setColUpper(si.getColUpper());
    // get and set branch and bound cutoff
    double cutoff;
    si.getDblParam(OsiDualObjectiveLimit,cutoff);
    fakeSolver_->setDblParam(OsiDualObjectiveLimit,COIN_DBL_MAX);
#ifdef COIN_HAS_CLP
    OsiClpSolverInterface * clpSolver
      = dynamic_cast<OsiClpSolverInterface *> (fakeSolver_);
    if (clpSolver) {
      // fix up fake solver
      const ClpSimplex * siSimplex = clpSolver->getModelPtr();
      // need to set djs
      memcpy(siSimplex->primalColumnSolution(),
	     si.getReducedCost(),si.getNumCols()*sizeof(double));
      fakeSolver_->setDblParam(OsiDualObjectiveLimit,cutoff);
    }
#endif
    const CoinPackedMatrix * matrixByRow = si.getMatrixByRow();
    const double * elementByRow = matrixByRow->getElements();
    const int * column = matrixByRow->getIndices();
    const CoinBigIndex * rowStart = matrixByRow->getVectorStarts();
    const int * rowLength = matrixByRow->getVectorLengths();
    const double * rowUpper = si.getRowUpper();
    const double * rowLower = si.getRowLower();
    
    // Scan all rows looking for possibles
    int numberRows = si.getNumRows();
    double tolerance = 1.0e-3;
    for (int iRow=0;iRow<numberRows;iRow++) {
      CoinBigIndex start = rowStart[iRow];
      CoinBigIndex end = start + rowLength[iRow];
      double upRhs = rowUpper[iRow]; 
      double loRhs = rowLower[iRow]; 
      double sum = 0.0;
      for (CoinBigIndex j=start;j<end;j++) {
	int iColumn=column[j];
	double value = elementByRow[j];
	sum += solution[iColumn]*value;
      }
      if (sum<loRhs-tolerance||sum>upRhs+tolerance) {
	// add as cut
	OsiRowCut rc;
	rc.setLb(loRhs);
	rc.setUb(upRhs);
	rc.setRow(end-start,column+start,elementByRow+start,false);
	CoinAbsFltEq equal(1.0e-12);
	cs.insertIfNotDuplicate(rc,equal);
      }
    }
    CglClique::generateCuts(*fakeSolver_,cs,info);
    if (probing_) {
      probing_->generateCuts(*fakeSolver_,cs,info);
    }
  } else {
    // just use real solver
    CglClique::generateCuts(si,cs,info);
  }
}
Example #5
0
// Create a list of rows which might yield cuts
// The possible parameter is a list to cut down search
void CglOddHole::createRowList( const OsiSolverInterface & si,
		      const int * possible)
{
  // Get basic problem information
  int nRows=si.getNumRows(); 
  
  const CoinPackedMatrix * rowCopy = si.getMatrixByRow();

  const int * column = rowCopy->getIndices();
  const CoinBigIndex * rowStart = rowCopy->getVectorStarts();
  const int * rowLength = rowCopy->getVectorLengths(); 
  
  int rowIndex;
  delete [] suitableRows_;
  numberRows_=nRows;

  const double * rowElements = rowCopy->getElements();
  const double * rowupper = si.getRowUpper();
  const double * rowlower = si.getRowLower();
  const double * collower = si.getColLower();
  const double * colupper = si.getColUpper();

  suitableRows_=new int[nRows];
  if (possible) {
    memcpy(suitableRows_,possible,nRows*sizeof(int));
  } else {
    int i;
    for (i=0;i<nRows;i++) {
      suitableRows_[i]=1;
    }
  }
  for (rowIndex=0; rowIndex<nRows; rowIndex++){
    double rhs1=rowupper[rowIndex];
    double rhs2=rowlower[rowIndex];
    if (suitableRows_[rowIndex]) {
      int i;
      bool goodRow=true;
      for (i=rowStart[rowIndex];
	   i<rowStart[rowIndex]+rowLength[rowIndex];i++) {
	int thisCol=column[i];
	if (colupper[thisCol]-collower[thisCol]>epsilon_) {
	  // could allow general integer variables but unlikely
	  if (!si.isBinary(thisCol) ) {
	    goodRow=false;
	    break;
	  }
	  if (fabs(rowElements[i]-1.0)>epsilon_) {
	    goodRow=false;
	    break;
	  }
	} else {
	  rhs1 -= collower[thisCol]*rowElements[i];
	  rhs2 -= collower[thisCol]*rowElements[i];
	}
      }
      if (fabs(rhs1-1.0)>epsilon_&&fabs(rhs2-1.0)>epsilon_) {
	goodRow=false;
      }
      if (goodRow) {
	suitableRows_[rowIndex]=1;
      } else {
	suitableRows_[rowIndex]=0;
      }
    }
  }
}
Example #6
0
//-------------------------------------------------------------------------------
// Generate three cycle cuts
//------------------------------------------------------------------- 
void CglOddHole::generateCuts(const OsiSolverInterface & si, OsiCuts & cs,
			      const CglTreeInfo info)
{
  // Get basic problem information
  int nRows=si.getNumRows(); 
  int nCols=si.getNumCols(); 
  
  const CoinPackedMatrix * rowCopy = si.getMatrixByRow();

  // Could do cliques and extra OSL cliques
  // For moment just easy ones
  
  // If no information exists then get a list of suitable rows
  // If it does then suitable rows are subset of information
  
  CglOddHole temp;
  int * checkRow = new int[nRows];
  int i;
  if (!suitableRows_) {
    for (i=0;i<nRows;i++) {
      checkRow[i]=1;
    }
  } else {
    // initialize and extend rows to current size
    memset(checkRow,0,nRows*sizeof(int));
    memcpy(checkRow,suitableRows_,CoinMin(nRows,numberRows_)*sizeof(int));
  }
  temp.createRowList(si,checkRow);
  // now cut down further by only allowing rows with fractional solution
  double * solution = new double[nCols];
  memcpy(solution,si.getColSolution(),nCols*sizeof(double));
  const int * column = rowCopy->getIndices();
  const CoinBigIndex * rowStart = rowCopy->getVectorStarts();
  const int * rowLength = rowCopy->getVectorLengths(); 
  const double * collower = si.getColLower();
  const double * colupper = si.getColUpper();
  int * suitable = temp.suitableRows_;

  // At present I am using new and delete as easier to see arrays in debugger
  int * fixed = new int[nCols]; // mark fixed columns 

  for (i=0;i<nCols;i++) {
    if (si.isBinary(i) ) {
      fixed[i]=0;
      if (colupper[i]-collower[i]<epsilon_) {
	solution[i]=0.0;
	fixed[i]=2;
      } else if (solution[i]<epsilon_) {
	solution[i]=0.0;
	fixed[i]=-1;
      } else if (solution[i]>onetol_) {
	solution[i]=1.0;
	fixed[i]=+1;
      }
    } else {
      //mark as fixed even if not (can not intersect any interesting rows)
      solution[i]=0.0;
      fixed[i]=3;
    }
  }
  // first do packed
  const double * rowlower = si.getRowLower();
  const double * rowupper = si.getRowUpper();
  for (i=0;i<nRows;i++) {
    if (suitable[i]) {
      int k;
      double sum=0.0;
      if (rowupper[i]>1.001) suitable[i]=-1;
      for (k=rowStart[i]; k<rowStart[i]+rowLength[i];k++) {
	int icol=column[k];
	if (!fixed[icol]) sum += solution[icol];
      }
      if (sum<0.9) suitable[i]=-1; //say no good
    }
  }
#ifdef CGL_DEBUG
  const OsiRowCutDebugger * debugger = si.getRowCutDebugger();
  if (debugger&&!debugger->onOptimalPath(si))
    debugger = NULL;
#else
  const OsiRowCutDebugger * debugger = NULL;
#endif
  temp.generateCuts(debugger, *rowCopy,solution,
		    si.getReducedCost(),cs,suitable,fixed,info,true);
  // now cover
  //if no >= then skip
  bool doCover=false;
  int nsuitable=0;
  for (i=0;i<nRows;i++) {
    suitable[i]=abs(suitable[i]);
    if (suitable[i]) {
      int k;
      double sum=0.0;
      if (rowlower[i]<0.999) sum=2.0;
      if (rowupper[i]>1.001) doCover=true;
      for (k=rowStart[i]; k<rowStart[i]+rowLength[i];k++) {
	int icol=column[k];
	if (!fixed[icol]) sum += solution[icol];
	if (fixed[icol]==1) sum=2.0; //don't use if any at 1
      }
      if (sum>1.1) {
	suitable[i]=-1; //say no good
      } else {
	nsuitable++;
      }
    }
  }
  if (doCover&&nsuitable) 
    temp.generateCuts(debugger, *rowCopy,solution,si.getReducedCost(),
		      cs,suitable,fixed,info,false);
  delete [] checkRow;
  delete [] solution;
  delete [] fixed;
    
}
int * analyze(OsiClpSolverInterface * solverMod, int & numberChanged,
		     double & increment, bool changeInt,
		     CoinMessageHandler * generalMessageHandler, bool noPrinting)
{
    bool noPrinting_ = noPrinting;
    OsiSolverInterface * solver = solverMod->clone();
    char generalPrint[200];
    if (0) {
        // just get increment
        CbcModel model(*solver);
        model.analyzeObjective();
        double increment2 = model.getCutoffIncrement();
        printf("initial cutoff increment %g\n", increment2);
    }
    const double *objective = solver->getObjCoefficients() ;
    const double *lower = solver->getColLower() ;
    const double *upper = solver->getColUpper() ;
    int numberColumns = solver->getNumCols() ;
    int numberRows = solver->getNumRows();
    double direction = solver->getObjSense();
    int iRow, iColumn;

    // Row copy
    CoinPackedMatrix matrixByRow(*solver->getMatrixByRow());
    const double * elementByRow = matrixByRow.getElements();
    const int * column = matrixByRow.getIndices();
    const CoinBigIndex * rowStart = matrixByRow.getVectorStarts();
    const int * rowLength = matrixByRow.getVectorLengths();

    // Column copy
    CoinPackedMatrix  matrixByCol(*solver->getMatrixByCol());
    const double * element = matrixByCol.getElements();
    const int * row = matrixByCol.getIndices();
    const CoinBigIndex * columnStart = matrixByCol.getVectorStarts();
    const int * columnLength = matrixByCol.getVectorLengths();

    const double * rowLower = solver->getRowLower();
    const double * rowUpper = solver->getRowUpper();

