void MeshRefinement::flag_elements_by_error_tolerance (const ErrorVector & error_per_cell_in) { parallel_object_only(); libmesh_assert_greater (_coarsen_threshold, 0); // Check for valid fractions.. // The fraction values must be in [0,1] libmesh_assert_greater_equal (_refine_fraction, 0); libmesh_assert_less_equal (_refine_fraction, 1); libmesh_assert_greater_equal (_coarsen_fraction, 0); libmesh_assert_less_equal (_coarsen_fraction, 1); // How much error per cell will we tolerate? const Real local_refinement_tolerance = _absolute_global_tolerance / std::sqrt(static_cast<Real>(_mesh.n_active_elem())); const Real local_coarsening_tolerance = local_refinement_tolerance * _coarsen_threshold; // Prepare another error vector if we need to sum parent errors ErrorVector error_per_parent; if (_coarsen_by_parents) { Real parent_error_min, parent_error_max; create_parent_error_vector(error_per_cell_in, error_per_parent, parent_error_min, parent_error_max); } for (auto & elem : _mesh.active_element_ptr_range()) { Elem * parent = elem->parent(); const dof_id_type elem_number = elem->id(); const ErrorVectorReal elem_error = error_per_cell_in[elem_number]; if (elem_error > local_refinement_tolerance && elem->level() < _max_h_level) elem->set_refinement_flag(Elem::REFINE); if (!_coarsen_by_parents && elem_error < local_coarsening_tolerance) elem->set_refinement_flag(Elem::COARSEN); if (_coarsen_by_parents && parent) { ErrorVectorReal parent_error = error_per_parent[parent->id()]; if (parent_error >= 0.) { const Real parent_coarsening_tolerance = std::sqrt(parent->n_children() * local_coarsening_tolerance * local_coarsening_tolerance); if (parent_error < parent_coarsening_tolerance) elem->set_refinement_flag(Elem::COARSEN); } } } }
void Partitioner::set_parent_processor_ids(MeshBase & mesh) { // Ignore the parameter when !LIBMESH_ENABLE_AMR libmesh_ignore(mesh); LOG_SCOPE("set_parent_processor_ids()", "Partitioner"); #ifdef LIBMESH_ENABLE_AMR // If the mesh is serial we have access to all the elements, // in particular all the active ones. We can therefore set // the parent processor ids indirecly through their children, and // set the subactive processor ids while examining their active // ancestors. // By convention a parent is assigned to the minimum processor // of all its children, and a subactive is assigned to the processor // of its active ancestor. if (mesh.is_serial()) { // Loop over all the active elements in the mesh MeshBase::element_iterator it = mesh.active_elements_begin(); const MeshBase::element_iterator end = mesh.active_elements_end(); for ( ; it!=end; ++it) { Elem * child = *it; // First set descendents std::vector<const Elem *> subactive_family; child->total_family_tree(subactive_family); for (unsigned int i = 0; i != subactive_family.size(); ++i) const_cast<Elem *>(subactive_family[i])->processor_id() = child->processor_id(); // Then set ancestors Elem * parent = child->parent(); while (parent) { // invalidate the parent id, otherwise the min below // will not work if the current parent id is less // than all the children! parent->invalidate_processor_id(); for (unsigned int c=0; c<parent->n_children(); c++) { child = parent->child_ptr(c); libmesh_assert(child); libmesh_assert(!child->is_remote()); libmesh_assert_not_equal_to (child->processor_id(), DofObject::invalid_processor_id); parent->processor_id() = std::min(parent->processor_id(), child->processor_id()); } parent = parent->parent(); } } } // When the mesh is parallel we cannot guarantee that parents have access to // all their children. else { // Setting subactive processor ids is easy: we can guarantee // that children have access to all their parents. // Loop over all the active elements in the mesh MeshBase::element_iterator it = mesh.active_elements_begin(); const MeshBase::element_iterator end = mesh.active_elements_end(); for ( ; it!=end; ++it) { Elem * child = *it; std::vector<const Elem *> subactive_family; child->total_family_tree(subactive_family); for (unsigned int i = 0; i != subactive_family.size(); ++i) const_cast<Elem *>(subactive_family[i])->processor_id() = child->processor_id(); } // When the mesh is parallel we cannot guarantee that parents have access to // all their children. // We will use a brute-force approach here. Each processor finds its parent // elements and sets the parent pid to the minimum of its // semilocal descendants. // A global reduction is then performed to make sure the true minimum is found. // As noted, this is required because we cannot guarantee that a parent has // access to all its children on any single processor. libmesh_parallel_only(mesh.comm()); libmesh_assert(MeshTools::n_elem(mesh.unpartitioned_elements_begin(), mesh.unpartitioned_elements_end()) == 0); const dof_id_type max_elem_id = mesh.max_elem_id(); std::vector<processor_id_type> parent_processor_ids (std::min(communication_blocksize, max_elem_id)); for (dof_id_type blk=0, last_elem_id=0; last_elem_id<max_elem_id; blk++) { last_elem_id = std::min(static_cast<dof_id_type>((blk+1)*communication_blocksize), max_elem_id); const dof_id_type first_elem_id = blk*communication_blocksize; std::fill (parent_processor_ids.begin(), parent_processor_ids.end(), DofObject::invalid_processor_id); // first build up local contributions to parent_processor_ids MeshBase::element_iterator not_it = mesh.ancestor_elements_begin(); const MeshBase::element_iterator not_end = mesh.ancestor_elements_end(); bool have_parent_in_block = false; for ( ; not_it != not_end; ++not_it) { Elem * parent = *not_it; const dof_id_type parent_idx = parent->id(); libmesh_assert_less (parent_idx, max_elem_id); if ((parent_idx >= first_elem_id) && (parent_idx < last_elem_id)) { have_parent_in_block = true; processor_id_type parent_pid = DofObject::invalid_processor_id; std::vector<const Elem *> active_family; parent->active_family