    char * ignore = new char [numberRows];
    int * changed = new int[numberColumns];
    int * which = new int[numberRows];
    double * changeRhs = new double[numberRows];
    memset(changeRhs, 0, numberRows*sizeof(double));
    memset(ignore, 0, numberRows);
    numberChanged = 0;
    int numberInteger = 0;
    for (iColumn = 0; iColumn < numberColumns; iColumn++) {
        if (upper[iColumn] > lower[iColumn] + 1.0e-8 && solver->isInteger(iColumn))
            numberInteger++;
    }
    bool finished = false;
    while (!finished) {
        int saveNumberChanged = numberChanged;
        for (iRow = 0; iRow < numberRows; iRow++) {
            int numberContinuous = 0;
            double value1 = 0.0, value2 = 0.0;
            bool allIntegerCoeff = true;
            double sumFixed = 0.0;
            int jColumn1 = -1, jColumn2 = -1;
            for (CoinBigIndex j = rowStart[iRow]; j < rowStart[iRow] + rowLength[iRow]; j++) {
                int jColumn = column[j];
                double value = elementByRow[j];
                if (upper[jColumn] > lower[jColumn] + 1.0e-8) {
                    if (!solver->isInteger(jColumn)) {
                        if (numberContinuous == 0) {
                            jColumn1 = jColumn;
                            value1 = value;
                        } else {
                            jColumn2 = jColumn;
                            value2 = value;
                        }
                        numberContinuous++;
                    } else {
                        if (fabs(value - floor(value + 0.5)) > 1.0e-12)
                            allIntegerCoeff = false;
                    }
                } else {
                    sumFixed += lower[jColumn] * value;
                }
            }
            double low = rowLower[iRow];
            if (low > -1.0e20) {
                low -= sumFixed;
                if (fabs(low - floor(low + 0.5)) > 1.0e-12)
                    allIntegerCoeff = false;
            }
            double up = rowUpper[iRow];
            if (up < 1.0e20) {
                up -= sumFixed;
                if (fabs(up - floor(up + 0.5)) > 1.0e-12)
                    allIntegerCoeff = false;
            }
            if (!allIntegerCoeff)
                continue; // can't do
            if (numberContinuous == 1) {
                // see if really integer
                // This does not allow for complicated cases
                if (low == up) {
                    if (fabs(value1) > 1.0e-3) {
                        value1 = 1.0 / value1;
                        if (fabs(value1 - floor(value1 + 0.5)) < 1.0e-12) {
                            // integer
                            changed[numberChanged++] = jColumn1;
                            solver->setInteger(jColumn1);
                            if (upper[jColumn1] > 1.0e20)
                                solver->setColUpper(jColumn1, 1.0e20);
                            if (lower[jColumn1] < -1.0e20)
                                solver->setColLower(jColumn1, -1.0e20);
                        }
                    }
                } else {
                    if (fabs(value1) > 1.0e-3) {
                        value1 = 1.0 / value1;
                        if (fabs(value1 - floor(value1 + 0.5)) < 1.0e-12) {
                            // This constraint will not stop it being integer
                            ignore[iRow] = 1;
                        }
                    }
                }
            } else if (numberContinuous == 2) {
                if (low == up) {
                    /* need general theory - for now just look at 2 cases -
                       1 - +- 1 one in column and just costs i.e. matching objective
                       2 - +- 1 two in column but feeds into G/L row which will try and minimize
                    */
                    if (fabs(value1) == 1.0 && value1*value2 == -1.0 && !lower[jColumn1]
                            && !lower[jColumn2]) {
                        int n = 0;
                        int i;
                        double objChange = direction * (objective[jColumn1] + objective[jColumn2]);
                        double bound = CoinMin(upper[jColumn1], upper[jColumn2]);
                        bound = CoinMin(bound, 1.0e20);
                        for ( i = columnStart[jColumn1]; i < columnStart[jColumn1] + columnLength[jColumn1]; i++) {
                            int jRow = row[i];
                            double value = element[i];
                            if (jRow != iRow) {
                                which[n++] = jRow;
                                changeRhs[jRow] = value;
                            }
                        }
                        for ( i = columnStart[jColumn1]; i < columnStart[jColumn1] + columnLength[jColumn1]; i++) {
                            int jRow = row[i];
                            double value = element[i];
                            if (jRow != iRow) {
                                if (!changeRhs[jRow]) {
                                    which[n++] = jRow;
                                    changeRhs[jRow] = value;
                                } else {
                                    changeRhs[jRow] += value;
                                }
                            }
                        }
                        if (objChange >= 0.0) {
                            // see if all rows OK
                            bool good = true;
                            for (i = 0; i < n; i++) {
                                int jRow = which[i];
                                double value = changeRhs[jRow];
                                if (value) {
                                    value *= bound;
                                    if (rowLength[jRow] == 1) {
                                        if (value > 0.0) {
                                            double rhs = rowLower[jRow];
                                            if (rhs > 0.0) {
                                                double ratio = rhs / value;
                                                if (fabs(ratio - floor(ratio + 0.5)) > 1.0e-12)
                                                    good = false;
                                            }
                                        } else {
                                            double rhs = rowUpper[jRow];
                                            if (rhs < 0.0) {
                                                double ratio = rhs / value;
                                                if (fabs(ratio - floor(ratio + 0.5)) > 1.0e-12)
                                                    good = false;
                                            }
                                        }
                                    } else if (rowLength[jRow] == 2) {
                                        if (value > 0.0) {
                                            if (rowLower[jRow] > -1.0e20)
                                                good = false;
                                        } else {
                                            if (rowUpper[jRow] < 1.0e20)
                                                good = false;
                                        }
                                    } else {
                                        good = false;
                                    }
                                }
                            }
                            if (good) {
                                // both can be integer
                                changed[numberChanged++] = jColumn1;
                                solver->setInteger(jColumn1);
                                if (upper[jColumn1] > 1.0e20)
                                    solver->setColUpper(jColumn1, 1.0e20);
                                if (lower[jColumn1] < -1.0e20)
                                    solver->setColLower(jColumn1, -1.0e20);
                                changed[numberChanged++] = jColumn2;
                                solver->setInteger(jColumn2);
                                if (upper[jColumn2] > 1.0e20)
                                    solver->setColUpper(jColumn2, 1.0e20);
                                if (lower[jColumn2] < -1.0e20)
                                    solver->setColLower(jColumn2, -1.0e20);
                            }
                        }
                        // clear
                        for (i = 0; i < n; i++) {
                            changeRhs[which[i]] = 0.0;
                        }
                    }
                }
            }
        }
        for (iColumn = 0; iColumn < numberColumns; iColumn++) {
            if (upper[iColumn] > lower[iColumn] + 1.0e-8 && !solver->isInteger(iColumn)) {
                double value;
                value = upper[iColumn];
                if (value < 1.0e20 && fabs(value - floor(value + 0.5)) > 1.0e-12)
                    continue;
                value = lower[iColumn];
                if (value > -1.0e20 && fabs(value - floor(value + 0.5)) > 1.0e-12)
                    continue;
                bool integer = true;
                for (CoinBigIndex j = columnStart[iColumn]; j < columnStart[iColumn] + columnLength[iColumn]; j++) {
                    int iRow = row[j];
                    if (!ignore[iRow]) {
                        integer = false;
                        break;
                    }
                }
                if (integer) {
                    // integer
                    changed[numberChanged++] = iColumn;
                    solver->setInteger(iColumn);
                    if (upper[iColumn] > 1.0e20)
                        solver->setColUpper(iColumn, 1.0e20);
                    if (lower[iColumn] < -1.0e20)
                        solver->setColLower(iColumn, -1.0e20);
                }
            }
        }
        finished = numberChanged == saveNumberChanged;
    }
    delete [] which;
    delete [] changeRhs;
    delete [] ignore;
    //if (numberInteger&&!noPrinting_)
    //printf("%d integer variables",numberInteger);
    if (changeInt) {
        //if (!noPrinting_) {
        //if (numberChanged)
        //  printf(" and %d variables made integer\n",numberChanged);
        //else
        //  printf("\n");
        //}
        //increment=0.0;
        if (!numberChanged) {
            delete [] changed;
            delete solver;
            return NULL;
        } else {
            for (iColumn = 0; iColumn < numberColumns; iColumn++) {
                if (solver->isInteger(iColumn))
                    solverMod->setInteger(iColumn);
            }
            delete solver;
            return changed;
        }
    } else {
        //if (!noPrinting_) {
        //if (numberChanged)
        //  printf(" and %d variables could be made integer\n",numberChanged);
        //else
        //  printf("\n");
        //}
        // just get increment
        int logLevel = generalMessageHandler->logLevel();
        CbcModel model(*solver);
	if (!model.defaultHandler())
	  model.passInMessageHandler(generalMessageHandler);
        if (noPrinting_)
            model.setLogLevel(0);
        model.analyzeObjective();
        generalMessageHandler->setLogLevel(logLevel);
        double increment2 = model.getCutoffIncrement();
        if (increment2 > increment && increment2 > 0.0) {
            if (!noPrinting_) {
                sprintf(generalPrint, "Cutoff increment increased from %g to %g", increment, increment2);
                CoinMessages generalMessages = solverMod->getModelPtr()->messages();
                generalMessageHandler->message(CLP_GENERAL, generalMessages)
                << generalPrint
                << CoinMessageEol;
            }
            increment = increment2;
        }
        delete solver;
        numberChanged = 0;
        delete [] changed;
        return NULL;
    }
}
OsiSolverInterface *
expandKnapsack(CoinModel & model, int * whichColumn, int * knapsackStart,
               int * knapsackRow, int &numberKnapsack,
               CglStored & stored, int logLevel,
               int fixedPriority, int SOSPriority, CoinModel & tightenedModel)
{
    int maxTotal = numberKnapsack;
    // load from coin model
    OsiSolverLink *si = new OsiSolverLink();
    OsiSolverInterface * finalModel = NULL;
    si->setDefaultMeshSize(0.001);
    // need some relative granularity
    si->setDefaultBound(100.0);
    si->setDefaultMeshSize(0.01);
    si->setDefaultBound(100000.0);
    si->setIntegerPriority(1000);
    si->setBiLinearPriority(10000);
    si->load(model, true, logLevel);
    // get priorities
    const int * priorities = model.priorities();
    int numberColumns = model.numberColumns();
    if (priorities) {
        OsiObject ** objects = si->objects();
        int numberObjects = si->numberObjects();
        for (int iObj = 0; iObj < numberObjects; iObj++) {
            int iColumn = objects[iObj]->columnNumber();
            if (iColumn >= 0 && iColumn < numberColumns) {
#ifndef NDEBUG
                OsiSimpleInteger * obj =
                    dynamic_cast <OsiSimpleInteger *>(objects[iObj]) ;
#endif
                assert (obj);
                int iPriority = priorities[iColumn];
                if (iPriority > 0)
                    objects[iObj]->setPriority(iPriority);
            }
        }
        if (fixedPriority > 0) {
            si->setFixedPriority(fixedPriority);
        }
        if (SOSPriority < 0)
            SOSPriority = 100000;
    }
    CoinModel coinModel = *si->coinModel();
    assert(coinModel.numberRows() > 0);
    tightenedModel = coinModel;
    int numberRows = coinModel.numberRows();
    // Mark variables
    int * whichKnapsack = new int [numberColumns];
    int iRow, iColumn;
    for (iColumn = 0; iColumn < numberColumns; iColumn++)
        whichKnapsack[iColumn] = -1;
    int kRow;
    bool badModel = false;
    // analyze
    if (logLevel > 1) {
        for (iRow = 0; iRow < numberRows; iRow++) {
            /* Just obvious one at first
            positive non unit coefficients
            all integer
            positive rowUpper
            for now - linear (but further down in code may use nonlinear)
            column bounds should be tight
            */
            //double lower = coinModel.getRowLower(iRow);
            double upper = coinModel.getRowUpper(iRow);
            if (upper < 1.0e10) {
                CoinModelLink triple = coinModel.firstInRow(iRow);
                bool possible = true;
                int n = 0;
                int n1 = 0;
                while (triple.column() >= 0) {
                    int iColumn = triple.column();
                    const char *  el = coinModel.getElementAsString(iRow, iColumn);
                    if (!strcmp("Numeric", el)) {
                        if (coinModel.columnLower(iColumn) == coinModel.columnUpper(iColumn)) {
                            triple = coinModel.next(triple);
                            continue; // fixed
                        }
                        double value = coinModel.getElement(iRow, iColumn);
                        if (value < 0.0) {
                            possible = false;
                        } else {
                            n++;
                            if (value == 1.0)
                                n1++;
                            if (coinModel.columnLower(iColumn) < 0.0)
                                possible = false;
                            if (!coinModel.isInteger(iColumn))
                                possible = false;
                            if (whichKnapsack[iColumn] >= 0)
                                possible = false;
                        }
                    } else {
                        possible = false; // non linear
                    }
                    triple = coinModel.next(triple);
                }
                if (n - n1 > 1 && possible) {
                    double lower = coinModel.getRowLower(iRow);
                    double upper = coinModel.getRowUpper(iRow);
                    CoinModelLink triple = coinModel.firstInRow(iRow);
                    while (triple.column() >= 0) {
                        int iColumn = triple.column();
                        lower -= coinModel.columnLower(iColumn) * triple.value();
                        upper -= coinModel.columnLower(iColumn) * triple.value();
                        triple = coinModel.next(triple);
                    }
                    printf("%d is possible %g <=", iRow, lower);
                    // print
                    triple = coinModel.firstInRow(iRow);
                    while (triple.column() >= 0) {
                        int iColumn = triple.column();
                        if (coinModel.columnLower(iColumn) != coinModel.columnUpper(iColumn))
                            printf(" (%d,el %g up %g)", iColumn, triple.value(),
                                   coinModel.columnUpper(iColumn) - coinModel.columnLower(iColumn));
                        triple = coinModel.next(triple);
                    }
                    printf(" <= %g\n", upper);
                }
            }
        }
    }
    numberKnapsack = 0;
    for (kRow = 0; kRow < numberRows; kRow++) {
        iRow = kRow;
        /* Just obvious one at first
           positive non unit coefficients
           all integer
           positive rowUpper
           for now - linear (but further down in code may use nonlinear)
           column bounds should be tight
        */
        //double lower = coinModel.getRowLower(iRow);
        double upper = coinModel.getRowUpper(iRow);
        if (upper < 1.0e10) {
            CoinModelLink triple = coinModel.firstInRow(iRow);
            bool possible = true;
            int n = 0;
            int n1 = 0;
            while (triple.column() >= 0) {
                int iColumn = triple.column();
                const char *  el = coinModel.getElementAsString(iRow, iColumn);
                if (!strcmp("Numeric", el)) {
                    if (coinModel.columnLower(iColumn) == coinModel.columnUpper(iColumn)) {
                        triple = coinModel.next(triple);
                        continue; // fixed
                    }
                    double value = coinModel.getElement(iRow, iColumn);
                    if (value < 0.0) {
                        possible = false;
                    } else {
                        n++;
                        if (value == 1.0)
                            n1++;
                        if (coinModel.columnLower(iColumn) < 0.0)
                            possible = false;
                        if (!coinModel.isInteger(iColumn))
                            possible = false;
                        if (whichKnapsack[iColumn] >= 0)
                            possible = false;
                    }
                } else {
                    possible = false; // non linear
                }
                triple = coinModel.next(triple);
            }
            if (n - n1 > 1 && possible) {
                // try
                CoinModelLink triple = coinModel.firstInRow(iRow);
                while (triple.column() >= 0) {
                    int iColumn = triple.column();
                    if (coinModel.columnLower(iColumn) != coinModel.columnUpper(iColumn))
                        whichKnapsack[iColumn] = numberKnapsack;
                    triple = coinModel.next(triple);
                }
                knapsackRow[numberKnapsack++] = iRow;
            }
        }
    }
    if (logLevel > 0)
        printf("%d out of %d candidate rows are possible\n", numberKnapsack, numberRows);
    // Check whether we can get rid of nonlinearities
    /* mark rows
       -2 in knapsack and other variables
       -1 not involved
       n only in knapsack n
    */
    int * markRow = new int [numberRows];
    for (iRow = 0; iRow < numberRows; iRow++)
        markRow[iRow] = -1;
    int canDo = 1; // OK and linear
    for (iColumn = 0; iColumn < numberColumns; iColumn++) {
        CoinModelLink triple = coinModel.firstInColumn(iColumn);
        int iKnapsack = whichKnapsack[iColumn];
        bool linear = true;
        // See if quadratic objective
        const char * expr = coinModel.getColumnObjectiveAsString(iColumn);
        if (strcmp(expr, "Numeric")) {
            linear = false;
        }
        while (triple.row() >= 0) {
            int iRow = triple.row();
            if (iKnapsack >= 0) {
                if (markRow[iRow] == -1) {
                    markRow[iRow] = iKnapsack;
                } else if (markRow[iRow] != iKnapsack) {
                    markRow[iRow] = -2;
                }
            }
            const char * expr = coinModel.getElementAsString(iRow, iColumn);
            if (strcmp(expr, "Numeric")) {
                linear = false;
            }
            triple = coinModel.next(triple);
        }
        if (!linear) {
            if (whichKnapsack[iColumn] < 0) {
                canDo = 0;
                break;
            } else {
                canDo = 2;
            }
        }
    }
    int * markKnapsack = NULL;
    double * coefficient = NULL;
    double * linear = NULL;
    int * whichRow = NULL;
    int * lookupRow = NULL;
    badModel = (canDo == 0);
    if (numberKnapsack && canDo) {
        /* double check - OK if
           no nonlinear
           nonlinear only on columns in knapsack
           nonlinear only on columns in knapsack * ONE other - same for all in knapsack
           AND that is only row connected to knapsack
           (theoretically could split knapsack if two other and small numbers)
           also ONE could be ONE expression - not just a variable
        */
        int iKnapsack;
        markKnapsack = new int [numberKnapsack];
        coefficient = new double [numberKnapsack];
        linear = new double [numberColumns];
        for (iKnapsack = 0; iKnapsack < numberKnapsack; iKnapsack++)
            markKnapsack[iKnapsack] = -1;
        if (canDo == 2) {
            for (iRow = -1; iRow < numberRows; iRow++) {
                int numberOdd;
                CoinPackedMatrix * row = coinModel.quadraticRow(iRow, linear, numberOdd);
                if (row) {
                    // see if valid
                    const double * element = row->getElements();
                    const int * column = row->getIndices();
                    const CoinBigIndex * columnStart = row->getVectorStarts();
                    const int * columnLength = row->getVectorLengths();
                    int numberLook = row->getNumCols();
                    for (int i = 0; i < numberLook; i++) {
                        int iKnapsack = whichKnapsack[i];
                        if (iKnapsack < 0) {
                            // might be able to swap - but for now can't have knapsack in
                            for (int j = columnStart[i]; j < columnStart[i] + columnLength[i]; j++) {
                                int iColumn = column[j];
                                if (whichKnapsack[iColumn] >= 0) {
                                    canDo = 0; // no good
                                    badModel = true;
                                    break;
                                }
                            }
                        } else {
                            // OK if in same knapsack - or maybe just one
                            int marked = markKnapsack[iKnapsack];
                            for (int j = columnStart[i]; j < columnStart[i] + columnLength[i]; j++) {
                                int iColumn = column[j];
                                if (whichKnapsack[iColumn] != iKnapsack && whichKnapsack[iColumn] >= 0) {
                                    canDo = 0; // no good
                                    badModel = true;
                                    break;
                                } else if (marked == -1) {
                                    markKnapsack[iKnapsack] = iColumn;
                                    marked = iColumn;
                                    coefficient[iKnapsack] = element[j];
                                    coinModel.associateElement(coinModel.columnName(iColumn), 1.0);
                                } else if (marked != iColumn) {
                                    badModel = true;
                                    canDo = 0; // no good
                                    break;
                                } else {
                                    // could manage with different coefficients - but for now ...
                                    assert(coefficient[iKnapsack] == element[j]);
                                }
                            }
                        }
                    }
                    delete row;
                }
            }
        }
        if (canDo) {
            // for any rows which are cuts
            whichRow = new int [numberRows];
            lookupRow = new int [numberRows];
            bool someNonlinear = false;
            double maxCoefficient = 1.0;
            for (iKnapsack = 0; iKnapsack < numberKnapsack; iKnapsack++) {
                if (markKnapsack[iKnapsack] >= 0) {
                    someNonlinear = true;
                    int iColumn = markKnapsack[iKnapsack];
                    maxCoefficient = CoinMax(maxCoefficient, fabs(coefficient[iKnapsack] * coinModel.columnUpper(iColumn)));
                }
            }
            if (someNonlinear) {
                // associate all columns to stop possible error messages
                for (iColumn = 0; iColumn < numberColumns; iColumn++) {
                    coinModel.associateElement(coinModel.columnName(iColumn), 1.0);
                }
            }
            ClpSimplex tempModel;
            tempModel.loadProblem(coinModel);
            // Create final model - first without knapsacks
            int nCol = 0;
            int nRow = 0;
            for (iRow = 0; iRow < numberRows; iRow++) {
                if (markRow[iRow] < 0) {
                    lookupRow[iRow] = nRow;
                    whichRow[nRow++] = iRow;
                } else {
                    lookupRow[iRow] = -1;
                }
            }
            for (iColumn = 0; iColumn < numberColumns; iColumn++) {
                if (whichKnapsack[iColumn] < 0)
                    whichColumn[nCol++] = iColumn;
            }
            ClpSimplex finalModelX(&tempModel, nRow, whichRow, nCol, whichColumn, false, false, false);
            OsiClpSolverInterface finalModelY(&finalModelX, true);
            finalModel = finalModelY.clone();
            finalModelY.releaseClp();
            // Put back priorities
            const int * priorities = model.priorities();
            if (priorities) {
                finalModel->findIntegers(false);
                OsiObject ** objects = finalModel->objects();
                int numberObjects = finalModel->numberObjects();
                for (int iObj = 0; iObj < numberObjects; iObj++) {
                    int iColumn = objects[iObj]->columnNumber();
                    if (iColumn >= 0 && iColumn < nCol) {
#ifndef NDEBUG
                        OsiSimpleInteger * obj =
                            dynamic_cast <OsiSimpleInteger *>(objects[iObj]) ;
#endif
                        assert (obj);
                        int iPriority = priorities[whichColumn[iColumn]];
                        if (iPriority > 0)
                            objects[iObj]->setPriority(iPriority);
                    }
                }
            }
            for (iRow = 0; iRow < numberRows; iRow++) {
                whichRow[iRow] = iRow;
            }
            int numberOther = finalModel->getNumCols();
            int nLargest = 0;
            int nelLargest = 0;
            int nTotal = 0;
            for (iKnapsack = 0; iKnapsack < numberKnapsack; iKnapsack++) {
                iRow = knapsackRow[iKnapsack];
                int nCreate = maxTotal;
                int nelCreate = coinModel.expandKnapsack(iRow, nCreate, NULL, NULL, NULL, NULL);
                if (nelCreate < 0)
                    badModel = true;
                nTotal += nCreate;
                nLargest = CoinMax(nLargest, nCreate);
                nelLargest = CoinMax(nelLargest, nelCreate);
            }
            if (nTotal > maxTotal)
                badModel = true;
            if (!badModel) {
                // Now arrays for building
                nelLargest = CoinMax(nelLargest, nLargest) + 1;
                double * buildObj = new double [nLargest];
                double * buildElement = new double [nelLargest];
                int * buildStart = new int[nLargest+1];
                int * buildRow = new int[nelLargest];
                // alow for integers in knapsacks
                OsiObject ** object = new OsiObject * [numberKnapsack+nTotal];
                int nSOS = 0;
                int nObj = numberKnapsack;
                for (iKnapsack = 0; iKnapsack < numberKnapsack; iKnapsack++) {
                    knapsackStart[iKnapsack] = finalModel->getNumCols();
                    iRow = knapsackRow[iKnapsack];
                    int nCreate = 10000;
                    coinModel.expandKnapsack(iRow, nCreate, buildObj, buildStart, buildRow, buildElement);
                    // Redo row numbers
                    for (iColumn = 0; iColumn < nCreate; iColumn++) {
                        for (int j = buildStart[iColumn]; j < buildStart[iColumn+1]; j++) {
                            int jRow = buildRow[j];
                            jRow = lookupRow[jRow];
                            assert (jRow >= 0 && jRow < nRow);
                            buildRow[j] = jRow;
                        }
                    }
                    finalModel->addCols(nCreate, buildStart, buildRow, buildElement, NULL, NULL, buildObj);
                    int numberFinal = finalModel->getNumCols();
                    for (iColumn = numberOther; iColumn < numberFinal; iColumn++) {
                        if (markKnapsack[iKnapsack] < 0) {
                            finalModel->setColUpper(iColumn, maxCoefficient);
                            finalModel->setInteger(iColumn);
                        } else {
                            finalModel->setColUpper(iColumn, maxCoefficient + 1.0);
                            finalModel->setInteger(iColumn);
                        }
                        OsiSimpleInteger * sosObject = new OsiSimpleInteger(finalModel, iColumn);
                        sosObject->setPriority(1000000);
                        object[nObj++] = sosObject;
                        buildRow[iColumn-numberOther] = iColumn;
                        buildElement[iColumn-numberOther] = 1.0;
                    }
                    if (markKnapsack[iKnapsack] < 0) {
                        // convexity row
                        finalModel->addRow(numberFinal - numberOther, buildRow, buildElement, 1.0, 1.0);
                    } else {
                        int iColumn = markKnapsack[iKnapsack];
                        int n = numberFinal - numberOther;
                        buildRow[n] = iColumn;
                        buildElement[n++] = -fabs(coefficient[iKnapsack]);
                        // convexity row (sort of)
                        finalModel->addRow(n, buildRow, buildElement, 0.0, 0.0);
                        OsiSOS * sosObject = new OsiSOS(finalModel, n - 1, buildRow, NULL, 1);
                        sosObject->setPriority(iKnapsack + SOSPriority);
                        // Say not integral even if is (switch off heuristics)
                        sosObject->setIntegerValued(false);
                        object[nSOS++] = sosObject;
                    }
                    numberOther = numberFinal;
                }
                finalModel->addObjects(nObj, object);
                for (iKnapsack = 0; iKnapsack < nObj; iKnapsack++)
                    delete object[iKnapsack];
                delete [] object;
                // Can we move any rows to cuts
                const int * cutMarker = coinModel.cutMarker();
                if (cutMarker && 0) {
                    printf("AMPL CUTS OFF until global cuts fixed\n");
                    cutMarker = NULL;
                }
                if (cutMarker) {
                    // Row copy
                    const CoinPackedMatrix * matrixByRow = finalModel->getMatrixByRow();
                    const double * elementByRow = matrixByRow->getElements();
                    const int * column = matrixByRow->getIndices();
                    const CoinBigIndex * rowStart = matrixByRow->getVectorStarts();
                    const int * rowLength = matrixByRow->getVectorLengths();

                    const double * rowLower = finalModel->getRowLower();
                    const double * rowUpper = finalModel->getRowUpper();
                    int nDelete = 0;
                    for (iRow = 0; iRow < numberRows; iRow++) {
                        if (cutMarker[iRow] && lookupRow[iRow] >= 0) {
                            int jRow = lookupRow[iRow];
                            whichRow[nDelete++] = jRow;
                            int start = rowStart[jRow];
                            stored.addCut(rowLower[jRow], rowUpper[jRow],
                                          rowLength[jRow], column + start, elementByRow + start);
                        }
                    }
                    finalModel->deleteRows(nDelete, whichRow);
                }
                knapsackStart[numberKnapsack] = finalModel->getNumCols();
                delete [] buildObj;
                delete [] buildElement;
                delete [] buildStart;
                delete [] buildRow;
                finalModel->writeMps("full");
            }
        }
    }
    delete [] whichKnapsack;
    delete [] markRow;
    delete [] markKnapsack;
    delete [] coefficient;
    delete [] linear;
    delete [] whichRow;
    delete [] lookupRow;
    delete si;
    si = NULL;
    if (!badModel && finalModel) {
        finalModel->setDblParam(OsiObjOffset, coinModel.objectiveOffset());
        return finalModel;
    } else {
        delete finalModel;
        printf("can't make knapsacks - did you set fixedPriority (extra1)\n");
        return NULL;
    }
}
Example #9
0
//#############################################################################
void 
MibSHeuristic::lowerObjHeuristic()
{

  /* 
     optimize wrt to lower-level objective 
     over current feasible lp feasible region 
  */

  MibSModel * model = MibSModel_;

  OsiSolverInterface * oSolver = model->getSolver();
  //OsiSolverInterface * hSolver = new OsiCbcSolverInterface();
  OsiSolverInterface* hSolver = new OsiSymSolverInterface();

  double objSense(model->getLowerObjSense());  
  int lCols(model->getLowerDim());
  int uCols(model->getUpperDim());
  int * lColIndices = model->getLowerColInd();
  int * uColIndices = model->getUpperColInd();
  double * lObjCoeffs = model->getLowerObjCoeffs();
  
  //int tCols(lCols + uCols);
  int tCols(oSolver->getNumCols());
  //assert(tCols == oSolver->getNumCols());

  hSolver->loadProblem(*oSolver->getMatrixByCol(),
		       oSolver->getColLower(), oSolver->getColUpper(),
		       oSolver->getObjCoefficients(),
		       oSolver->getRowLower(), oSolver->getRowUpper());

  int j(0);
  for(j = 0; j < tCols; j++){
    if(oSolver->isInteger(j))
      hSolver->setInteger(j);
  }

  double * nObjCoeffs = new double[tCols];
  int i(0), index(0);
  
  CoinZeroN(nObjCoeffs, tCols);

  for(i = 0; i < lCols; i++){
    index = lColIndices[i];
    nObjCoeffs[index] = lObjCoeffs[i];
  }

  //MibS objective sense is the opposite of OSI's!
  hSolver->setObjSense(objSense);

  hSolver->setObjective(nObjCoeffs);
 
  //double cutoff(model->getCutoff());
  double cutoff(model->getKnowledgeBroker()->getIncumbentValue());

  if(model->getNumSolutions()){
  
    CoinPackedVector objCon;
    //double rhs(cutoff * objSense);
    //double smlTol(1.0);
    double rhs(cutoff);
       
    for(i = 0; i < tCols; i++){
      objCon.insert(i, oSolver->getObjCoefficients()[i] 
		    * oSolver->getObjSense());
    }
    
    hSolver->addRow(objCon, - hSolver->getInfinity(), rhs);
  }
  
  if(0)
     hSolver->writeLp("lobjheurstic");

  if(0){
    dynamic_cast<OsiCbcSolverInterface *> 
      (hSolver)->getModelPtr()->messageHandler()->setLogLevel(0);
  }    
  else{
    dynamic_cast<OsiSymSolverInterface *> 
      (hSolver)->setSymParam("prep_level", -1);
    
    dynamic_cast<OsiSymSolverInterface *> 
      (hSolver)->setSymParam("verbosity", -2);

    dynamic_cast<OsiSymSolverInterface *> 
      (hSolver)->setSymParam("max_active_nodes", 1);
  }

  hSolver->branchAndBound();

  if(hSolver->isProvenOptimal()){

    double upperObjVal(0.0);

    /*****************NEW ******************/

    MibSSolution *mibSol = NULL;

    OsiSolverInterface * lSolver = model->bS_->setUpModel(hSolver, true);

    if(0){
       lSolver->writeLp("tmp");
    }

    if(0){
       dynamic_cast<OsiCbcSolverInterface *> 
	  (lSolver)->getModelPtr()->messageHandler()->setLogLevel(0);
    }    
    else{
       dynamic_cast<OsiSymSolverInterface *> 
	  (lSolver)->setSymParam("prep_level", -1);
       
       dynamic_cast<OsiSymSolverInterface *> 
	  (lSolver)->setSymParam("verbosity", -2);
       
       dynamic_cast<OsiSymSolverInterface *> 
	  (lSolver)->setSymParam("max_active_nodes", 1);
    }

    lSolver->branchAndBound();

    if (lSolver->isProvenOptimal()){
       const double * sol = hSolver->getColSolution();
       double objVal(lSolver->getObjValue() * objSense);
       double etol(etol_);
       double lowerObj = getLowerObj(sol, objSense);  
       
       double * optUpperSolutionOrd = new double[uCols];
       double * optLowerSolutionOrd = new double[lCols];
       
       CoinZeroN(optUpperSolutionOrd, uCols);
       CoinZeroN(optLowerSolutionOrd, lCols);
       
       if(fabs(objVal - lowerObj) < etol){
	  
	  /** Current solution is bilevel feasible **/
	  
	  for(i = 0; i < tCols; i++)
	     upperObjVal += 
		hSolver->getColSolution()[i] * oSolver->getObjCoefficients()[i];
	  
	  mibSol = new MibSSolution(hSolver->getNumCols(),
				    hSolver->getColSolution(),
				    upperObjVal,
				    model);
	  
	  model->storeSolution(BlisSolutionTypeHeuristic, mibSol);
	  mibSol = NULL;
       }
       else{
	  
	  /* solution is not bilevel feasible, create one that is */
	  
	  const double * uSol = hSolver->getColSolution();
	  const double * lSol = lSolver->getColSolution();
	  int numElements(hSolver->getNumCols());
	  int i(0), pos(0), index(0);
	  double * lpSolution = new double[numElements];
	  double upperObj(0.0);
	  
	  //FIXME: problem is still here.  indices may be wrong.  
	  //also is all this necessary, or can we just paste together uSol and lSol?
	  //this may be an old comment
	  
	  for(i = 0; i < numElements; i++){
	     pos = model->bS_->binarySearch(0, lCols - 1, i, lColIndices);
	     if(pos < 0){
		pos = model->bS_->binarySearch(0, uCols - 1, i, uColIndices);
		if (pos >= 0){
		   optUpperSolutionOrd[pos] = uSol[i];
		}
	     }
	     else{
		optLowerSolutionOrd[pos] = lSol[pos];
	     }
	  }
	  
	  for(i = 0; i < uCols; i++){
	     index = uColIndices[i];
	     lpSolution[index] = optUpperSolutionOrd[i];
	     upperObj += 
		optUpperSolutionOrd[i] * oSolver->getObjCoefficients()[index];
	  }
	  
	  for(i = 0; i < lCols; i++){
	     index = lColIndices[i];
	     lpSolution[index] = optLowerSolutionOrd[i];
	     upperObj += 
		optLowerSolutionOrd[i] * oSolver->getObjCoefficients()[index];
	  }
	  
	  if(model->checkUpperFeasibility(lpSolution)){
	     mibSol = new MibSSolution(hSolver->getNumCols(),
				       lpSolution,
				       upperObj * oSolver->getObjSense(),
				       model);
	     
	     model->storeSolution(BlisSolutionTypeHeuristic, mibSol);
	     mibSol = NULL;
	  }
	  delete [] lpSolution;
       }
    }
    delete lSolver;
  }
  delete hSolver;

}
//--------------------------------------------------------------------------
void
CglKnapsackCoverUnitTest(
  const OsiSolverInterface * baseSiP,
  const std::string mpsDir )
{
  int i;
  CoinRelFltEq eq(0.000001);

  // Test default constructor
  {
    CglKnapsackCover kccGenerator;
  }
  
  // Test copy & assignment
  {
    CglKnapsackCover rhs;
    {
      CglKnapsackCover kccGenerator;
      CglKnapsackCover cgC(kccGenerator);
      rhs=kccGenerator;
    }
  }


  // test exactSolveKnapsack
  {  
    CglKnapsackCover kccg;
    const int n=7;
    double c=50;
    double p[n] = {70,20,39,37,7,5,10};
    double w[n] = {31, 10, 20, 19, 4, 3, 6};
    double z;
    int x[n];
    int exactsol = kccg.exactSolveKnapsack(n, c, p, w, z, x);
    assert(exactsol==1);
    assert (z == 107);
    assert (x[0]==1);
    assert (x[1]==0);
    assert (x[2]==0);
    assert (x[3]==1);
    assert (x[4]==0);
    assert (x[5]==0);
    assert (x[6]==0);
  }

  /*
  // Testcase /u/rlh/osl2/mps/scOneInt.mps
  // Model has 3 continous, 2 binary, and 1 general
  // integer variable.
  {
    OsiSolverInterface  * siP = baseSiP->clone();
    int * complement=NULL;
    double * xstar=NULL;

    siP->readMps("../Mps/scOneInt","mps");
    CglKnapsackCover kccg;
    int nCols=siP->getNumCols();
    
    // Test the siP methods for detecting
    // variable type
    int numCont=0, numBinary=0, numIntNonBinary=0, numInt=0;
    for (int thisCol=0; thisCol<nCols; thisCol++) {
      if ( siP->isContinuous(thisCol) ) numCont++;
      if ( siP->isBinary(thisCol) ) numBinary++;
      if ( siP->isIntegerNonBinary(thisCol) ) numIntNonBinary++;
      if ( siP->isInteger(thisCol) ) numInt++;
    }
    assert(numCont==3);
    assert(numBinary==2);
    assert(numIntNonBinary==1);
    assert(numInt==3);
    
    
    // Test initializeCutGenerator
    siP->initialSolve();
    assert(xstar !=NULL);
    for (i=0; i<nCols; i++){
      assert(complement[i]==0);
    }
    int nRows=siP->getNumRows();
    for (i=0; i<nRows; i++){
    int vectorsize = siP->getMatrixByRow()->vectorSize(i);
    assert(vectorsize==2);
    }
    
    kccg.cleanUpCutGenerator(complement,xstar);
    delete siP;
  }
  */  
  
  // Testcase /u/rlh/osl2/mps/tp3.mps
  // Models has 3 cols, 3 rows
  // Row 0 yields a knapsack, others do not.
  {
    // setup
    OsiSolverInterface  * siP = baseSiP->clone();
    std::string fn(mpsDir+"tp3");
    siP->readMps(fn.c_str(),"mps");     
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));  
    OsiCuts cs;
    CoinPackedVector krow;
    double b=0;
    int nCols=siP->getNumCols();
    int * complement=new int [nCols];
    double * xstar=new double [nCols];

    CglKnapsackCover kccg;

    // solve LP relaxation
    // a "must" before calling initialization
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    std::cout<<"Initial LP value: "<<lpRelaxBefore<<std::endl;
    assert( eq(siP->getObjValue(), 97.185) );
    double mycs[] = {.627, .667558333333, .038};
    siP->setColSolution(mycs);
    const double *colsol = siP->getColSolution(); 
    int k;
    for (k=0; k<nCols; k++){
      xstar[k]=colsol[k];
      complement[k]=0;
    }
    
    // test deriveAKnapsack
    int rind = ( siP->getRowSense()[0] == 'N' ) ? 1 : 0;
    const CoinShallowPackedVector reqdBySunCC = siP->getMatrixByRow()->getVector(rind) ;
    int deriveaknap = kccg.deriveAKnapsack(*siP, cs, krow,b,complement,xstar,rind,reqdBySunCC);
    assert(deriveaknap ==1);
    assert(complement[0]==0);
    assert(complement[1]==1);
    assert(complement[2]==1);
    int inx[3] = {0,1,2};
    double el[3] = {161, 120, 68};
    CoinPackedVector r;
    r.setVector(3,inx,el);
    assert (krow == r);
    //assert (b == 183.0); ????? but x1 and x2 at 1 is valid 
    
    // test findGreedyCover 
    CoinPackedVector cover,remainder;
#if 0
    int findgreedy =  kccg.findGreedyCover( 0, krow, b, xstar, cover, remainder );
    assert( findgreedy == 1 );
    int coveri = cover.getNumElements();
    assert( cover.getNumElements() == 2);
    coveri = cover.getIndices()[0];
    assert( cover.getIndices()[0] == 0);
    assert( cover.getIndices()[1] == 1);
    assert( cover.getElements()[0] == 161.0);
    assert( cover.getElements()[1] == 120.0);
    assert( remainder.getNumElements() == 1);
    assert( remainder.getIndices()[0] == 2);
    assert( remainder.getElements()[0] == 68.0);

    // test liftCoverCut
    CoinPackedVector cut;
    double * rowupper = ekk_rowupper(model);
    double cutRhs = cover.getNumElements() - 1.0;
    kccg.liftCoverCut(b, krow.getNumElements(),
      cover, remainder,
      cut);
    assert ( cut.getNumElements() == 3 );
    assert ( cut.getIndices()[0] == 0 );
    assert ( cut.getIndices()[1] == 1 );
    assert ( cut.getIndices()[2] == 2 );
    assert( cut.getElements()[0] == 1 );
    assert( cut.getElements()[1] == 1 );
    assert( eq(cut.getElements()[2], 0.087719) );
    
    // test liftAndUncomplementAndAdd
    OsiCuts cuts;    
    kccg.liftAndUncomplementAndAdd(*siP.getRowUpper()[0],krow,b,complement,0,
      cover,remainder,cuts);   
    int sizerowcuts = cuts.sizeRowCuts();
    assert ( sizerowcuts== 1 );
    OsiRowCut testRowCut = cuts.rowCut(0);
    CoinPackedVector testRowPV = testRowCut.row(); 
    OsiRowCut sampleRowCut;
    const int sampleSize = 3;
    int sampleCols[sampleSize]={0,1,2};
    double sampleElems[sampleSize]={1.0,-1.0,-0.087719};
    sampleRowCut.setRow(sampleSize,sampleCols,sampleElems);
    sampleRowCut.setLb(-DBL_MAX);
    sampleRowCut.setUb(-0.087719);
    bool equiv =  testRowPV.equivalent(sampleRowCut.row(),CoinRelFltEq(1.0e-05) );
    assert ( equiv );
#endif
    
    // test find PseudoJohnAndEllisCover
    cover.setVector(0,NULL, NULL);
    remainder.setVector(0,NULL,NULL);

    rind = ( siP->getRowSense()[0] == 'N' ) ? 1 : 0;
    int findPJE =  kccg.findPseudoJohnAndEllisCover( rind, krow, 
						     b, xstar, cover, remainder );
    assert( findPJE == 1 );
    assert ( cover.getIndices()[0] == 0 );
    assert ( cover.getIndices()[1] == 2 );
    assert ( cover.getElements()[0] == 161 );    
    assert ( cover.getElements()[1] == 68 );    
    assert ( remainder.getIndices()[0] == 1 );
    assert ( remainder.getElements()[0] == 120 );    
    OsiCuts cuts;    
    kccg.liftAndUncomplementAndAdd((*siP).getRowUpper()[rind],krow,b, complement, rind,
      cover,remainder,cuts);   
    assert (cuts.sizeRowCuts() == 1 );

    OsiRowCut testRowCut = cuts.rowCut(0);
    CoinPackedVector testRowPV = testRowCut.row();


    const int sampleSize = 3;
    int sampleCols[sampleSize]={0,1,2};
    double sampleElems[sampleSize]={1.0, -1.0, -1.0};
    OsiRowCut sampleRowCut;
    sampleRowCut.setRow(sampleSize,sampleCols,sampleElems);
    sampleRowCut.setLb(-COIN_DBL_MAX);
    sampleRowCut.setUb(-1.0);
    
    // test for 'close enough'
    assert( testRowPV.isEquivalent(sampleRowCut.row(),CoinRelFltEq(1.0e-05) ) );
    // Reset complement & test next row
    for (i=0; i<nCols; i++){
      complement[i]=0;
    }

    rind++;
    const CoinShallowPackedVector reqdBySunCC2 = siP->getMatrixByRow()->getVector(rind) ;
    deriveaknap = kccg.deriveAKnapsack(*siP,cuts,krow,b,complement,xstar,rind,reqdBySunCC2);
    assert(deriveaknap==0);
    
    // Reset complement & test next row
    for (i=0; i<nCols; i++){
      complement[i]=0;
    }
    const CoinShallowPackedVector reqdBySunCC3 = siP->getMatrixByRow()->getVector(2) ;
    deriveaknap = kccg.deriveAKnapsack(*siP,cuts,krow,b,complement,xstar,2,
				       reqdBySunCC3);
    assert(deriveaknap == 0);
    
    // Clean up
    delete [] complement;
    delete [] xstar;
    
    delete siP;
  }

#if 0
  // Testcase /u/rlh/osl2/mps/tp4.mps
  // Models has 6 cols, 1 knapsack row and 
  // 3 rows explicily bounding variables
  // Row 0 yields a knapsack cover cut 
  // using findGreedyCover which moves the 
  // LP objective function value.
  {
    // Setup
    EKKContext * env=ekk_initializeContext();
    EKKModel * model = ekk_newModel(env,"");
    OsiSolverInterface si(model);
    ekk_importModel(model, "tp4.mps");
    CglKnapsackCover kccg;
    kccg.ekk_validateIntType(si);     
    
    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparison 
    ekk_allSlackBasis(model);
    ekk_crash(model,1); 
    ekk_primalSimplex(model,1);
    double lpRelaxBefore=ekk_getRobjvalue(model);
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif
    
    // Determine if lp sol is ip optimal
    // Note: no ekk_function to do this
    int nCols=ekk_getInumcols(model);
    double * optLpSol = ekk_colsol(model);
    int ipOpt = 1;
    i=0;
    while (i++<nCols && ipOpt){
      if(optLpSol[i] < 1.0-1.0e-08 && optLpSol[i]> 1.0e-08) ipOpt = 0;
    }
    
    if (ipOpt){
#ifdef CGL_DEBUG
      printf("Lp solution is within ip optimality tolerance\n");
#endif
    }    
    else {
      OsiSolverInterface iModel(model);
      OsiCuts cuts;    
      
      // Test generateCuts method
      kccg.generateCuts(iModel,cuts);
      OsiSolverInterface::ApplyCutsReturnCode rc = iModel.applyCuts(cuts);
      
      ekk_mergeBlocks(model,1);         
      ekk_dualSimplex(model);
      double lpRelaxAfter=ekk_getRobjvalue(model); 
#ifdef CGL_DEBUG
      printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
      assert( lpRelaxBefore < lpRelaxAfter );
      
      // This may need to be updated as other 
      // minimal cover finders are added
      assert( cuts.sizeRowCuts() == 1 );
      OsiRowCut testRowCut = cuts.rowCut(0);
      CoinPackedVector testRowPV = testRowCut.row();
      
      OsiRowCut sampleRowCut;
      const int sampleSize = 6;
      int sampleCols[sampleSize]={0,1,2,3,4,5};
      double sampleElems[sampleSize]={1.0,1.0,1.0,1.0,0.5, 2.0};
      sampleRowCut.setRow(sampleSize,sampleCols,sampleElems);
      sampleRowCut.setLb(-DBL_MAX);
      sampleRowCut.setUb(3.0);
      bool equiv = testRowPV.equivalent(sampleRowCut.row(),CoinRelFltEq(1.0e-05) );
      assert( testRowPV.equivalent(sampleRowCut.row(),CoinRelFltEq(1.0e-05) ) );
    }
    
    // Exit out of OSL
    ekk_deleteModel(model);
    ekk_endContext(env);
    
  }
#endif


  // Testcase /u/rlh/osl2/mps/tp5.mps
  // Models has 6 cols, 1 knapsack row and 
  // 3 rows explicily bounding variables
  // Row 0 yields a knapsack cover cut 
  // using findGreedyCover which moves the 
  // LP objective function value.
  {
    // Setup
    OsiSolverInterface  * siP = baseSiP->clone();
    std::string fn(mpsDir+"tp5");
    siP->readMps(fn.c_str(),"mps");
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));  
    CglKnapsackCover kccg;
    
    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparison 
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    assert( eq(lpRelaxBefore, -51.66666666667) );
    double mycs[] = {.8999999999, .899999999999, .89999999999, 1.110223e-16, .5166666666667, 0};
    siP->setColSolution(mycs);
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif
    
    // Determine if lp sol is 0/1 optimal
    int nCols=siP->getNumCols();
    const double * optLpSol = siP->getColSolution();
    bool ipOpt = true;
    i=0;
    while (i++<nCols && ipOpt){
      if(optLpSol[i] > kccg.epsilon_ && optLpSol[i] < kccg.onetol_) ipOpt = false;
    }
    
    if (ipOpt){
#ifdef CGL_DEBUG
      printf("Lp solution is within ip optimality tolerance\n");
#endif
    }    
    else {
      // set up
      OsiCuts cuts;    
      CoinPackedVector krow;
      double b=0.0;
      int * complement=new int[nCols];
      double * xstar=new double[nCols];
      // initialize cut generator
      const double *colsol = siP->getColSolution(); 
      for (i=0; i<nCols; i++){
	xstar[i]=colsol[i];
	complement[i]=0;
      }
      int row = ( siP->getRowSense()[0] == 'N' ) ? 1 : 0;
      // transform row into canonical knapsack form
      const CoinShallowPackedVector reqdBySunCC = siP->getMatrixByRow()->getVector(row) ;
      if (kccg.deriveAKnapsack(*siP, cuts, krow, b, complement, xstar, row,reqdBySunCC)){
        CoinPackedVector cover, remainder;  
        // apply greedy logic to detect violated minimal cover inequalities
        if (kccg.findGreedyCover(row, krow, b, xstar, cover, remainder) == 1){
          // lift, uncomplements, and add cut to cut set
          kccg.liftAndUncomplementAndAdd((*siP).getRowUpper()[row],krow, b, complement, row, cover, remainder, cuts);   
        }  
        // reset optimal column solution (xstar) information in OSL     
        const double * rowupper = siP->getRowUpper();
	int k;
        if (fabs(b-rowupper[row]) > 1.0e-05) {
          for(k=0; k<krow.getNumElements(); k++) {
            if (complement[krow.getIndices()[k]]){
              xstar[krow.getIndices()[k]]= 1.0-xstar[krow.getIndices()[k]];
              complement[krow.getIndices()[k]]=0;
            }
          }
        }  
        // clean up
        delete [] complement;
	delete [] xstar;
      }
      // apply the cuts
      OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
      
      siP->resolve();
      double lpRelaxAfter=siP->getObjValue();
      assert( eq(lpRelaxAfter, -30.0) );
#ifdef CGL_DEBUG
      printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
      // test that expected cut was detected
      assert( lpRelaxBefore < lpRelaxAfter );
      assert( cuts.sizeRowCuts() == 1 );
      OsiRowCut testRowCut = cuts.rowCut(0);
      CoinPackedVector testRowPV = testRowCut.row();
      OsiRowCut sampleRowCut;
      const int sampleSize = 6;
      int sampleCols[sampleSize]={0,1,2,3,4,5};
      double sampleElems[sampleSize]={1.0,1.0,1.0,0.25,1.0,2.0};
      sampleRowCut.setRow(sampleSize,sampleCols,sampleElems);
      sampleRowCut.setLb(-COIN_DBL_MAX);
      sampleRowCut.setUb(3.0);
      assert(testRowPV.isEquivalent(sampleRowCut.row(),CoinRelFltEq(1.0e-05)));
    }
    
    delete siP;
  }
 

  // Testcase /u/rlh/osl2/mps/p0033
  // Miplib3 problem p0033
  // Test that no cuts chop off the optimal solution
  {
    // Setup
    OsiSolverInterface  * siP = baseSiP->clone();
    std::string fn(mpsDir+"p0033");
    siP->readMps(fn.c_str(),"mps");
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));  
    int nCols=siP->getNumCols();
    CglKnapsackCover kccg;

    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparison 
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    assert( eq(lpRelaxBefore, 2520.5717391304347) );
    double mycs[] = {0, 1, 0, 0, -2.0837010502455788e-19, 1, 0, 0, 1,
		       0.021739130434782594, 0.35652173913043478, 
		       -6.7220534694101275e-18, 5.3125906451789717e-18, 
		       1, 0, 1.9298798670241979e-17, 0, 0, 0,
		       7.8875708048320448e-18, 0.5, 0, 
		       0.85999999999999999, 1, 1, 0.57999999999999996,
		       1, 0, 1, 0, 0.25, 0, 0.67500000000000004};
    siP->setColSolution(mycs);
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif
    
    OsiCuts cuts;    
    
    // Test generateCuts method
    kccg.generateCuts(*siP,cuts);
    OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
    
    siP->resolve();
    double lpRelaxAfter=siP->getObjValue(); 
    assert( eq(lpRelaxAfter, 2829.0597826086955) );
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
    printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
    assert( lpRelaxBefore < lpRelaxAfter );
    
    // the CoinPackedVector p0033 is the optimal
    // IP solution to the miplib problem p0033
    int objIndices[14] = { 
       0,  6,  7,  9, 13, 17, 18,
      22, 24, 25, 26, 27, 28, 29 };
    CoinPackedVector p0033(14,objIndices,1.0);

    // Sanity check
    const double *  objective=siP->getObjCoefficients();
    double ofv =0 ;
    int r;
    for (r=0; r<nCols; r++){
      ofv=ofv + p0033[r]*objective[r];
    }
    CoinRelFltEq eq;
    assert( eq(ofv,3089.0) );

    int nRowCuts = cuts.sizeRowCuts();
    OsiRowCut rcut;
    CoinPackedVector rpv;
    for (i=0; i<nRowCuts; i++){
      rcut = cuts.rowCut(i);
      rpv = rcut.row();
      double p0033Sum = (rpv*p0033).sum();
      assert (p0033Sum <= rcut.ub() );
    }
  
    delete siP;
  } 

  // if a debug file is there then look at it
  {
    FILE * fp = fopen("knapsack.debug","r");
    if (fp) {
      int ncol,nel;
      double up;
      int x = fscanf(fp,"%d %d %lg",&ncol,&nel,&up);
      if (x<=0)
	throw("bad fscanf");
      printf("%d columns, %d elements, upper %g\n",ncol,nel,up);
      double * sol1 = new double[nel];
      double * el1 = new double[nel];
      int * col1 = new int[nel];
      CoinBigIndex * start = new CoinBigIndex [ncol+1];
      memset(start,0,ncol*sizeof(CoinBigIndex ));
      int * row = new int[nel];
      int i;
      for (i=0;i<nel;i++) {
	x=fscanf(fp,"%d %lg %lg",col1+i,el1+i,sol1+i);
	if (x<=0)
	  throw("bad fscanf");
	printf("[%d, e=%g, v=%g] ",col1[i],el1[i],sol1[i]);
	start[col1[i]]=1;
	row[i]=0;
      }
      printf("\n");
      // Setup
      OsiSolverInterface  * siP = baseSiP->clone();
      
      double lo=-1.0e30;
      double * upper = new double[ncol];
      start[ncol]=nel;
      int last=0;
      for (i=0;i<ncol;i++) {
	upper[i]=1.0;
	int marked=start[i];
	start[i]=last;
	if (marked)
	  last++;
      }
      siP->loadProblem(ncol,1,start,row,el1,NULL,upper,NULL,&lo,&up);
      // use upper for solution
      memset(upper,0,ncol*sizeof(double));
      for (i=0;i<nel;i++) {
	int icol=col1[i];
	upper[icol]=sol1[i];
	siP->setInteger(icol);
      }
      siP->setColSolution(upper);
      delete [] sol1;
      delete [] el1;
      delete [] col1;
      delete [] start;
      delete [] row;
      delete [] upper;
      CglKnapsackCover kccg;
      
      OsiCuts cuts;    
      
      // Test generateCuts method
      kccg.generateCuts(*siP,cuts);
      // print out and compare to known cuts
      int numberCuts = cuts.sizeRowCuts();
      if (numberCuts) {
	for (i=0;i<numberCuts;i++) {
	  OsiRowCut * thisCut = cuts.rowCutPtr(i);
	  int n=thisCut->row().getNumElements();
	  printf("Cut %d has %d entries, rhs %g %g =>",i,n,thisCut->lb(),
		 thisCut->ub());
	  int j;
	  const int * index = thisCut->row().getIndices();
	  const double * element = thisCut->row().getElements();
	  for (j=0;j<n;j++) {
	    printf(" (%d,%g)",index[j],element[j]);
	  }
	  printf("\n");
	}
      }
      fclose(fp);
    }
  }

  // Testcase /u/rlh/osl2/mps/p0201
  // Miplib3 problem p0282
  // Test that no cuts chop off the optimal ip solution
  {
    // Setup
    OsiSolverInterface  * siP = baseSiP->clone();
    std::string fn(mpsDir+"p0201");
    siP->readMps(fn.c_str(),"mps");
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));    

    const int nCols=siP->getNumCols();
    CglKnapsackCover kccg;
    
    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparisn 
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    assert( eq(lpRelaxBefore, 6875.) );
    double mycs[] =
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
       0, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 
       0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 
       0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 
       0, 0, 0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 
       0, 0, 0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 
       0, 0, 0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
       0, 0, 1, 0.5, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
       1};
    siP->setColSolution(mycs);
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
#endif
    
    OsiCuts cuts;    
    
    // Test generateCuts method
    kccg.generateCuts(*siP,cuts);
    OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
    
    siP->resolve();
    double lpRelaxAfter=siP->getObjValue(); 
    assert( eq(lpRelaxAfter, 7125) );
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
    printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
    assert( lpRelaxBefore < lpRelaxAfter );
 
    // Optimal IP solution to p0201    
    int objIndices[22] = { 8, 10,  21,  38,  39,  56,
      60,   74, 79,  92, 94, 110, 111, 128, 132, 146, 
      151,164, 166, 182,183, 200 };
    CoinPackedVector p0201(22,objIndices,1.0);
    
    // Sanity check
    const double *  objective=siP->getObjCoefficients();
    double ofv =0 ;
    int r;
    for (r=0; r<nCols; r++){
      ofv=ofv + p0201[r]*objective[r];
    }
    CoinRelFltEq eq;
    assert( eq(ofv,7615.0) );
    //printf("p0201 optimal ofv = %g\n",ofv); 

    int nRowCuts = cuts.sizeRowCuts();
    OsiRowCut rcut;
    CoinPackedVector rpv;
    for (i=0; i<nRowCuts; i++){
      rcut = cuts.rowCut(i);
      rpv = rcut.row();
      double p0201Sum = (rpv*p0201).sum();
      assert (p0201Sum <= rcut.ub() );
    }
  
    delete siP;
  } 

 
  // see if I get the same covers that N&W get
  {
    OsiSolverInterface * siP=baseSiP->clone();
    std::string fn(mpsDir+"nw460");
    siP->readMps(fn.c_str(),"mps");   
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));  
    CglKnapsackCover kccg;
    
    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparison 
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    assert( eq(lpRelaxBefore, -225.68951787852194) );
    double mycs[] = {0.7099213482046447, 0, 0.34185802225477174, 1, 1, 0, 1, 1, 0};
    siP->setColSolution(mycs);

    OsiCuts cuts;    
    
    // Test generateCuts method
    kccg.generateCuts(*siP,cuts);
    OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
    
    siP->resolve();
    double lpRelaxAfter=siP->getObjValue(); 
    assert( eq(lpRelaxAfter, -176) );
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
    printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
#ifdef MJS
    assert( lpRelaxBefore < lpRelaxAfter );
#endif    
    
    int nRowCuts = cuts.sizeRowCuts();
    OsiRowCut rcut;
    CoinPackedVector rpv;
    for (i=0; i<nRowCuts; i++){
      rcut = cuts.rowCut(i);
      rpv = rcut.row();
      int j;
      printf("Row cut number %i has rhs = %g\n",i,rcut.ub());
      for (j=0; j<rpv.getNumElements(); j++){
        printf("index %i, element %g\n", rpv.getIndices()[j], rpv.getElements()[j]);
      }
      printf("\n");
    }
    delete siP; 
  }

  // Debugging: try "exmip1.mps"
  {
    // Setup
    OsiSolverInterface  * siP = baseSiP->clone();
    std::string fn(mpsDir+"exmip1");
    siP->readMps(fn.c_str(),"mps");   
    // All integer variables should be binary.
    // Assert that this is true.
    for ( i = 0;  i < siP->getNumCols();  i++ )
      if ( siP->isInteger(i) ) 
        assert(siP->getColUpper()[i]==1.0 && siP->isBinary(i));  
    CglKnapsackCover kccg;
    
    // Solve the LP relaxation of the model and
    // print out ofv for sake of comparison 
    siP->initialSolve();
    double lpRelaxBefore=siP->getObjValue();
    assert( eq(lpRelaxBefore, 3.2368421052631575) );
    double mycs[] = {2.5, 0, 0, 0.6428571428571429, 0.5, 4, 0, 0.26315789473684253};
    siP->setColSolution(mycs);
    // Test generateCuts method
    OsiCuts cuts;    
    kccg.generateCuts(*siP,cuts);
    OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);
    
    siP->resolve();
    double lpRelaxAfter=siP->getObjValue();
    assert( eq(lpRelaxAfter, 3.2368421052631575) );
#ifdef CGL_DEBUG
    printf("\n\nOrig LP min=%f\n",lpRelaxBefore);
    printf("\n\nFinal LP min=%f\n",lpRelaxAfter);
#endif
    assert( lpRelaxBefore <= lpRelaxAfter );

    delete siP;
  } 

#ifdef CGL_DEBUG
  // See what findLPMostViolatedMinCover for knapsack with 2 elements does
  {
    int nCols = 2;
    int row = 1;
    CoinPackedVector krow;
    double e[2] = {5,10};
    int ii[2] = {0,1};
    krow.setVector(nCols,ii,e);
    double b=11;
    double xstar[2] = {.2,.9};
    CoinPackedVector cover;
    CoinPackedVector remainder;
    CglKnapsackCover kccg;
    kccg.findLPMostViolatedMinCover(nCols, row, krow, b, xstar, cover, remainder);
    printf("num in cover = %i\n",cover.getNumElements());
    int j;
    for (j=0; j<cover.getNumElements(); j++){
      printf(" index %i element % g\n", cover.getIndices()[j], cover.getElements()[j]);
    }
  }
#endif 

#ifdef CGL_DEBUG
  // see what findLPMostViolatedMinCover does
  {
    int nCols = 5;
    int row = 1;
    CoinPackedVector krow;
    double e[5] = {1,1,1,1,10};
    int ii[5] = {0,1,2,3,4};
    krow.setVector(nCols,ii,e);
    double b=11;
    double xstar[5] = {.9,.9,1,1,.1};
    CoinPackedVector cover;
    CoinPackedVector remainder;
    CglKnapsackCover kccg;
    kccg.findLPMostViolatedMinCover(nCols, row, krow, b, xstar, cover, remainder);
    printf("num in cover = %i\n",cover.getNumElements());
    int j;
    for (j=0; j<cover.getNumElements(); j++){
      printf(" index %i element % g\n", cover.getIndices()[j], cover.getElements()[j]);
    }
  }
#endif

}
Example #11
0
// This looks at solution and sets bounds to contain solution
void 
CbcLink::feasibleRegion()
{
  int j;
  int firstNonZero=-1;
  int lastNonZero = -1;
  OsiSolverInterface * solver = model_->solver();
  const double * solution = model_->testSolution();
  const double * upper = solver->getColUpper();
  double integerTolerance = 
    model_->getDblParam(CbcModel::CbcIntegerTolerance);
  double weight = 0.0;
  double sum =0.0;

  int base=0;
  for (j=0;j<numberMembers_;j++) {
    for (int k=0;k<numberLinks_;k++) {
      int iColumn = which_[base+k];
      double value = CoinMax(0.0,solution[iColumn]);
      sum += value;
      if (value>integerTolerance&&upper[iColumn]) {
        weight += weights_[j]*value;
        if (firstNonZero<0)
          firstNonZero=j;
        lastNonZero=j;
      }
    }
    base += numberLinks_;
  }
#ifdef DISTANCE
  if (lastNonZero-firstNonZero>sosType_-1) {
    /* may still be satisfied.
       For LOS type 2 we might wish to move coding around
       and keep initial info in model_ for speed
    */
    int iWhere;
    bool possible=false;
    for (iWhere=firstNonZero;iWhere<=lastNonZero;iWhere++) {
      if (fabs(weight-weights_[iWhere])<1.0e-8) {
	possible=true;
	break;
      }
    }
    if (possible) {
      // One could move some of this (+ arrays) into model_
      const CoinPackedMatrix * matrix = solver->getMatrixByCol();
      const double * element = matrix->getMutableElements();
      const int * row = matrix->getIndices();
      const CoinBigIndex * columnStart = matrix->getVectorStarts();
      const int * columnLength = matrix->getVectorLengths();
      const double * rowSolution = solver->getRowActivity();
      const double * rowLower = solver->getRowLower();
      const double * rowUpper = solver->getRowUpper();
      int numberRows = matrix->getNumRows();
      double * array = new double [numberRows];
      CoinZeroN(array,numberRows);
      int * which = new int [numberRows];
      int n=0;
      int base=numberLinks_*firstNonZero;
      for (j=firstNonZero;j<=lastNonZero;j++) {
	for (int k=0;k<numberLinks_;k++) {
	  int iColumn = which_[base+k];
	  double value = CoinMax(0.0,solution[iColumn]);
	  if (value>integerTolerance&&upper[iColumn]) {
	    value = CoinMin(value,upper[iColumn]);
	    for (int j=columnStart[iColumn];j<columnStart[iColumn]+columnLength[iColumn];j++) {
	      int iRow = row[j];
	      double a = array[iRow];
	      if (a) {
		a += value*element[j];
		if (!a)
		  a = 1.0e-100;
	      } else {
		which[n++]=iRow;
		a=value*element[j];
		assert (a);
	      }
	      array[iRow]=a;
	    }
	  }
	}
	base += numberLinks_;
      }
      base=numberLinks_*iWhere;
      for (int k=0;k<numberLinks_;k++) {
	int iColumn = which_[base+k];
	const double value = 1.0;
	for (int j=columnStart[iColumn];j<columnStart[iColumn]+columnLength[iColumn];j++) {
	  int iRow = row[j];
	  double a = array[iRow];
	  if (a) {
	    a -= value*element[j];
	    if (!a)
	      a = 1.0e-100;
	  } else {
	    which[n++]=iRow;
	    a=-value*element[j];
	    assert (a);
	  }
	  array[iRow]=a;
	}
      }
      for (j=0;j<n;j++) {
	int iRow = which[j];
	// moving to point will increase row solution by this
	double distance = array[iRow];
	if (distance>1.0e-8) {
	  if (distance+rowSolution[iRow]>rowUpper[iRow]+1.0e-8) {
	    possible=false;
	    break;
	  }
	} else if (distance<-1.0e-8) {
	  if (distance+rowSolution[iRow]<rowLower[iRow]-1.0e-8) {
	    possible=false;
	    break;
	  } 
	}
      }
      for (j=0;j<n;j++)
	array[which[j]]=0.0;
      delete [] array;
      delete [] which;
      if (possible) {
	printf("possible feas region %d %d %d\n",firstNonZero,lastNonZero,iWhere);
	firstNonZero=iWhere;
	lastNonZero=iWhere;
      }
    }
  }
#else
  assert (lastNonZero-firstNonZero<sosType_) ;
#endif
  base=0;
  for (j=0;j<firstNonZero;j++) {
    for (int k=0;k<numberLinks_;k++) {
      int iColumn = which_[base+k];
      solver->setColUpper(iColumn,0.0);
    }
    base += numberLinks_;
  }
  // skip
  base += numberLinks_;
  for (j=lastNonZero+1;j<numberMembers_;j++) {
    for (int k=0;k<numberLinks_;k++) {
      int iColumn = which_[base+k];
      solver->setColUpper(iColumn,0.0);
    }
    base += numberLinks_;
  }
}
Example #12
0
// Infeasibility - large is 0.5
double 
CbcLink::infeasibility(int & preferredWay) const
{
  int j;
  int firstNonZero=-1;
  int lastNonZero = -1;
  OsiSolverInterface * solver = model_->solver();
  const double * solution = model_->testSolution();
  //const double * lower = solver->getColLower();
  const double * upper = solver->getColUpper();
  double integerTolerance = 
    model_->getDblParam(CbcModel::CbcIntegerTolerance);
  double weight = 0.0;
  double sum =0.0;

  // check bounds etc
  double lastWeight=-1.0e100;
  int base=0;
  for (j=0;j<numberMembers_;j++) {
    for (int k=0;k<numberLinks_;k++) {
      int iColumn = which_[base+k];
      //if (lower[iColumn])
      //throw CoinError("Non zero lower bound in CBCLink","infeasibility","CbcLink");
      if (lastWeight>=weights_[j]-1.0e-7)
        throw CoinError("Weights too close together in CBCLink","infeasibility","CbcLink");
      double value = CoinMax(0.0,solution[iColumn]);
      sum += value;
      if (value>integerTolerance&&upper[iColumn]) {
        // Possibly due to scaling a fixed variable might slip through
        if (value>upper[iColumn]+1.0e-8) {
          // Could change to #ifdef CBC_DEBUG
#ifndef NDEBUG
          if (model_->messageHandler()->logLevel()>1)
            printf("** Variable %d (%d) has value %g and upper bound of %g\n",
                   iColumn,j,value,upper[iColumn]);
#endif
        } 
	value = CoinMin(value,upper[iColumn]);
        weight += weights_[j]*value;
        if (firstNonZero<0)
          firstNonZero=j;
        lastNonZero=j;
      }
    }
    base += numberLinks_;
  }
  double valueInfeasibility;
  preferredWay=1;
  if (lastNonZero-firstNonZero>=sosType_) {
    // find where to branch
    assert (sum>0.0);
    weight /= sum;
    valueInfeasibility = lastNonZero-firstNonZero+1;
    valueInfeasibility *= 0.5/((double) numberMembers_);
    //#define DISTANCE
#ifdef DISTANCE
    assert (sosType_==1); // code up
    /* may still be satisfied.
       For LOS type 2 we might wish to move coding around
       and keep initial info in model_ for speed
    */
    int iWhere;
    bool possible=false;
    for (iWhere=firstNonZero;iWhere<=lastNonZero;iWhere++) {
      if (fabs(weight-weights_[iWhere])<1.0e-8) {
	possible=true;
	break;
      }
    }
    if (possible) {
      // One could move some of this (+ arrays) into model_
      const CoinPackedMatrix * matrix = solver->getMatrixByCol();
      const double * element = matrix->getMutableElements();
      const int * row = matrix->getIndices();
      const CoinBigIndex * columnStart = matrix->getVectorStarts();
      const int * columnLength = matrix->getVectorLengths();
      const double * rowSolution = solver->getRowActivity();
      const double * rowLower = solver->getRowLower();
      const double * rowUpper = solver->getRowUpper();
      int numberRows = matrix->getNumRows();
      double * array = new double [numberRows];
      CoinZeroN(array,numberRows);
      int * which = new int [numberRows];
      int n=0;
      int base=numberLinks_*firstNonZero;
      for (j=firstNonZero;j<=lastNonZero;j++) {
	for (int k=0;k<numberLinks_;k++) {
	  int iColumn = which_[base+k];
	  double value = CoinMax(0.0,solution[iColumn]);
	  if (value>integerTolerance&&upper[iColumn]) {
	    value = CoinMin(value,upper[iColumn]);
	    for (int j=columnStart[iColumn];j<columnStart[iColumn]+columnLength[iColumn];j++) {
	      int iRow = row[j];
	      double a = array[iRow];
	      if (a) {
		a += value*element[j];
		if (!a)
		  a = 1.0e-100;
	      } else {
		which[n++]=iRow;
		a=value*element[j];
		assert (a);
	      }
	      array[iRow]=a;
	    }
	  }
	}
	base += numberLinks_;
      }
      base=numberLinks_*iWhere;
      for (int k=0;k<numberLinks_;k++) {
	int iColumn = which_[base+k];
	const double value = 1.0;
	for (int j=columnStart[iColumn];j<columnStart[iColumn]+columnLength[iColumn];j++) {
	  int iRow = row[j];
	  double a = array[iRow];
	  if (a) {
	    a -= value*element[j];
	    if (!a)
	      a = 1.0e-100;
	  } else {
	    which[n++]=iRow;
	    a=-value*element[j];
	    assert (a);
	  }
	  array[iRow]=a;
	}
      }
      for (j=0;j<n;j++) {
	int iRow = which[j];
	// moving to point will increase row solution by this
	double distance = array[iRow];
	if (distance>1.0e-8) {
	  if (distance+rowSolution[iRow]>rowUpper[iRow]+1.0e-8) {
	    possible=false;
	    break;
	  }
	} else if (distance<-1.0e-8) {
	  if (distance+rowSolution[iRow]<rowLower[iRow]-1.0e-8) {
	    possible=false;
	    break;
	  } 
	}
      }
      for (j=0;j<n;j++)
	array[which[j]]=0.0;
      delete [] array;
      delete [] which;
      if (possible) {
	valueInfeasibility=0.0;
	printf("possible %d %d %d\n",firstNonZero,lastNonZero,iWhere);
      }
    }
#endif
  } else {
    valueInfeasibility = 0.0; // satisfied
  }
  return valueInfeasibility;
}
Example #13
0
/* Does a lot of the work,
   Returns 0 if no good, 1 if dj, 2 if clean, 3 if both
   10 if branching on ones away from bound
*/
int
CbcBranchToFixLots::shallWe() const
{
    int returnCode = 0;
    OsiSolverInterface * solver = model_->solver();
    int numberRows = matrixByRow_.getNumRows();
    //if (numberRows!=solver->getNumRows())
    //return 0;
    const double * solution = model_->testSolution();
    const double * lower = solver->getColLower();
    const double * upper = solver->getColUpper();
    const double * dj = solver->getReducedCost();
    int i;
    int numberIntegers = model_->numberIntegers();
    const int * integerVariable = model_->integerVariable();
    if (numberClean_ > 1000000) {
        int wanted = numberClean_ % 1000000;
        int * sort = new int[numberIntegers];
        double * dsort = new double[numberIntegers];
        int nSort = 0;
        for (i = 0; i < numberIntegers; i++) {
            int iColumn = integerVariable[i];
            if (upper[iColumn] > lower[iColumn]) {
                if (!mark_ || !mark_[iColumn]) {
                    double distanceDown = solution[iColumn] - lower[iColumn];
                    double distanceUp = upper[iColumn] - solution[iColumn];
                    double distance = CoinMin(distanceDown, distanceUp);
                    if (distance > 0.001 && distance < 0.5) {
                        dsort[nSort] = distance;
                        sort[nSort++] = iColumn;
                    }
                }
            }
        }
        // sort
        CoinSort_2(dsort, dsort + nSort, sort);
        int n = 0;
        double sum = 0.0;
        for (int k = 0; k < nSort; k++) {
            sum += dsort[k];
            if (sum <= djTolerance_)
                n = k;
            else
                break;
        }
        delete [] sort;
        delete [] dsort;
        return (n >= wanted) ? 10 : 0;
    }
    double integerTolerance =
        model_->getDblParam(CbcModel::CbcIntegerTolerance);
    // make smaller ?
    double tolerance = CoinMin(1.0e-8, integerTolerance);
    // How many fixed are we aiming at
    int wantedFixed = static_cast<int> (static_cast<double>(numberIntegers) * fractionFixed_);
    if (djTolerance_ < 1.0e10) {
        int nSort = 0;
        int numberFixed = 0;
        for (i = 0; i < numberIntegers; i++) {
            int iColumn = integerVariable[i];
            if (upper[iColumn] > lower[iColumn]) {
                if (!mark_ || !mark_[iColumn]) {
                    if (solution[iColumn] < lower[iColumn] + tolerance) {
                        if (dj[iColumn] > djTolerance_) {
                            nSort++;
                        }
                    } else if (solution[iColumn] > upper[iColumn] - tolerance) {
                        if (dj[iColumn] < -djTolerance_) {
                            nSort++;
                        }
                    }
                }
            } else {
                numberFixed++;
            }
        }
        if (numberFixed + nSort < wantedFixed && !alwaysCreate_) {
            returnCode = 0;
        } else if (numberFixed < wantedFixed) {
            returnCode = 1;
        } else {
            returnCode = 0;
        }
    }
    if (numberClean_) {
        // see how many rows clean
        int i;
        //const double * rowLower = solver->getRowLower();
        const double * rowUpper = solver->getRowUpper();
        // Row copy
        const double * elementByRow = matrixByRow_.getElements();
        const int * column = matrixByRow_.getIndices();
        const CoinBigIndex * rowStart = matrixByRow_.getVectorStarts();
        const int * rowLength = matrixByRow_.getVectorLengths();
        const double * columnLower = solver->getColLower();
        const double * columnUpper = solver->getColUpper();
        const double * solution = solver->getColSolution();
        int numberClean = 0;
        bool someToDoYet = false;
        int numberColumns = solver->getNumCols();
        char * mark = new char[numberColumns];
        int numberFixed = 0;
        for (i = 0; i < numberColumns; i++) {
            if (columnLower[i] != columnUpper[i]) {
                mark[i] = 0;
            } else {
                mark[i] = 1;
                numberFixed++;
            }
        }
        int numberNewFixed = 0;
        for (i = 0; i < numberRows; i++) {
            double rhsValue = rowUpper[i];
            bool oneRow = true;
            // check elements
            int numberUnsatisfied = 0;
            for (int j = rowStart[i]; j < rowStart[i] + rowLength[i]; j++) {
                int iColumn = column[j];
                double value = elementByRow[j];
                double solValue = solution[iColumn];
                if (columnLower[iColumn] != columnUpper[iColumn]) {
                    if (solValue < 1.0 - integerTolerance && solValue > integerTolerance)
                        numberUnsatisfied++;
                    if (value != 1.0) {
                        oneRow = false;
                        break;
                    }
                } else {
                    rhsValue -= value * floor(solValue + 0.5);
                }
            }
            if (oneRow && rhsValue <= 1.0 + tolerance) {
                if (numberUnsatisfied) {
                    someToDoYet = true;
                } else {
                    numberClean++;
                    for (int j = rowStart[i]; j < rowStart[i] + rowLength[i]; j++) {
                        int iColumn = column[j];
                        if (columnLower[iColumn] != columnUpper[iColumn] && !mark[iColumn]) {
                            mark[iColumn] = 1;
                            numberNewFixed++;
                        }
                    }
                }
            }
        }
        delete [] mark;
        //printf("%d clean, %d old fixed, %d new fixed\n",
        //   numberClean,numberFixed,numberNewFixed);
        if (someToDoYet && numberClean < numberClean_
                && numberNewFixed + numberFixed < wantedFixed) {
        } else if (numberFixed < wantedFixed) {
            returnCode |= 2;
        } else {
        }
    }
    return returnCode;
}
Example #14
0
/*
  First tries setting a variable to better value.  If feasible then
  tries setting others.  If not feasible then tries swaps
  Returns 1 if solution, 0 if not 
  The main body of this routine implements an O((q^2)/2) brute force search
  around the current solution, for q = number of integer variables. Call this
  the inc/dec heuristic.  For each integer variable x<i>, first decrement the
  value. Then, for integer variables x<i+1>, ..., x<q-1>, try increment and
  decrement. If one of these permutations produces a better solution,
  remember it.  Then repeat, with x<i> incremented. If we find a better
  solution, update our notion of current solution and continue.

  The net effect is a greedy walk: As each improving pair is found, the
  current solution is updated and the search continues from this updated
  solution.

  Way down at the end, we call solutionFix, which will create a drastically
  restricted problem based on variables marked as used, then do mini-BaC on
  the restricted problem. This can occur even if we don't try the inc/dec
  heuristic. This would be more obvious if the inc/dec heuristic were broken
  out as a separate routine and solutionFix had a name that reflected where
  it was headed.

  The return code of 0 is grossly overloaded, because it maps to a return
  code of 0 from solutionFix, which is itself grossly overloaded. See
  comments in solutionFix and in CbcHeuristic::smallBranchAndBound.
  */
int
CbcHeuristicLocal::solution(double & solutionValue,
                            double * betterSolution)
{
/*
  Execute only if a new solution has been discovered since the last time we
  were called.
*/

    numCouldRun_++;
    // See if frequency kills off idea
    int swap = swap_%100;
    int skip = swap_/100;
    int nodeCount = model_->getNodeCount();
    if (nodeCount<lastRunDeep_+skip && nodeCount != lastRunDeep_+1) 
      return 0;
    if (numberSolutions_ == model_->getSolutionCount() &&
	(numberSolutions_ == howOftenShallow_ ||
	 nodeCount < lastRunDeep_+2*skip))
        return 0;
    howOftenShallow_ = numberSolutions_;
    numberSolutions_ = model_->getSolutionCount();
    if (nodeCount<lastRunDeep_+skip ) 
      return 0;
    lastRunDeep_ = nodeCount;
    howOftenShallow_ = numberSolutions_;

    if ((swap%10) == 2) {
        // try merge
        return solutionFix( solutionValue, betterSolution, NULL);
    }
/*
  Exclude long (column), thin (row) systems.

  Given the n^2 nature of the search, more than 100,000 columns could get
  expensive. But I don't yet see the rationale for the second part of the
  condition (cols > 10*rows). And cost is proportional to number of integer
  variables --- shouldn't we use that?

  Why wait until we have more than one solution?
*/
    if ((model_->getNumCols() > 100000 && model_->getNumCols() >
            10*model_->getNumRows()) || numberSolutions_ <= 1)
        return 0; // probably not worth it
    // worth trying

    OsiSolverInterface * solver = model_->solver();
    const double * rowLower = solver->getRowLower();
    const double * rowUpper = solver->getRowUpper();
    const double * solution = model_->bestSolution();
/*
  Shouldn't this test be redundant if we've already checked that
  numberSolutions_ > 1? Stronger: shouldn't this be an assertion?
*/
    if (!solution)
        return 0; // No solution found yet
    const double * objective = solver->getObjCoefficients();
    double primalTolerance;
    solver->getDblParam(OsiPrimalTolerance, primalTolerance);

    int numberRows = matrix_.getNumRows();

    int numberIntegers = model_->numberIntegers();
    const int * integerVariable = model_->integerVariable();

    int i;
    double direction = solver->getObjSense();
    double newSolutionValue = model_->getObjValue() * direction;
    int returnCode = 0;
    numRuns_++;
    // Column copy
    const double * element = matrix_.getElements();
    const int * row = matrix_.getIndices();
    const CoinBigIndex * columnStart = matrix_.getVectorStarts();
    const int * columnLength = matrix_.getVectorLengths();

    // Get solution array for heuristic solution
    int numberColumns = solver->getNumCols();
    double * newSolution = new double [numberColumns];
    memcpy(newSolution, solution, numberColumns*sizeof(double));
#ifdef LOCAL_FIX_CONTINUOUS
    // mark continuous used
    const double * columnLower = solver->getColLower();
    for (int iColumn = 0; iColumn < numberColumns; iColumn++) {
        if (!solver->isInteger(iColumn)) {
            if (solution[iColumn] > columnLower[iColumn] + 1.0e-8)
                used_[iColumn] = numberSolutions_;
        }
    }
#endif

    // way is 1 if down possible, 2 if up possible, 3 if both possible
    char * way = new char[numberIntegers];
    // corrected costs
    double * cost = new double[numberIntegers];
    // for array to mark infeasible rows after iColumn branch
    char * mark = new char[numberRows];
    memset(mark, 0, numberRows);
    // space to save values so we don't introduce rounding errors
    double * save = new double[numberRows];
/*
  Force variables within their original bounds, then to the nearest integer.
  Overall, we seem to be prepared to cope with noninteger bounds. Is this
  necessary? Seems like we'd be better off to force the bounds to integrality
  as part of preprocessing.  More generally, why do we need to do this? This
  solution should have been cleaned and checked when it was accepted as a
  solution!

  Once the value is set, decide whether we can move up or down.

  The only place that used_ is used is in solutionFix; if a variable is not
  flagged as used, it will be fixed (at lower bound). Why the asymmetric
  treatment? This makes some sense for binary variables (for which there are
  only two options). But for general integer variables, why not make a similar
  test against the original upper bound?
*/

    // clean solution
    for (i = 0; i < numberIntegers; i++) {
        int iColumn = integerVariable[i];
        const OsiObject * object = model_->object(i);
        // get original bounds
        double originalLower;
        double originalUpper;
        getIntegerInformation( object, originalLower, originalUpper);
        double value = newSolution[iColumn];
        if (value < originalLower) {
            value = originalLower;
            newSolution[iColumn] = value;
        } else if (value > originalUpper) {
            value = originalUpper;
            newSolution[iColumn] = value;
        }
        double nearest = floor(value + 0.5);
        //assert(fabs(value-nearest)<10.0*primalTolerance);
        value = nearest;
        newSolution[iColumn] = nearest;
        // if away from lower bound mark that fact
        if (nearest > originalLower) {
            used_[iColumn] = numberSolutions_;
        }
        cost[i] = direction * objective[iColumn];
/*
  Given previous computation we're checking that value is at least 1 away
  from the original bounds.
*/
        int iway = 0;

        if (value > originalLower + 0.5)
            iway = 1;
        if (value < originalUpper - 0.5)
            iway |= 2;
        way[i] = static_cast<char>(iway);
    }
/*
  Calculate lhs of each constraint for groomed solution.
*/
    // get row activities
    double * rowActivity = new double[numberRows];
    memset(rowActivity, 0, numberRows*sizeof(double));

    for (i = 0; i < numberColumns; i++) {
        int j;
        double value = newSolution[i];
        if (value) {
            for (j = columnStart[i];
                    j < columnStart[i] + columnLength[i]; j++) {
                int iRow = row[j];
                rowActivity[iRow] += value * element[j];
            }
        }
    }
/*
  Check that constraints are satisfied. For small infeasibility, force the
  activity within bound. Again, why is this necessary if the current solution
  was accepted as a valid solution?

  Why are we scanning past the first unacceptable constraint?
*/
    // check was feasible - if not adjust (cleaning may move)
    // if very infeasible then give up
    bool tryHeuristic = true;
    for (i = 0; i < numberRows; i++) {
        if (rowActivity[i] < rowLower[i]) {
            if (rowActivity[i] < rowLower[i] - 10.0*primalTolerance)
                tryHeuristic = false;
            rowActivity[i] = rowLower[i];
        } else if (rowActivity[i] > rowUpper[i]) {
            if (rowActivity[i] < rowUpper[i] + 10.0*primalTolerance)
                tryHeuristic = false;
            rowActivity[i] = rowUpper[i];
        }
    }
/*
  This bit of code is not quite totally redundant: it'll bail at 10,000
  instead of 100,000. Potentially we can do a lot of work to get here, only
  to abandon it.
*/
    // Switch off if may take too long
    if (model_->getNumCols() > 10000 && model_->getNumCols() >
            10*model_->getNumRows())
        tryHeuristic = false;
/*
  Try the inc/dec heuristic?
*/
    if (tryHeuristic) {

        // total change in objective
        double totalChange = 0.0;
        // local best change in objective
        double bestChange = 0.0;
	// maybe just do 1000
	int maxIntegers = numberIntegers;
	if (((swap/10) &1) != 0) {
	  maxIntegers = CoinMin(1000,numberIntegers);
	}
/*
  Outer loop to walk integer variables. Call the current variable x<i>. At the
  end of this loop, bestChange will contain the best (negative) change in the
  objective for any single pair.

  The trouble is, we're limited to monotonically increasing improvement.
  Suppose we discover an improvement of 10 for some pair. If, later in the
  search, we discover an improvement of 9 for some other pair, we will not use
  it. That seems wasteful.
*/

        for (i = 0; i < numberIntegers; i++) {
            int iColumn = integerVariable[i];
	    bestChange = 0.0;
	    int endInner = CoinMin(numberIntegers,i+maxIntegers);

            double objectiveCoefficient = cost[i];
            int k;
            int j;
            int goodK = -1;
            int wayK = -1, wayI = -1;
/*
  Try decrementing x<i>.
*/
            if ((way[i]&1) != 0) {
                int numberInfeasible = 0;
/*
  Adjust row activities where x<i> has a nonzero coefficient. Save the old
  values for restoration. Mark any rows that become infeasible as a result
  of the decrement.
*/
                // save row activities and adjust
                for (j = columnStart[iColumn];
                        j < columnStart[iColumn] + columnLength[iColumn]; j++) {
                    int iRow = row[j];
                    save[iRow] = rowActivity[iRow];
                    rowActivity[iRow] -= element[j];
                    if (rowActivity[iRow] < rowLower[iRow] - primalTolerance ||
                            rowActivity[iRow] > rowUpper[iRow] + primalTolerance) {
                        // mark row
                        mark[iRow] = 1;
                        numberInfeasible++;
                    }
                }
  /*
  Run through the remaining integer variables. Try increment and decrement on
  each one. If the potential objective change is better than anything we've
  seen so far, do a full evaluation of x<k> in that direction.  If we can
  repair all infeasibilities introduced by pushing x<i> down, we have a
  winner. Remember the best variable, and the direction for x<i> and x<k>.
*/
              // try down
                for (k = i + 1; k < endInner; k++) {
                    if ((way[k]&1) != 0) {
                        // try down
                        if (-objectiveCoefficient - cost[k] < bestChange) {
                            // see if feasible down
                            bool good = true;
                            int numberMarked = 0;
                            int kColumn = integerVariable[k];
                            for (j = columnStart[kColumn];
                                    j < columnStart[kColumn] + columnLength[kColumn]; j++) {
                                int iRow = row[j];
                                double newValue = rowActivity[iRow] - element[j];
                                if (newValue < rowLower[iRow] - primalTolerance ||
                                        newValue > rowUpper[iRow] + primalTolerance) {
                                    good = false;
                                    break;
                                } else if (mark[iRow]) {
                                    // made feasible
                                    numberMarked++;
                                }
                            }
                            if (good && numberMarked == numberInfeasible) {
                                // better solution
                                goodK = k;
                                wayK = -1;
                                wayI = -1;
                                bestChange = -objectiveCoefficient - cost[k];
                            }
                        }
                    }
                    if ((way[k]&2) != 0) {
                        // try up
                        if (-objectiveCoefficient + cost[k] < bestChange) {
                            // see if feasible up
                            bool good = true;
                            int numberMarked = 0;
                            int kColumn = integerVariable[k];
                            for (j = columnStart[kColumn];
                                    j < columnStart[kColumn] + columnLength[kColumn]; j++) {
                                int iRow = row[j];
                                double newValue = rowActivity[iRow] + element[j];
                                if (newValue < rowLower[iRow] - primalTolerance ||
                                        newValue > rowUpper[iRow] + primalTolerance) {
                                    good = false;
                                    break;
                                } else if (mark[iRow]) {
                                    // made feasible
                                    numberMarked++;
                                }
                            }
                            if (good && numberMarked == numberInfeasible) {
                                // better solution
                                goodK = k;
                                wayK = 1;
                                wayI = -1;
                                bestChange = -objectiveCoefficient + cost[k];
                            }
                        }
                    }
                }
/*
  Remove effect of decrementing x<i> by restoring original lhs values.
*/
                // restore row activities
                for (j = columnStart[iColumn];
                        j < columnStart[iColumn] + columnLength[iColumn]; j++) {
                    int iRow = row[j];
                    rowActivity[iRow] = save[iRow];
                    mark[iRow] = 0;
                }
            }
/*
  Try to increment x<i>. Actions as for decrement.
*/
            if ((way[i]&2) != 0) {
                int numberInfeasible = 0;
                // save row activities and adjust
                for (j = columnStart[iColumn];
                        j < columnStart[iColumn] + columnLength[iColumn]; j++) {
                    int iRow = row[j];
                    save[iRow] = rowActivity[iRow];
                    rowActivity[iRow] += element[j];
                    if (rowActivity[iRow] < rowLower[iRow] - primalTolerance ||
                            rowActivity[iRow] > rowUpper[iRow] + primalTolerance) {
                        // mark row
                        mark[iRow] = 1;
                        numberInfeasible++;
                    }
                }
                // try up
                for (k = i + 1; k < endInner; k++) {
                    if ((way[k]&1) != 0) {
                        // try down
                        if (objectiveCoefficient - cost[k] < bestChange) {
                            // see if feasible down
                            bool good = true;
                            int numberMarked = 0;
                            int kColumn = integerVariable[k];
                            for (j = columnStart[kColumn];
                                    j < columnStart[kColumn] + columnLength[kColumn]; j++) {
                                int iRow = row[j];
                                double newValue = rowActivity[iRow] - element[j];
                                if (newValue < rowLower[iRow] - primalTolerance ||
                                        newValue > rowUpper[iRow] + primalTolerance) {
                                    good = false;
                                    break;
                                } else if (mark[iRow]) {
                                    // made feasible
                                    numberMarked++;
                                }
                            }
                            if (good && numberMarked == numberInfeasible) {
                                // better solution
                                goodK = k;
                                wayK = -1;
                                wayI = 1;
                                bestChange = objectiveCoefficient - cost[k];
                            }
                        }
                    }
                    if ((way[k]&2) != 0) {
                        // try up
                        if (objectiveCoefficient + cost[k] < bestChange) {
                            // see if feasible up
                            bool good = true;
                            int numberMarked = 0;
                            int kColumn = integerVariable[k];
                            for (j = columnStart[kColumn];
                                    j < columnStart[kColumn] + columnLength[kColumn]; j++) {
                                int iRow = row[j];
                                double newValue = rowActivity[iRow] + element[j];
                                if (newValue < rowLower[iRow] - primalTolerance ||
                                        newValue > rowUpper[iRow] + primalTolerance) {
                                    good = false;
                                    break;
                                } else if (mark[iRow]) {
                                    // made feasible
                                    numberMarked++;
                                }
                            }
                            if (good && numberMarked == numberInfeasible) {
                                // better solution
                                goodK = k;
                                wayK = 1;
                                wayI = 1;
                                bestChange = objectiveCoefficient + cost[k];
                            }
                        }
                    }
                }
                // restore row activities
                for (j = columnStart[iColumn];
                        j < columnStart[iColumn] + columnLength[iColumn]; j++) {
                    int iRow = row[j];
                    rowActivity[iRow] = save[iRow];
                    mark[iRow] = 0;
                }
            }
/*
  We've found a pair x<i> and x<k> which produce a better solution. Update our
  notion of current solution to match.

  Why does this not update newSolutionValue?
*/
            if (goodK >= 0) {
                // we found something - update solution
                for (j = columnStart[iColumn];
                        j < columnStart[iColumn] + columnLength[iColumn]; j++) {
                    int iRow = row[j];
                    rowActivity[iRow]  += wayI * element[j];
                }
                newSolution[iColumn] += wayI;
                int kColumn = integerVariable[goodK];
                for (j = columnStart[kColumn];
                        j < columnStart[kColumn] + columnLength[kColumn]; j++) {
                    int iRow = row[j];
                    rowActivity[iRow]  += wayK * element[j];
                }
                newSolution[kColumn] += wayK;
/*
  Adjust motion range for x<k>. We may have banged up against a bound with that
  last move.
*/
               // See if k can go further ?
                const OsiObject * object = model_->object(goodK);
                // get original bounds
                double originalLower;
                double originalUpper;
                getIntegerInformation( object, originalLower, originalUpper);

                double value = newSolution[kColumn];
                int iway = 0;

                if (value > originalLower + 0.5)
                    iway = 1;
                if (value < originalUpper - 0.5)
                    iway |= 2;
                way[goodK] = static_cast<char>(iway);
		totalChange += bestChange;
            }
        }
/*
  End of loop to try increment/decrement of integer variables.

  newSolutionValue does not necessarily match the current newSolution, and
  bestChange simply reflects the best single change. Still, that's sufficient
  to indicate that there's been at least one change. Check that we really do
  have a valid solution.
*/
        if (totalChange + newSolutionValue < solutionValue) {
            // paranoid check
            memset(rowActivity, 0, numberRows*sizeof(double));

            for (i = 0; i < numberColumns; i++) {
                int j;
                double value = newSolution[i];
                if (value) {
                    for (j = columnStart[i];
                            j < columnStart[i] + columnLength[i]; j++) {
                        int iRow = row[j];
                        rowActivity[iRow] += value * element[j];
                    }
                }
            }
            int numberBad = 0;
            double sumBad = 0.0;
            // check was approximately feasible
            for (i = 0; i < numberRows; i++) {
                if (rowActivity[i] < rowLower[i]) {
                    sumBad += rowLower[i] - rowActivity[i];
                    if (rowActivity[i] < rowLower[i] - 10.0*primalTolerance)
                        numberBad++;
                } else if (rowActivity[i] > rowUpper[i]) {
                    sumBad += rowUpper[i] - rowActivity[i];
                    if (rowActivity[i] > rowUpper[i] + 10.0*primalTolerance)
                        numberBad++;
                }
            }
            if (!numberBad) {
                for (i = 0; i < numberIntegers; i++) {
                    int iColumn = integerVariable[i];
                    const OsiObject * object = model_->object(i);
                    // get original bounds
                    double originalLower;
                    double originalUpper;
                    getIntegerInformation( object, originalLower, originalUpper);

                    double value = newSolution[iColumn];
                    // if away from lower bound mark that fact
                    if (value > originalLower) {
                        used_[iColumn] = numberSolutions_;
                    }
                }
/*
  Copy the solution to the array returned to the client. Grab a basis from
  the solver (which, if it exists, is almost certainly infeasible, but it
  should be ok for a dual start). The value returned as solutionValue is
  conservative because of handling of newSolutionValue and bestChange, as
  described above.
*/
                // new solution
                memcpy(betterSolution, newSolution, numberColumns*sizeof(double));
                CoinWarmStartBasis * basis =
                    dynamic_cast<CoinWarmStartBasis *>(solver->getWarmStart()) ;
                if (basis) {
                    model_->setBestSolutionBasis(* basis);
                    delete basis;
                }
                returnCode = 1;
                solutionValue = newSolutionValue + bestChange;
            } else {
                // bad solution - should not happen so debug if see message
                COIN_DETAIL_PRINT(printf("Local search got bad solution with %d infeasibilities summing to %g\n",
					 numberBad, sumBad));
            }
        }
    }
/*
  We're done. Clean up.
*/
    delete [] newSolution;
    delete [] rowActivity;
    delete [] way;
    delete [] cost;
    delete [] save;
    delete [] mark;
/*
  Do we want to try swapping values between solutions?
  swap_ is set elsewhere; it's not adjusted during heuristic execution.

  Again, redundant test. We shouldn't be here if numberSolutions_ = 1.
*/
    if (numberSolutions_ > 1 && (swap%10) == 1) {
        // try merge
        int returnCode2 = solutionFix( solutionValue, betterSolution, NULL);
        if (returnCode2)
            returnCode = 1;
    }
    return returnCode;
}
Example #15
0
//#############################################################################
mcSol 
MibSHeuristic::solveSubproblem(double beta)
{

  /* 
     optimize wrt to weighted upper-level objective 
     over current feasible lp feasible region 
  */

  MibSModel * model = MibSModel_;
  OsiSolverInterface * oSolver = model->getSolver();
  //OsiSolverInterface * sSolver = new OsiCbcSolverInterface();  
  OsiSolverInterface* sSolver = new OsiSymSolverInterface();
  //sSolver = oSolver->clone();
  //OsiSolverInterface * sSolver = tmpSolver;
  //OsiSolverInterface * tmpSolver = new OsiSolverInterface(oSolver);
  
  double uObjSense(oSolver->getObjSense());
  double lObjSense(model->getLowerObjSense());  
  int lCols(model->getLowerDim());
  int uCols(model->getUpperDim());
  int * lColIndices = model->getLowerColInd();
  int * uColIndices = model->getUpperColInd();
  double * lObjCoeffs = model->getLowerObjCoeffs();
  const double * uObjCoeffs = oSolver->getObjCoefficients();

  double etol(etol_);
  int tCols(uCols + lCols); 

  assert(tCols == oSolver->getNumCols());


  sSolver->loadProblem(*oSolver->getMatrixByCol(),
		       oSolver->getColLower(), oSolver->getColUpper(),
		       oSolver->getObjCoefficients(),
		       oSolver->getRowLower(), oSolver->getRowUpper());

  int j(0);
  for(j = 0; j < tCols; j++){
    if(oSolver->isInteger(j))
      sSolver->setInteger(j);
  }


  double * nObjCoeffs = new double[tCols];
  int i(0), index(0);
  
  CoinZeroN(nObjCoeffs, tCols);
  
  /* Multiply the UL columns of the UL objective by beta */
  for(i = 0; i < uCols; i++){
    index = uColIndices[i];
    if(fabs(uObjCoeffs[index]) > etol)
      nObjCoeffs[index] = beta * uObjCoeffs[index] * uObjSense;
    else 
      nObjCoeffs[index] = 0.0;
  }
    
  /* Multiply the LL columns of the UL objective by beta */
  for(i = 0; i < lCols; i++){
    index = lColIndices[i];
    if(fabs(uObjCoeffs[index]) > etol)
      nObjCoeffs[index] = beta* uObjCoeffs[index] * uObjSense;
    else
      nObjCoeffs[index] = 0.0;
  }
  
  /* Add the LL columns of the LL objective multiplied by (1 - beta) */
  for(i = 0; i < lCols; i++){
    index = lColIndices[i];
    if(fabs(lObjCoeffs[i]) > etol)
      nObjCoeffs[index] += (1 - beta) * lObjCoeffs[i] * lObjSense;
  }
  
  sSolver->setObjective(nObjCoeffs);

  //int i(0);
  if(0){
    for(i = 0; i < sSolver->getNumCols(); i++){
      std::cout << "betaobj " << sSolver->getObjCoefficients()[i] << std::endl;
    }
  }

  if(0){
     sSolver->writeLp("afterbeta");
     //sSolver->writeMps("afterbeta");
  }
  
  if(0){  
    for(i = 0; i < sSolver->getNumCols(); i++){
      std::cout << "obj " << sSolver->getObjCoefficients()[i] << std::endl;
      std::cout << "upper " << sSolver->getColUpper()[i] << std::endl;
      std::cout << "lower " << sSolver->getColLower()[i] << std::endl;
    }
  }

  if(0){
    dynamic_cast<OsiCbcSolverInterface *> 
      (sSolver)->getModelPtr()->messageHandler()->setLogLevel(0);
  }
  else{
    dynamic_cast<OsiSymSolverInterface *> 
      (sSolver)->setSymParam("prep_level", -1);
    
    dynamic_cast<OsiSymSolverInterface *> 
      (sSolver)->setSymParam("verbosity", -2);

    dynamic_cast<OsiSymSolverInterface *> 
      (sSolver)->setSymParam("max_active_nodes", 1);
  }

  //dynamic_cast<OsiSymSolverInterface *> (sSolver)->branchAndBound();

  sSolver->branchAndBound();

  if(sSolver->isProvenOptimal()){

    if(0){
      std::cout << "writing lp file." << std::endl;
      sSolver->writeLp("afterbeta");
      //sSolver->writeMps("afterbeta");
    }
    
    double upperObjVal(0.0);
    double lowerObjVal(0.0);
    

    for(i = 0; i < tCols; i++){
      upperObjVal += 
	sSolver->getColSolution()[i] * oSolver->getObjCoefficients()[i];
      if(0){
	std::cout << "sSolver->getColSolution()[" << i << "] :"
		  << sSolver->getColSolution()[i] << std::endl;
      }
    }
    lowerObjVal = getLowerObj(sSolver->getColSolution(), lObjSense);
    
    if(beta == 1.0){
      
      /*
	fix upper-level objective to current value and 
	reoptimize wrt to lower-level objective
      */
      
      //OsiSolverInterface * nSolver = new OsiCbcSolverInterface();
      OsiSolverInterface * nSolver = new OsiSymSolverInterface();
      nSolver->loadProblem(*oSolver->getMatrixByCol(),
			   oSolver->getColLower(), oSolver->getColUpper(),
			   oSolver->getObjCoefficients(),
			   oSolver->getRowLower(), oSolver->getRowUpper());
      for(j = 0; j < tCols; j++){
	if(oSolver->isInteger(j))
	  nSolver->setInteger(j);
      }
      

      CoinZeroN(nObjCoeffs, tCols);
      
      for(i = 0; i < lCols; i++){
	index = lColIndices[i];
	nObjCoeffs[index] = lObjCoeffs[i] * lObjSense;
      }
      
      nSolver->setObjective(nObjCoeffs);
      
      CoinPackedVector objCon;
      
      for(i = 0; i < tCols; i++){
	objCon.insert(i, uObjCoeffs[i] * uObjSense);
      }
      
      nSolver->addRow(objCon, upperObjVal, upperObjVal);
      nSolver->writeLp("beta1");
      if(0){
	dynamic_cast<OsiCbcSolverInterface *> 
	  (nSolver)->getModelPtr()->messageHandler()->setLogLevel(0);
      }
      else{
	 dynamic_cast<OsiSymSolverInterface *> 
	    (nSolver)->setSymParam("prep_level", -1);

	 dynamic_cast<OsiSymSolverInterface *> 
	    (nSolver)->setSymParam("verbosity", -2);

	 dynamic_cast<OsiSymSolverInterface *> 
	    (nSolver)->setSymParam("max_active_nodes", 1);
      }

      nSolver->branchAndBound();
     

      double * colsol = new double[tCols];

      if(nSolver->isProvenOptimal()){
	lowerObjVal = nSolver->getObjValue();
	CoinCopyN(nSolver->getColSolution(), tCols, colsol);
      }
      else{
	//just take the current solution
	lowerObjVal = sSolver->getObjValue();
	CoinCopyN(sSolver->getColSolution(), tCols, colsol);
      }

      delete[] nObjCoeffs;
      nObjCoeffs = 0;
      delete sSolver;
      delete nSolver;
      return mcSol(std::make_pair(upperObjVal, lowerObjVal), colsol);
    }
    else if(beta == 0.0){
      
      /*
	fix lower-level objective to current value and 
	reoptimize wrt to upper-level objective
      */
      
      //OsiSolverInterface * nSolver = new OsiCbcSolverInterface();
      OsiSolverInterface * nSolver = new OsiSymSolverInterface();
      nSolver->loadProblem(*oSolver->getMatrixByCol(),
			   oSolver->getColLower(), oSolver->getColUpper(),
			   oSolver->getObjCoefficients(),
			   oSolver->getRowLower(), oSolver->getRowUpper());
      for(j = 0; j < tCols; j++){
	if(oSolver->isInteger(j))
	  nSolver->setInteger(j);
      }
      
      CoinZeroN(nObjCoeffs, tCols);
	
      for(i = 0; i < tCols; i++)
	nObjCoeffs[i] = uObjCoeffs[i] * uObjSense;
      
      nSolver->setObjective(nObjCoeffs);
	
      CoinPackedVector objCon;
	
      for(i = 0; i < lCols; i++){
	index = lColIndices[i];
	objCon.insert(index, lObjCoeffs[i] * lObjSense);  
      }
      
      nSolver->addRow(objCon, lowerObjVal, lowerObjVal);
      
      if(0){
	dynamic_cast<OsiCbcSolverInterface *> 
	  (nSolver)->getModelPtr()->messageHandler()->setLogLevel(0);
      }
      else{
	 dynamic_cast<OsiSymSolverInterface *> 
	    (nSolver)->setSymParam("prep_level", -1);

	 dynamic_cast<OsiSymSolverInterface *> 
	    (nSolver)->setSymParam("verbosity", -2);

	 dynamic_cast<OsiSymSolverInterface *> 
	    (nSolver)->setSymParam("max_active_nodes", 1);
      }

      if(0)      
	nSolver->writeLp("nSolver");
      

      nSolver->branchAndBound();
	
      double * colsol = new double[tCols];
	
      if(nSolver->isProvenOptimal()){
	upperObjVal = nSolver->getObjValue();
	CoinCopyN(nSolver->getColSolution(), tCols, colsol);
      }
      else{
	upperObjVal = nSolver->getObjValue();
	CoinCopyN(nSolver->getColSolution(), tCols, colsol);
      }

      delete[] nObjCoeffs;
      nObjCoeffs = 0;
      delete sSolver;
      delete nSolver;
      return mcSol(std::make_pair(upperObjVal, lowerObjVal), colsol);
	
    }
    else{
      
      //no optimality cut needed here.  all solutions are supported.
      
      double * colsol = new double[tCols];
      CoinCopyN(sSolver->getColSolution(), tCols, colsol);	
      
      delete[] nObjCoeffs;
      nObjCoeffs = 0;
      delete sSolver;
      return mcSol(std::make_pair(upperObjVal, lowerObjVal), colsol);
      
    }
    
  }
  else{
    //FIXME:SHOULD JUST TAKE THIS OUT.  DELETE sSolver and remove it from above
    
    nObjCoeffs = 0;
    delete[] nObjCoeffs;
    delete sSolver;
    std::cout << "Subproblem is not proven optimal." << std::endl;
    //return NULL;
    //abort();
  }
}
Example #16
0
// See if rounding will give solution
// Sets value of solution
// Assumes rhs for original matrix still okay
// At present only works with integers 
// Fix values if asked for
// Returns 1 if solution, 0 if not
int
AbcRounding::solution(double & solutionValue,
		      double * betterSolution)
{
    // Get a copy of original matrix (and by row for rounding);
    matrix_ = *(model_->solver()->getMatrixByCol());
    matrixByRow_ = *(model_->solver()->getMatrixByRow());
    seed_=1;

    OsiSolverInterface * solver = model_->solver();
    const double * lower = solver->getColLower();
    const double * upper = solver->getColUpper();
    const double * rowLower = solver->getRowLower();
    const double * rowUpper = solver->getRowUpper();
    const double * solution = solver->getColSolution();
    const double * objective = solver->getObjCoefficients();
    double integerTolerance = 1.0e-5;
    //model_->getDblParam(AbcModel::AbcIntegerTolerance);
    double primalTolerance;
    solver->getDblParam(OsiPrimalTolerance, primalTolerance);

    int numberRows = matrix_.getNumRows();

    int numberIntegers = model_->numberIntegers();
    const int * integerVariable = model_->integerVariable();
    int i;
    double direction = solver->getObjSense();
    double newSolutionValue = direction * solver->getObjValue();
    int returnCode = 0;

    // Column copy
    const double * element = matrix_.getElements();
    const int * row = matrix_.getIndices();
    const int * columnStart = matrix_.getVectorStarts();
    const int * columnLength = matrix_.getVectorLengths();
    // Row copy
    const double * elementByRow = matrixByRow_.getElements();
    const int * column = matrixByRow_.getIndices();
    const int * rowStart = matrixByRow_.getVectorStarts();
    const int * rowLength = matrixByRow_.getVectorLengths();

    // Get solution array for heuristic solution
    int numberColumns = solver->getNumCols();
    double * newSolution = new double [numberColumns];
    memcpy(newSolution, solution, numberColumns * sizeof(double));

    double * rowActivity = new double[numberRows];
    memset(rowActivity, 0, numberRows*sizeof(double));
    for (i = 0; i < numberColumns; i++) {
	int j;
	double value = newSolution[i];
	if (value) {
	    for (j = columnStart[i];
		 j < columnStart[i] + columnLength[i]; j++) {
		int iRow = row[j];
		rowActivity[iRow] += value*element[j];
	    }
	}
    }
    // check was feasible - if not adjust (cleaning may move)
    for (i = 0; i < numberRows; i++) {
	if(rowActivity[i] < rowLower[i]) {
	    //assert (rowActivity[i]>rowLower[i]-1000.0*primalTolerance);
	    rowActivity[i] = rowLower[i];
	} else if(rowActivity[i] > rowUpper[i]) {
	    //assert (rowActivity[i]<rowUpper[i]+1000.0*primalTolerance);
	    rowActivity[i] = rowUpper[i];
	}
    }
    for (i = 0; i < numberIntegers; i++) {
	int iColumn = integerVariable[i];
	double value = newSolution[iColumn];
	if (fabs(floor(value + 0.5) - value) > integerTolerance) {
	    double below = floor(value);
	    double newValue = newSolution[iColumn];
	    double cost = direction * objective[iColumn];
	    double move;
	    if (cost > 0.0) {
		// try up
		move = 1.0 - (value - below);
	    } else if (cost < 0.0) {
		// try down
		move = below - value;
	    } else {
		// won't be able to move unless we can grab another variable
		// just for now go down
		move = below-value;
	    }
	    newValue += move;
	    newSolution[iColumn] = newValue;
	    newSolutionValue += move * cost;
	    int j;
	    for (j = columnStart[iColumn];
		 j < columnStart[iColumn] + columnLength[iColumn]; j++) {
		int iRow = row[j];
		rowActivity[iRow] += move * element[j];
	    }
	}
    }

    double penalty = 0.0;
  
    // see if feasible
    for (i = 0; i < numberRows; i++) {
	double value = rowActivity[i];
	double thisInfeasibility = 0.0;
	if (value < rowLower[i] - primalTolerance)
	    thisInfeasibility = value - rowLower[i];
	else if (value > rowUpper[i] + primalTolerance)
	    thisInfeasibility = value - rowUpper[i];
	if (thisInfeasibility) {
	    // See if there are any slacks I can use to fix up
	    // maybe put in coding for multiple slacks?
	    double bestCost = 1.0e50;
	    int k;
	    int iBest = -1;
	    double addCost = 0.0;
	    double newValue = 0.0;
	    double changeRowActivity = 0.0;
	    double absInfeasibility = fabs(thisInfeasibility);
	    for (k = rowStart[i]; k < rowStart[i] + rowLength[i]; k++) {
		int iColumn = column[k];
		if (columnLength[iColumn] == 1) {
		    double currentValue = newSolution[iColumn];
		    double elementValue = elementByRow[k];
		    double lowerValue = lower[iColumn];
		    double upperValue = upper[iColumn];
		    double gap = rowUpper[i] - rowLower[i];
		    double absElement = fabs(elementValue);
		    if (thisInfeasibility * elementValue > 0.0) {
			// we want to reduce
			if ((currentValue - lowerValue) * absElement >= 
			    absInfeasibility) {
			    
			    // possible - check if integer
			    double distance = absInfeasibility / absElement;
			    double thisCost = 
				-direction * objective[iColumn] * distance;
			    if (solver->isInteger(iColumn)) {
				distance = ceil(distance - primalTolerance);
				assert (currentValue - distance >= 
					lowerValue - primalTolerance);
				if (absInfeasibility - distance * absElement 
				    < -gap - primalTolerance)
				    thisCost = 1.0e100; // no good
				else
				    thisCost = 
					-direction*objective[iColumn]*distance;
			    }
			    if (thisCost < bestCost) {
				bestCost = thisCost;
				iBest = iColumn;
				addCost = thisCost;
				newValue = currentValue - distance;
				changeRowActivity = -distance * elementValue;
			    }
			}
		    } else {
			// we want to increase
			if ((upperValue - currentValue) * absElement >= 
			    absInfeasibility) {
			    // possible - check if integer
			    double distance = absInfeasibility / absElement;
			    double thisCost = 
				direction * objective[iColumn] * distance;
			    if (solver->isInteger(iColumn)) {
				distance = ceil(distance - 1.0e-7);
				assert (currentValue - distance <= 
					upperValue + primalTolerance);
				if (absInfeasibility - distance * absElement 
				    < -gap - primalTolerance)
				    thisCost = 1.0e100; // no good
				else
				    thisCost = 
					direction*objective[iColumn]*distance;
			    }
			    if (thisCost < bestCost) {
				bestCost = thisCost;
				iBest = iColumn;
				addCost = thisCost;
				newValue = currentValue + distance;
				changeRowActivity = distance * elementValue;
			    }
			}
		    }
		}
	    }
	    if (iBest >= 0) {
		/*printf("Infeasibility of %g on row %d cost %g\n",
		  thisInfeasibility,i,addCost);*/
		newSolution[iBest] = newValue;
		thisInfeasibility = 0.0;
		newSolutionValue += addCost;
		rowActivity[i] += changeRowActivity;
	    }
	    penalty += fabs(thisInfeasibility);
	}
    }

    // Could also set SOS (using random) and repeat
    if (!penalty) {
	// See if we can do better
	//seed_++;
	//CoinSeedRandom(seed_);
	// Random number between 0 and 1.
	double randomNumber = CoinDrand48();
	int iPass;
	int start[2];
	int end[2];
	int iRandom = (int) (randomNumber * ((double) numberIntegers));
	start[0] = iRandom;
	end[0] = numberIntegers;
	start[1] = 0;
	end[1] = iRandom;
	for (iPass = 0; iPass < 2; iPass++) {
	    int i;
	    for (i = start[iPass]; i < end[iPass]; i++) {
		int iColumn = integerVariable[i];
		double value = newSolution[iColumn];
		assert(fabs(floor(value + 0.5) - value) < integerTolerance);
		double cost = direction * objective[iColumn];
		double move = 0.0;
		if (cost > 0.0)
		    move = -1.0;
		else if (cost < 0.0)
		    move = 1.0;
		while (move) {
		    bool good = true;
		    double newValue = newSolution[iColumn] + move;
		    if (newValue < lower[iColumn] - primalTolerance||
			newValue > upper[iColumn] + primalTolerance) {
			move = 0.0;
		    } else {
			// see if we can move
			int j;
			for (j = columnStart[iColumn];
			     j < columnStart[iColumn] + columnLength[iColumn];
			     j++) {
			    int iRow = row[j];
			    double newActivity = 
				rowActivity[iRow] + move*element[j];
			    if (newActivity < rowLower[iRow] - primalTolerance
				||
				newActivity > rowUpper[iRow]+primalTolerance) {
				good = false;
				break;
			    }
			}
			if (good) {
			    newSolution[iColumn] = newValue;
			    newSolutionValue += move * cost;
			    int j;
			    for (j = columnStart[iColumn];
				 j < columnStart[iColumn] + 
				     columnLength[iColumn]; j++) {
				int iRow = row[j];
				rowActivity[iRow] += move*element[j];
			    }
			} else {
			    move=0.0;
			}
		    }
		}
	    }
	}
	if (newSolutionValue < solutionValue) {
	    // paranoid check
	    memset(rowActivity, 0, numberRows * sizeof(double));
	    for (i = 0; i < numberColumns; i++) {
		int j;
		double value = newSolution[i];
		if (value) {
		    for (j = columnStart[i];
			 j < columnStart[i] + columnLength[i]; j++) {
			int iRow = row[j];
			rowActivity[iRow] += value * element[j];
		    }
		}
	    }
	    // check was approximately feasible
	    bool feasible = true;
	    for (i = 0; i < numberRows; i++) {
		if(rowActivity[i] < rowLower[i]) {
		    if (rowActivity[i] < rowLower[i] - 1000.0*primalTolerance)
			feasible = false;
		} else if(rowActivity[i] > rowUpper[i]) {
		    if (rowActivity[i] > rowUpper[i] + 1000.0*primalTolerance)
			feasible = false;
		}
	    }
	    if (feasible) {
		// new solution
		memcpy(betterSolution, newSolution, 
		       numberColumns * sizeof(double));
		solutionValue = newSolutionValue;
		//printf("** Solution of %g found by rounding\n",newSolutionValue);
		returnCode=1;
	    } else {
		// Can easily happen
		//printf("Debug AbcRounding giving bad solution\n");
	    }
	}
    }
    delete [] newSolution;
    delete [] rowActivity;
    return returnCode;
}
Example #17
0
//#############################################################################
void 
MibSHeuristic::objCutHeuristic()
{

  /* Solve the LP relaxation with the new constraint d^2 y <= d^y* */

  MibSModel * model = MibSModel_;

  //OsiSolverInterface * oSolver = model->origLpSolver_;
  OsiSolverInterface * oSolver = model->getSolver();
  //OsiSolverInterface * hSolver = new OsiCbcSolverInterface();
  OsiSolverInterface * hSolver = new OsiSymSolverInterface();

  double objSense(model->getLowerObjSense());  
  int lCols(model->getLowerDim());
  int uCols(model->getUpperDim());
  int tCols(lCols + uCols);
  int * lColIndices = model->getLowerColInd();
  int * uColIndices = model->getUpperColInd();
  double * lObjCoeffs = model->getLowerObjCoeffs();

  hSolver->loadProblem(*oSolver->getMatrixByCol(),
		       oSolver->getColLower(), oSolver->getColUpper(),
		       oSolver->getObjCoefficients(),
		       oSolver->getRowLower(), oSolver->getRowUpper());

  int j(0);
  for(j = 0; j < tCols; j++){
    if(oSolver->isInteger(j))
      hSolver->setInteger(j);
  }

  double * optLowerSolutionOrd = model->bS_->optLowerSolutionOrd_;

  CoinPackedVector objCon;
  int i(0), index(0);
  double rhs(0.0);

  for(i = 0; i < lCols; i++){
    index = lColIndices[i];
    objCon.insert(index, lObjCoeffs[i] * objSense);
    //should this be ordered? and should lObjCoeffs by at index?
    //rhs += optLowerSolutionOrd_[i] * lObjCoeffs[i] * objSense;
    rhs += optLowerSolutionOrd[i] * lObjCoeffs[i] * objSense;
  }

  //Hmm, I think this was wrong before...?
  //  hSolver->addRow(objCon, - hSolver->getInfinity(), rhs);
  hSolver->addRow(objCon, rhs, hSolver->getInfinity());

  /* optimize w.r.t. to the UL objective with the new row */
  if(0){
    dynamic_cast<OsiCbcSolverInterface *> 
      (hSolver)->getModelPtr()->messageHandler()->setLogLevel(0);
  }
  else{
    dynamic_cast<OsiSymSolverInterface *> 
      (hSolver)->setSymParam("prep_level", -1);
    
    dynamic_cast<OsiSymSolverInterface *> 
      (hSolver)->setSymParam("verbosity", -2);

    dynamic_cast<OsiSymSolverInterface *> 
      (hSolver)->setSymParam("max_active_nodes", 1);
  }

  hSolver->branchAndBound();

  if(0)
    hSolver->writeLp("objcutheuristic");

  if(hSolver->isProvenOptimal()){

    MibSSolution *mibSol = NULL;

    OsiSolverInterface * lSolver = model->bS_->setUpModel(hSolver, true);

    if(0){
       dynamic_cast<OsiCbcSolverInterface *> 
	  (lSolver)->getModelPtr()->messageHandler()->setLogLevel(0);
    }    
    else{
       dynamic_cast<OsiSymSolverInterface *> 
	  (lSolver)->setSymParam("prep_level", -1);
       
       dynamic_cast<OsiSymSolverInterface *> 
	  (lSolver)->setSymParam("verbosity", -2);
       
       dynamic_cast<OsiSymSolverInterface *> 
	  (lSolver)->setSymParam("max_active_nodes", 1);
    }

    lSolver->branchAndBound();

    const double * sol = hSolver->getColSolution();
    double objVal(lSolver->getObjValue() * objSense);
    double etol(etol_);
    double lowerObj = getLowerObj(sol, objSense);  
    
    double * optUpperSolutionOrd = new double[uCols];
    double * optLowerSolutionOrd = new double[lCols];
    
    CoinZeroN(optUpperSolutionOrd, uCols);
    CoinZeroN(optLowerSolutionOrd, lCols);

    if(fabs(objVal - lowerObj) < etol){
    
      /** Current solution is bilevel feasible **/
     
      mibSol = new MibSSolution(hSolver->getNumCols(),
				hSolver->getColSolution(),
				hSolver->getObjValue(),
				model);

     model->storeSolution(BlisSolutionTypeHeuristic, mibSol);
     mibSol = NULL;
 
    }
    else{

      /* solution is not bilevel feasible, create one that is */

     const double * uSol = hSolver->getColSolution();
     const double * lSol = lSolver->getColSolution();
     //int numElements(lSolver->getNumCols());
     int numElements(hSolver->getNumCols());
     int i(0), pos(0), index(0);
     double * lpSolution = new double[numElements];
     double upperObj(0.0);

     //FIXME: problem is still here.  indices may be wrong.  
     //also is all this necessary, or can we just paste together uSol and lSol?
     
     for(i = 0; i < numElements; i++){
       //index = indices[i];
       pos = model->bS_->binarySearch(0, lCols - 1, i, lColIndices);
       if(pos < 0){
	 pos = model->bS_->binarySearch(0, uCols - 1, i, uColIndices);
	 //optUpperSolutionOrd[pos] = values[i];
	 //optUpperSolutionOrd[pos] = uSol[pos];
	 if (pos >= 0){
	    optUpperSolutionOrd[pos] = uSol[i];
	 }
       }
       else{
	 //optLowerSolutionOrd[pos] = lSol[i];
	 optLowerSolutionOrd[pos] = lSol[pos];
       }
     }

     for(i = 0; i < uCols; i++){
       index = uColIndices[i];
       lpSolution[index] = optUpperSolutionOrd[i];
       upperObj += 
	 optUpperSolutionOrd[i] * hSolver->getObjCoefficients()[index];
     }

     for(i = 0; i < lCols; i++){
       index = lColIndices[i];
       lpSolution[index] = optLowerSolutionOrd[i];
       upperObj += 
	 optLowerSolutionOrd[i] * hSolver->getObjCoefficients()[index];
     }

     if(model->checkUpperFeasibility(lpSolution)){
       mibSol = new MibSSolution(hSolver->getNumCols(),
				 lpSolution,
				 upperObj * hSolver->getObjSense(),
				 model);

       model->storeSolution(BlisSolutionTypeHeuristic, mibSol);
       mibSol = NULL;
     }
     delete [] lpSolution;
    }
    delete lSolver;
  }

  delete hSolver;

}
Example #18
0
void
CglLandP::CachedData::getData(const OsiSolverInterface &si)
{
    int nBasics = si.getNumRows();
    int nNonBasics = si.getNumCols();
    if (basis_ != NULL)
        delete basis_;
    basis_ = dynamic_cast<CoinWarmStartBasis *> (si.getWarmStart());
    if (!basis_)
        throw NoBasisError();

    if (nBasics_ > 0 || nBasics != nBasics_)
    {
        delete [] basics_;
        basics_ = NULL;
    }
    if (basics_ == NULL)
    {
        basics_ = new int[nBasics];
        nBasics_ = nBasics;
    }

    if (nNonBasics_ > 0 || nNonBasics != nNonBasics_)
    {
        delete [] nonBasics_;
        nonBasics_ = NULL;
    }
    if (nonBasics_ == NULL)
    {
        nonBasics_ = new int[nNonBasics];
        nNonBasics_ = nNonBasics;
    }
    int n = nBasics + nNonBasics;
    if ( nBasics_ + nNonBasics_ > 0 || nBasics_ + nNonBasics_ != n)
    {
        delete [] colsol_;
        delete [] integers_;
        integers_ = NULL;
        colsol_ = NULL;
        slacks_ = NULL;
    }
    if (colsol_ == NULL)
    {
        colsol_ = new double[n];
        slacks_ = &colsol_[nNonBasics];
    }

    if (integers_ == NULL)
    {
        integers_ = new bool[n];
    }

    const double * rowLower = si.getRowLower();
    const double * rowUpper = si.getRowUpper();
    //determine which slacks are integer
    const CoinPackedMatrix * m = si.getMatrixByCol();
    const double * elems = m->getElements();
    const int * inds = m->getIndices();
    const CoinBigIndex * starts = m->getVectorStarts();
    const int * lengths = m->getVectorLengths();
    //    int numElems = m->getNumElements();
    int numCols = m->getNumCols();
    assert(numCols == nNonBasics_);
    //   int numRows = m->getNumRows();
    CoinFillN(integers_ ,n, true);
    for (int i = 0 ;  i < numCols ; i++)
    {
        if (si.isContinuous(i))
            integers_[i] = false;
    }
    bool * integerSlacks = integers_ + numCols;
    for (int i = 0 ; i < nBasics ; i++)
    {
        if (rowLower[i] > -1e50 && INT_INFEAS(rowLower[i]) > 1e-15)
            integerSlacks[i] = false;
        if (rowUpper[i] < 1e50 && INT_INFEAS(rowUpper[i]) > 1e-15)
            integerSlacks[i] = false;
    }
    for (int i = 0 ;  i < numCols ; i++)
    {
        CoinBigIndex end = starts[i] + lengths[i];
        if (integers_[i])
        {
            for (CoinBigIndex k=starts[i] ; k < end; k++)
            {
                if (integerSlacks[inds[k]] && INT_INFEAS(elems[k])>1e-15 )
                    integerSlacks[inds[k]] = false;
            }
        }
        else
        {
            for (CoinBigIndex k=starts[i] ; k < end; k++)
            {
                if (integerSlacks[inds[k]])
                    integerSlacks[inds[k]] = false;
            }
        }
    }

    CoinCopyN(si.getColSolution(), si.getNumCols(), colsol_);
    CoinCopyN(si.getRowActivity(), si.getNumRows(), slacks_);
    for (int i = 0 ; i < si.getNumRows() ; i++)
    {
        slacks_[i]*=-1;
        if (rowLower[i]>-1e50)
        {
            slacks_[i] += rowLower[i];
        }
        else
        {
            slacks_[i] += rowUpper[i];
        }
    }
    //Now get the fill the arrays;
    nNonBasics = 0;
    nBasics = 0;



    //For having the index variables correctly ordered we need to access to OsiSimplexInterface
    {
        OsiSolverInterface * ncSi = (const_cast<OsiSolverInterface *>(&si));
        ncSi->enableSimplexInterface(0);
        ncSi->getBasics(basics_);
	// Save enabled solver
	solver_ = si.clone();
#ifdef COIN_HAS_OSICLP
	OsiClpSolverInterface * clpSi = dynamic_cast<OsiClpSolverInterface *>(solver_);
	const OsiClpSolverInterface * clpSiRhs = dynamic_cast<const OsiClpSolverInterface *>(&si);
	if (clpSi)
	  clpSi->getModelPtr()->copyEnabledStuff(clpSiRhs->getModelPtr());;
#endif
        ncSi->disableSimplexInterface();
    }

    int numStructural = basis_->getNumStructural();
    for (int i = 0 ; i < numStructural ; i++)
    {
        if (basis_->getStructStatus(i)== CoinWarmStartBasis::basic)
        {
            nBasics++;
            //Basically do nothing
        }
        else
        {
            nonBasics_[nNonBasics++] = i;
        }
    }

    int numArtificial = basis_->getNumArtificial();
    for (int i = 0 ; i < numArtificial ; i++)
    {
        if (basis_->getArtifStatus(i)== CoinWarmStartBasis::basic)
        {
            //Just check number of basics
            nBasics++;
        }
        else
        {
            nonBasics_[nNonBasics++] = i + basis_->getNumStructural();
        }
    }
}
Example #19
0
// inner part of dive
int 
CbcHeuristicDive::solution(double & solutionValue, int & numberNodes,
			   int & numberCuts, OsiRowCut ** cuts,
			   CbcSubProblem ** & nodes,
			   double * newSolution)
{
#ifdef DIVE_DEBUG
    int nRoundInfeasible = 0;
    int nRoundFeasible = 0;
#endif
    int reasonToStop = 0;
    double time1 = CoinCpuTime();
    int numberSimplexIterations = 0;
    int maxSimplexIterations = (model_->getNodeCount()) ? maxSimplexIterations_
                               : maxSimplexIterationsAtRoot_;
    // but can't be exactly coin_int_max
    maxSimplexIterations = CoinMin(maxSimplexIterations,COIN_INT_MAX>>3);
    OsiSolverInterface * solver = cloneBut(6); // was model_->solver()->clone();
# ifdef COIN_HAS_CLP
    OsiClpSolverInterface * clpSolver
    = dynamic_cast<OsiClpSolverInterface *> (solver);
    if (clpSolver) {
      ClpSimplex * clpSimplex = clpSolver->getModelPtr();
      int oneSolveIts = clpSimplex->maximumIterations();
      oneSolveIts = CoinMin(1000+2*(clpSimplex->numberRows()+clpSimplex->numberColumns()),oneSolveIts);
      clpSimplex->setMaximumIterations(oneSolveIts);
      if (!nodes) {
        // say give up easily
        clpSimplex->setMoreSpecialOptions(clpSimplex->moreSpecialOptions() | 64);
      } else {
	// get ray
	int specialOptions = clpSimplex->specialOptions();
	specialOptions &= ~0x3100000;
	specialOptions |= 32;
        clpSimplex->setSpecialOptions(specialOptions);
        clpSolver->setSpecialOptions(clpSolver->specialOptions() | 1048576);
	if ((model_->moreSpecialOptions()&16777216)!=0) {
	  // cutoff is constraint
	  clpSolver->setDblParam(OsiDualObjectiveLimit, COIN_DBL_MAX);
	}
      }
    }
# endif
    const double * lower = solver->getColLower();
    const double * upper = solver->getColUpper();
    const double * rowLower = solver->getRowLower();
    const double * rowUpper = solver->getRowUpper();
    const double * solution = solver->getColSolution();
    const double * objective = solver->getObjCoefficients();
    double integerTolerance = model_->getDblParam(CbcModel::CbcIntegerTolerance);
    double primalTolerance;
    solver->getDblParam(OsiPrimalTolerance, primalTolerance);

    int numberRows = matrix_.getNumRows();
    assert (numberRows <= solver->getNumRows());
    int numberIntegers = model_->numberIntegers();
    const int * integerVariable = model_->integerVariable();
    double direction = solver->getObjSense(); // 1 for min, -1 for max
    double newSolutionValue = direction * solver->getObjValue();
    int returnCode = 0;
    // Column copy
    const double * element = matrix_.getElements();
    const int * row = matrix_.getIndices();
    const CoinBigIndex * columnStart = matrix_.getVectorStarts();
    const int * columnLength = matrix_.getVectorLengths();
#ifdef DIVE_FIX_BINARY_VARIABLES
    // Row copy
    const double * elementByRow = matrixByRow_.getElements();
    const int * column = matrixByRow_.getIndices();
    const CoinBigIndex * rowStart = matrixByRow_.getVectorStarts();
    const int * rowLength = matrixByRow_.getVectorLengths();
#endif

    // Get solution array for heuristic solution
    int numberColumns = solver->getNumCols();
    memcpy(newSolution, solution, numberColumns*sizeof(double));

    // vectors to store the latest variables fixed at their bounds
    int* columnFixed = new int [numberIntegers];
    double* originalBound = new double [numberIntegers+2*numberColumns];
    double * lowerBefore = originalBound+numberIntegers;
    double * upperBefore = lowerBefore+numberColumns;
    memcpy(lowerBefore,lower,numberColumns*sizeof(double));
    memcpy(upperBefore,upper,numberColumns*sizeof(double));
    double * lastDjs=newSolution+numberColumns;
    bool * fixedAtLowerBound = new bool [numberIntegers];
    PseudoReducedCost * candidate = new PseudoReducedCost [numberIntegers];
    double * random = new double [numberIntegers];

    int maxNumberAtBoundToFix = static_cast<int> (floor(percentageToFix_ * numberIntegers));
    assert (!maxNumberAtBoundToFix||!nodes);

    // count how many fractional variables
    int numberFractionalVariables = 0;
    for (int i = 0; i < numberIntegers; i++) {
        random[i] = randomNumberGenerator_.randomDouble() + 0.3;
        int iColumn = integerVariable[i];
        double value = newSolution[iColumn];
        if (fabs(floor(value + 0.5) - value) > integerTolerance) {
            numberFractionalVariables++;
        }
    }

    const double* reducedCost = NULL;
    // See if not NLP
    if (model_->solverCharacteristics()->reducedCostsAccurate())
        reducedCost = solver->getReducedCost();

    int iteration = 0;
    while (numberFractionalVariables) {
        iteration++;

        // initialize any data
        initializeData();

        // select a fractional variable to bound
        int bestColumn = -1;
        int bestRound; // -1 rounds down, +1 rounds up
        bool canRound = selectVariableToBranch(solver, newSolution,
                                               bestColumn, bestRound);
        // if the solution is not trivially roundable, we don't try to round;
        // if the solution is trivially roundable, we try to round. However,
        // if the rounded solution is worse than the current incumbent,
        // then we don't round and proceed normally. In this case, the
        // bestColumn will be a trivially roundable variable
        if (canRound) {
            // check if by rounding all fractional variables
            // we get a solution with an objective value
            // better than the current best integer solution
            double delta = 0.0;
            for (int i = 0; i < numberIntegers; i++) {
                int iColumn = integerVariable[i];
                double value = newSolution[iColumn];
                if (fabs(floor(value + 0.5) - value) > integerTolerance) {
                    assert(downLocks_[i] == 0 || upLocks_[i] == 0);
                    double obj = objective[iColumn];
                    if (downLocks_[i] == 0 && upLocks_[i] == 0) {
                        if (direction * obj >= 0.0)
                            delta += (floor(value) - value) * obj;
                        else
                            delta += (ceil(value) - value) * obj;
                    } else if (downLocks_[i] == 0)
                        delta += (floor(value) - value) * obj;
                    else
                        delta += (ceil(value) - value) * obj;
                }
            }
            if (direction*(solver->getObjValue() + delta) < solutionValue) {
#ifdef DIVE_DEBUG
                nRoundFeasible++;
#endif
		if (!nodes||bestColumn<0) {
		  // Round all the fractional variables
		  for (int i = 0; i < numberIntegers; i++) {
                    int iColumn = integerVariable[i];
                    double value = newSolution[iColumn];
                    if (fabs(floor(value + 0.5) - value) > integerTolerance) {
		      assert(downLocks_[i] == 0 || upLocks_[i] == 0);
		      if (downLocks_[i] == 0 && upLocks_[i] == 0) {
			if (direction * objective[iColumn] >= 0.0)
			  newSolution[iColumn] = floor(value);
			else
			  newSolution[iColumn] = ceil(value);
		      } else if (downLocks_[i] == 0)
			newSolution[iColumn] = floor(value);
		      else
			newSolution[iColumn] = ceil(value);
                    }
		  }
		  break;
		} else {
		  // can't round if going to use in branching
		  int i;
		  for (i = 0; i < numberIntegers; i++) {
		    int iColumn = integerVariable[i];
		    double value = newSolution[bestColumn];
		    if (fabs(floor(value + 0.5) - value) > integerTolerance) {
		      if (iColumn==bestColumn) {
			assert(downLocks_[i] == 0 || upLocks_[i] == 0);
			double obj = objective[bestColumn];
			if (downLocks_[i] == 0 && upLocks_[i] == 0) {
			  if (direction * obj >= 0.0)
                            bestRound=-1;
			  else
                            bestRound=1;
			} else if (downLocks_[i] == 0)
			  bestRound=-1;
			else
			  bestRound=1;
			break;
		      }
		    }
		  }
		}
	    }
#ifdef DIVE_DEBUG
            else
                nRoundInfeasible++;
#endif
        }

        // do reduced cost fixing
#ifdef DIVE_DEBUG
        int numberFixed = reducedCostFix(solver);
        std::cout << "numberReducedCostFixed = " << numberFixed << std::endl;
#else
        reducedCostFix(solver);
#endif

        int numberAtBoundFixed = 0;
#ifdef DIVE_FIX_BINARY_VARIABLES
        // fix binary variables based on pseudo reduced cost
        if (binVarIndex_.size()) {
            int cnt = 0;
            int n = static_cast<int>(binVarIndex_.size());
            for (int j = 0; j < n; j++) {
                int iColumn1 = binVarIndex_[j];
                double value = newSolution[iColumn1];
                if (fabs(value) <= integerTolerance &&
                        lower[iColumn1] != upper[iColumn1]) {
                    double maxPseudoReducedCost = 0.0;
#ifdef DIVE_DEBUG
                    std::cout << "iColumn1 = " << iColumn1 << ", value = " << value << std::endl;
#endif
                    int iRow = vbRowIndex_[j];
                    double chosenValue = 0.0;
                    for (int k = rowStart[iRow]; k < rowStart[iRow] + rowLength[iRow]; k++) {
                        int iColumn2 = column[k];
#ifdef DIVE_DEBUG
                        std::cout << "iColumn2 = " << iColumn2 << std::endl;
#endif
                        if (iColumn1 != iColumn2) {
                            double pseudoReducedCost = fabs(reducedCost[iColumn2] *
                                                            elementByRow[k]);
#ifdef DIVE_DEBUG
                            int k2;
                            for (k2 = rowStart[iRow]; k2 < rowStart[iRow] + rowLength[iRow]; k2++) {
                                if (column[k2] == iColumn1)
                                    break;
                            }
                            std::cout << "reducedCost[" << iColumn2 << "] = "
                                      << reducedCost[iColumn2]
                                      << ", elementByRow[" << iColumn2 << "] = " << elementByRow[k]
                                      << ", elementByRow[" << iColumn1 << "] = " << elementByRow[k2]
                                      << ", pseudoRedCost = " << pseudoReducedCost
                                      << std::endl;
#endif
                            if (pseudoReducedCost > maxPseudoReducedCost)
                                maxPseudoReducedCost = pseudoReducedCost;
                        } else {
                            // save value
                            chosenValue = fabs(elementByRow[k]);
                        }
                    }
                    assert (chosenValue);
                    maxPseudoReducedCost /= chosenValue;
#ifdef DIVE_DEBUG
                    std::cout << ", maxPseudoRedCost = " << maxPseudoReducedCost << std::endl;
#endif
                    candidate[cnt].var = iColumn1;
                    candidate[cnt++].pseudoRedCost = maxPseudoReducedCost;
                }
            }
#ifdef DIVE_DEBUG
            std::cout << "candidates for rounding = " << cnt << std::endl;
#endif
            std::sort(candidate, candidate + cnt, compareBinaryVars);
            for (int i = 0; i < cnt; i++) {
                int iColumn = candidate[i].var;
                if (numberAtBoundFixed < maxNumberAtBoundToFix) {
                    columnFixed[numberAtBoundFixed] = iColumn;
                    originalBound[numberAtBoundFixed] = upper[iColumn];
                    fixedAtLowerBound[numberAtBoundFixed] = true;
                    solver->setColUpper(iColumn, lower[iColumn]);
                    numberAtBoundFixed++;
                    if (numberAtBoundFixed == maxNumberAtBoundToFix)
                        break;
                }
            }
        }
#endif

        // fix other integer variables that are at their bounds
        int cnt = 0;
#ifdef GAP
        double gap = 1.0e30;
#endif
        if (reducedCost && true) {
#ifndef JJF_ONE
            cnt = fixOtherVariables(solver, solution, candidate, random);
#else
#ifdef GAP
            double cutoff = model_->getCutoff() ;
            if (cutoff < 1.0e20 && false) {
                double direction = solver->getObjSense() ;
                gap = cutoff - solver->getObjValue() * direction ;
                gap *= 0.1; // Fix more if plausible
                double tolerance;
                solver->getDblParam(OsiDualTolerance, tolerance) ;
                if (gap <= 0.0)
                    gap = tolerance;
                gap += 100.0 * tolerance;
            }
            int nOverGap = 0;
#endif
            int numberFree = 0;
            int numberFixed = 0;
            for (int i = 0; i < numberIntegers; i++) {
                int iColumn = integerVariable[i];
                if (upper[iColumn] > lower[iColumn]) {
                    numberFree++;
                    double value = newSolution[iColumn];
                    if (fabs(floor(value + 0.5) - value) <= integerTolerance) {
                        candidate[cnt].var = iColumn;
                        candidate[cnt++].pseudoRedCost =
                            fabs(reducedCost[iColumn] * random[i]);
#ifdef GAP
                        if (fabs(reducedCost[iColumn]) > gap)
                            nOverGap++;
#endif
                    }
                } else {
                    numberFixed++;
                }
            }
#ifdef GAP
            int nLeft = maxNumberAtBoundToFix - numberAtBoundFixed;
#ifdef CLP_INVESTIGATE4
            printf("cutoff %g obj %g nover %d - %d free, %d fixed\n",
                   cutoff, solver->getObjValue(), nOverGap, numberFree, numberFixed);
#endif
            if (nOverGap > nLeft && true) {
                nOverGap = CoinMin(nOverGap, nLeft + maxNumberAtBoundToFix / 2);
                maxNumberAtBoundToFix += nOverGap - nLeft;
            }
#else
#ifdef CLP_INVESTIGATE4
            printf("cutoff %g obj %g - %d free, %d fixed\n",
                   model_->getCutoff(), solver->getObjValue(), numberFree, numberFixed);
#endif
#endif
#endif
        } else {
            for (int i = 0; i < numberIntegers; i++) {
                int iColumn = integerVariable[i];
                if (upper[iColumn] > lower[iColumn]) {
                    double value = newSolution[iColumn];
                    if (fabs(floor(value + 0.5) - value) <= integerTolerance) {
                        candidate[cnt].var = iColumn;
                        candidate[cnt++].pseudoRedCost = numberIntegers - i;
                    }
                }
            }
        }
        std::sort(candidate, candidate + cnt, compareBinaryVars);
        for (int i = 0; i < cnt; i++) {
            int iColumn = candidate[i].var;
            if (upper[iColumn] > lower[iColumn]) {
                double value = newSolution[iColumn];
                if (fabs(floor(value + 0.5) - value) <= integerTolerance &&
                        numberAtBoundFixed < maxNumberAtBoundToFix) {
                    // fix the variable at one of its bounds
                    if (fabs(lower[iColumn] - value) <= integerTolerance) {
                        columnFixed[numberAtBoundFixed] = iColumn;
                        originalBound[numberAtBoundFixed] = upper[iColumn];
                        fixedAtLowerBound[numberAtBoundFixed] = true;
                        solver->setColUpper(iColumn, lower[iColumn]);
                        numberAtBoundFixed++;
                    } else if (fabs(upper[iColumn] - value) <= integerTolerance) {
                        columnFixed[numberAtBoundFixed] = iColumn;
                        originalBound[numberAtBoundFixed] = lower[iColumn];
                        fixedAtLowerBound[numberAtBoundFixed] = false;
                        solver->setColLower(iColumn, upper[iColumn]);
                        numberAtBoundFixed++;
                    }
                    if (numberAtBoundFixed == maxNumberAtBoundToFix)
                        break;
                }
            }
        }
#ifdef DIVE_DEBUG
        std::cout << "numberAtBoundFixed = " << numberAtBoundFixed << std::endl;
#endif

        double originalBoundBestColumn;
        double bestColumnValue;
	int whichWay;
        if (bestColumn >= 0) {
	    bestColumnValue = newSolution[bestColumn];
            if (bestRound < 0) {
                originalBoundBestColumn = upper[bestColumn];
                solver->setColUpper(bestColumn, floor(bestColumnValue));
		whichWay=0;
            } else {
                originalBoundBestColumn = lower[bestColumn];
                solver->setColLower(bestColumn, ceil(bestColumnValue));
		whichWay=1;
            }
        } else {
            break;
        }
        int originalBestRound = bestRound;
        int saveModelOptions = model_->specialOptions();
	
        while (1) {

            model_->setSpecialOptions(saveModelOptions | 2048);
            solver->resolve();
            model_->setSpecialOptions(saveModelOptions);
            if (!solver->isAbandoned()&&!solver->isIterationLimitReached()) {
                numberSimplexIterations += solver->getIterationCount();
            } else {
                numberSimplexIterations = maxSimplexIterations + 1;
		reasonToStop += 100;
                break;
            }

            if (!solver->isProvenOptimal()) {
	        if (nodes) {
		  if (solver->isProvenPrimalInfeasible()) {
		    if (maxSimplexIterationsAtRoot_!=COIN_INT_MAX) {
		      // stop now
		      printf("stopping on first infeasibility\n");
		      break;
		    } else if (cuts) {
		      // can do conflict cut
		      printf("could do intermediate conflict cut\n");
		      bool localCut;
		      OsiRowCut * cut = model_->conflictCut(solver,localCut);
		      if (cut) {
			if (!localCut) {
			  model_->makePartialCut(cut,solver);
			  cuts[numberCuts++]=cut;
			} else {
			  delete cut;
			}
		      }
		    }
		  } else {
		    reasonToStop += 10;
		    break;
		  }
		}
                if (numberAtBoundFixed > 0) {
                    // Remove the bound fix for variables that were at bounds
                    for (int i = 0; i < numberAtBoundFixed; i++) {
                        int iColFixed = columnFixed[i];
                        if (fixedAtLowerBound[i])
                            solver->setColUpper(iColFixed, originalBound[i]);
                        else
                            solver->setColLower(iColFixed, originalBound[i]);
                    }
                    numberAtBoundFixed = 0;
                } else if (bestRound == originalBestRound) {
                    bestRound *= (-1);
		    whichWay |=2;
                    if (bestRound < 0) {
                        solver->setColLower(bestColumn, originalBoundBestColumn);
                        solver->setColUpper(bestColumn, floor(bestColumnValue));
                    } else {
                        solver->setColLower(bestColumn, ceil(bestColumnValue));
                        solver->setColUpper(bestColumn, originalBoundBestColumn);
                    }
                } else
                    break;
            } else
                break;
        }

        if (!solver->isProvenOptimal() ||
                direction*solver->getObjValue() >= solutionValue) {
            reasonToStop += 1;
        } else if (iteration > maxIterations_) {
            reasonToStop += 2;
        } else if (CoinCpuTime() - time1 > maxTime_) {
            reasonToStop += 3;
        } else if (numberSimplexIterations > maxSimplexIterations) {
            reasonToStop += 4;
            // also switch off
#ifdef CLP_INVESTIGATE
            printf("switching off diving as too many iterations %d, %d allowed\n",
                   numberSimplexIterations, maxSimplexIterations);
#endif
            when_ = 0;
        } else if (solver->getIterationCount() > 1000 && iteration > 3 && !nodes) {
            reasonToStop += 5;
            // also switch off
#ifdef CLP_INVESTIGATE
            printf("switching off diving one iteration took %d iterations (total %d)\n",
                   solver->getIterationCount(), numberSimplexIterations);
#endif
            when_ = 0;
        }

        memcpy(newSolution, solution, numberColumns*sizeof(double));
        numberFractionalVariables = 0;
	double sumFractionalVariables=0.0;
        for (int i = 0; i < numberIntegers; i++) {
            int iColumn = integerVariable[i];
            double value = newSolution[iColumn];
	    double away = fabs(floor(value + 0.5) - value);
            if (away > integerTolerance) {
                numberFractionalVariables++;
		sumFractionalVariables += away;
            }
        }
	if (nodes) {
	  // save information
	  //branchValues[numberNodes]=bestColumnValue;
	  //statuses[numberNodes]=whichWay+(bestColumn<<2);
	  //bases[numberNodes]=solver->getWarmStart();
	  ClpSimplex * simplex = clpSolver->getModelPtr();
	  CbcSubProblem * sub =
	    new CbcSubProblem(clpSolver,lowerBefore,upperBefore,
			  simplex->statusArray(),numberNodes);
	  nodes[numberNodes]=sub;
	  // other stuff
	  sub->branchValue_=bestColumnValue;
	  sub->problemStatus_=whichWay;
	  sub->branchVariable_=bestColumn;
	  sub->objectiveValue_ = simplex->objectiveValue();
	  sub->sumInfeasibilities_ = sumFractionalVariables;
	  sub->numberInfeasibilities_ = numberFractionalVariables;
	  printf("DiveNode %d column %d way %d bvalue %g obj %g\n",
		 numberNodes,sub->branchVariable_,sub->problemStatus_,
		 sub->branchValue_,sub->objectiveValue_);
	  numberNodes++;
	  if (solver->isProvenOptimal()) {
	    memcpy(lastDjs,solver->getReducedCost(),numberColumns*sizeof(double));
	    memcpy(lowerBefore,lower,numberColumns*sizeof(double));
	    memcpy(upperBefore,upper,numberColumns*sizeof(double));
	  }
	}
	if (!numberFractionalVariables||reasonToStop)
	  break;
    }
    if (nodes) {
      printf("Exiting dive for reason %d\n",reasonToStop);
      if (reasonToStop>1) {
	printf("problems in diving\n");
	int whichWay=nodes[numberNodes-1]->problemStatus_;
	CbcSubProblem * sub;
	if ((whichWay&2)==0) {
	  // leave both ways
	  sub = new CbcSubProblem(*nodes[numberNodes-1]);
	  nodes[numberNodes++]=sub;
	} else {
	  sub = nodes[numberNodes-1];
	}
	if ((whichWay&1)==0)
	  sub->problemStatus_=whichWay|1;
	else
	  sub->problemStatus_=whichWay&~1;
      }
      if (!numberNodes) {
	// was good at start! - create fake
	clpSolver->resolve();
	ClpSimplex * simplex = clpSolver->getModelPtr();
	CbcSubProblem * sub =
	  new CbcSubProblem(clpSolver,lowerBefore,upperBefore,
			    simplex->statusArray(),numberNodes);
	nodes[numberNodes]=sub;
	// other stuff
	sub->branchValue_=0.0;
	sub->problemStatus_=0;
	sub->branchVariable_=-1;
	sub->objectiveValue_ = simplex->objectiveValue();
	sub->sumInfeasibilities_ = 0.0;
	sub->numberInfeasibilities_ = 0;
	printf("DiveNode %d column %d way %d bvalue %g obj %g\n",
	       numberNodes,sub->branchVariable_,sub->problemStatus_,
	       sub->branchValue_,sub->objectiveValue_);
	numberNodes++;
	assert (solver->isProvenOptimal());
      }
      nodes[numberNodes-1]->problemStatus_ |= 256*reasonToStop;
      // use djs as well
      if (solver->isProvenPrimalInfeasible()&&cuts) {
	// can do conflict cut and re-order
	printf("could do final conflict cut\n");
	bool localCut;
	OsiRowCut * cut = model_->conflictCut(solver,localCut);
	if (cut) {
	  printf("cut - need to use conflict and previous djs\n");
	  if (!localCut) {
	    model_->makePartialCut(cut,solver);
	    cuts[numberCuts++]=cut;
	  } else {
	    delete cut;
	  }
	} else {
	  printf("bad conflict - just use previous djs\n");
	}
      }
    }
    
    // re-compute new solution value
    double objOffset = 0.0;
    solver->getDblParam(OsiObjOffset, objOffset);
    newSolutionValue = -objOffset;
    for (int i = 0 ; i < numberColumns ; i++ )
      newSolutionValue += objective[i] * newSolution[i];
    newSolutionValue *= direction;
    //printf("new solution value %g %g\n",newSolutionValue,solutionValue);
    if (newSolutionValue < solutionValue && !reasonToStop) {
      double * rowActivity = new double[numberRows];
      memset(rowActivity, 0, numberRows*sizeof(double));
      // paranoid check
      memset(rowActivity, 0, numberRows*sizeof(double));
      for (int i = 0; i < numberColumns; i++) {
	int j;
	double value = newSolution[i];
	if (value) {
	  for (j = columnStart[i];
	       j < columnStart[i] + columnLength[i]; j++) {
	    int iRow = row[j];
	    rowActivity[iRow] += value * element[j];
	  }
	}
      }
      // check was approximately feasible
      bool feasible = true;
      for (int i = 0; i < numberRows; i++) {
	if (rowActivity[i] < rowLower[i]) {
	  if (rowActivity[i] < rowLower[i] - 1000.0*primalTolerance)
	    feasible = false;
	} else if (rowActivity[i] > rowUpper[i]) {
	  if (rowActivity[i] > rowUpper[i] + 1000.0*primalTolerance)
	    feasible = false;
	}
      }
      for (int i = 0; i < numberIntegers; i++) {
	int iColumn = integerVariable[i];
	double value = newSolution[iColumn];
	if (fabs(floor(value + 0.5) - value) > integerTolerance) {
	  feasible = false;
	  break;
	}
      }
      if (feasible) {
	// new solution
	solutionValue = newSolutionValue;
	//printf("** Solution of %g found by CbcHeuristicDive\n",newSolutionValue);
	//if (cuts)
	//clpSolver->getModelPtr()->writeMps("good8.mps", 2);
	returnCode = 1;
      } else {
	// Can easily happen
	//printf("Debug CbcHeuristicDive giving bad solution\n");
      }
      delete [] rowActivity;
    }

#ifdef DIVE_DEBUG
    std::cout << "nRoundInfeasible = " << nRoundInfeasible
              << ", nRoundFeasible = " << nRoundFeasible
              << ", returnCode = " << returnCode
              << ", reasonToStop = " << reasonToStop
              << ", simplexIts = " << numberSimplexIterations
              << ", iterations = " << iteration << std::endl;
#endif

    delete [] columnFixed;
    delete [] originalBound;
    delete [] fixedAtLowerBound;
    delete [] candidate;
    delete [] random;
    delete [] downArray_;
    downArray_ = NULL;
    delete [] upArray_;
    upArray_ = NULL;
    delete solver;
    return returnCode;
}
// Returns type
int
CbcFathomDynamicProgramming::checkPossible(int allowableSize)
{
    algorithm_ = -1;
    assert(model_->solver());
    OsiSolverInterface * solver = model_->solver();
    const CoinPackedMatrix * matrix = solver->getMatrixByCol();

    int numberIntegers = model_->numberIntegers();
    int numberColumns = solver->getNumCols();
    size_ = 0;
    if (numberIntegers != numberColumns)
        return -1; // can't do dynamic programming

    const double * lower = solver->getColLower();
    const double * upper = solver->getColUpper();
    const double * rowUpper = solver->getRowUpper();

    int numberRows = model_->getNumRows();
    int i;

    // First check columns to see if possible
    double * rhs = new double [numberRows];
    CoinCopyN(rowUpper, numberRows, rhs);

    // Column copy
    const double * element = matrix->getElements();
    const int * row = matrix->getIndices();
    const CoinBigIndex * columnStart = matrix->getVectorStarts();
    const int * columnLength = matrix->getVectorLengths();
    bool bad = false;
    /* It is just possible that we could say okay as
       variables may get fixed but seems unlikely */
    for (i = 0; i < numberColumns; i++) {
        int j;
        double lowerValue = lower[i];
        assert (lowerValue == floor(lowerValue));
        for (j = columnStart[i];
                j < columnStart[i] + columnLength[i]; j++) {
            int iRow = row[j];
            double value = element[j];
            if (upper[i] > lowerValue && (value <= 0.0 || value != floor(value)))
                bad = true;
            if (lowerValue)
                rhs[iRow] -= lowerValue * value;
        }
    }
    // check possible (at present do not allow covering)
    int numberActive = 0;
    bool infeasible = false;
    bool saveBad = bad;
    for (i = 0; i < numberRows; i++) {
        if (rhs[i] < 0)
            infeasible = true;
        else if (rhs[i] > 1.0e5 || fabs(rhs[i] - floor(rhs[i] + 0.5)) > 1.0e-7)
            bad = true;
        else if (rhs[i] > 0.0)
            numberActive++;
    }
    if (bad || infeasible) {
        delete [] rhs;
        if (!saveBad && infeasible)
            return -2;
        else
            return -1;
    }
    // check size of array needed
    double size = 1.0;
    double check = COIN_INT_MAX;
    for (i = 0; i < numberRows; i++) {
        int n = static_cast<int> (floor(rhs[i] + 0.5));
        if (n) {
            n++; // allow for 0,1... n
            if (numberActive != 1) {
                // power of 2
                int iBit = 0;
                int k = n;
                k &= ~1;
                while (k) {
                    iBit++;
                    k &= ~(1 << iBit);
                }
                // See if exact power
                if (n != (1 << iBit)) {
                    // round up to next power of 2
                    n = 1 << (iBit + 1);
                }
                size *= n;
                if (size >= check)
                    break;
            } else {
                size = n; // just one constraint
            }
        }
    }
    // set size needed
    if (size >= check)
        size_ = COIN_INT_MAX;
    else
        size_ = static_cast<int> (size);

    int n01 = 0;
    int nbadcoeff = 0;
    // See if we can tighten bounds
    for (i = 0; i < numberColumns; i++) {
        int j;
        double lowerValue = lower[i];
        double gap = upper[i] - lowerValue;
        for (j = columnStart[i];
                j < columnStart[i] + columnLength[i]; j++) {
            int iRow = row[j];
            double value = element[j];
            if (value != 1.0)
                nbadcoeff++;
            if (gap*value > rhs[iRow] + 1.0e-8)
                gap = rhs[iRow] / value;
        }
        gap = lowerValue + floor(gap + 1.0e-7);
        if (gap < upper[i])
            solver->setColUpper(i, gap);
        if (gap <= 1.0)
            n01++;
    }
    if (allowableSize && size_ <= allowableSize) {
        if (n01 == numberColumns && !nbadcoeff)
            algorithm_ = 0; // easiest
        else
            algorithm_ = 1;
    }
    if (allowableSize && size_ <= allowableSize) {
        numberActive_ = numberActive;
        indices_ = new int [numberActive_];
        cost_ = new double [size_];
        CoinFillN(cost_, size_, COIN_DBL_MAX);
        // but do nothing is okay
        cost_[0] = 0.0;
        back_ = new int[size_];
        CoinFillN(back_, size_, -1);
        startBit_ = new int[numberActive_];
        numberBits_ = new int[numberActive_];
        lookup_ = new int [numberRows];
        rhs_ = new int [numberActive_];
        numberActive = 0;
        int kBit = 0;
        for (i = 0; i < numberRows; i++) {
            int n = static_cast<int> (floor(rhs[i] + 0.5));
            if (n) {
                lookup_[i] = numberActive;
                rhs_[numberActive] = n;
                startBit_[numberActive] = kBit;
                n++; // allow for 0,1... n
                int iBit = 0;
                // power of 2
                int k = n;
                k &= ~1;
                while (k) {
                    iBit++;
                    k &= ~(1 << iBit);
                }
                // See if exact power
                if (n != (1 << iBit)) {
                    // round up to next power of 2
                    iBit++;
                }
                if (numberActive != 1) {
                    n = 1 << iBit;
                    size *= n;
                    if (size >= check)
                        break;
                } else {
                    size = n; // just one constraint
                }
                numberBits_[numberActive++] = iBit;
                kBit += iBit;
            } else {
                lookup_[i] = -1;
            }
        }
        const double * rowLower = solver->getRowLower();
        if (algorithm_ == 0) {
            // rhs 1 and coefficients 1
            // Get first possible solution for printing
            target_ = -1;
            int needed = 0;
            int numberActive = 0;
            for (i = 0; i < numberRows; i++) {
                int newRow = lookup_[i];
                if (newRow >= 0) {
                    if (rowLower[i] == rowUpper[i]) {
                        needed += 1 << numberActive;
                        numberActive++;
                    }
                }
            }
            for (i = 0; i < size_; i++) {
                if ((i&needed) == needed) {
                    break;
                }
            }
            target_ = i;
        } else {
            coefficients_ = new int[numberActive_];
            // If not too many general rhs then we can be more efficient
            numberNonOne_ = 0;
            for (i = 0; i < numberActive_; i++) {
                if (rhs_[i] != 1)
                    numberNonOne_++;
            }
            if (numberNonOne_*2 < numberActive_) {
                // put rhs >1 every second
                int * permute = new int[numberActive_];
                int * temp = new int[numberActive_];
                // try different ways
                int k = 0;
                for (i = 0; i < numberRows; i++) {
                    int newRow = lookup_[i];
                    if (newRow >= 0 && rhs_[newRow] > 1) {
                        permute[newRow] = k;
                        k += 2;
                    }
                }
                // adjust so k points to last
                k -= 2;
                // and now rest
                int k1 = 1;
                for (i = 0; i < numberRows; i++) {
                    int newRow = lookup_[i];
                    if (newRow >= 0 && rhs_[newRow] == 1) {
                        permute[newRow] = k1;
                        k1++;
                        if (k1 <= k)
                            k1++;
                    }
                }
                for (i = 0; i < numberActive_; i++) {
                    int put = permute[i];
                    temp[put] = rhs_[i];
                }
                memcpy(rhs_, temp, numberActive_*sizeof(int));
                for (i = 0; i < numberActive_; i++) {
                    int put = permute[i];
                    temp[put] = numberBits_[i];
                }
                memcpy(numberBits_, temp, numberActive_*sizeof(int));
                k = 0;
                for (i = 0; i < numberActive_; i++) {
                    startBit_[i] = k;
                    k += numberBits_[i];
                }
                for (i = 0; i < numberRows; i++) {
                    int newRow = lookup_[i];
                    if (newRow >= 0)
                        lookup_[i] = permute[newRow];
                }
                delete [] permute;
                delete [] temp;
                // mark new method
                algorithm_ = 2;
            }
            // Get first possible solution for printing
            target_ = -1;
            int needed = 0;
            int * lower2 = new int[numberActive_];
            for (i = 0; i < numberRows; i++) {
                int newRow = lookup_[i];
                if (newRow >= 0) {
                    int gap = static_cast<int> (rowUpper[i] - CoinMax(0.0, rowLower[i]));
                    lower2[newRow] = rhs_[newRow] - gap;
                    int numberBits = numberBits_[newRow];
                    int startBit = startBit_[newRow];
                    if (numberBits == 1 && !gap) {
                        needed |= 1 << startBit;
                    }
                }
            }
            for (i = 0; i < size_; i++) {
                if ((i&needed) == needed) {
                    // this one may do
                    bool good = true;
                    for (int kk = 0; kk < numberActive_; kk++) {
                        int numberBits = numberBits_[kk];
                        int startBit = startBit_[kk];
                        int size = 1 << numberBits;
                        int start = 1 << startBit;
                        int mask = start * (size - 1);
                        int level = (i & mask) >> startBit;
                        if (level < lower2[kk]) {
                            good = false;
                            break;
                        }
                    }
                    if (good) {
                        break;
                    }
                }
            }
            delete [] lower2;
            target_ = i;
        }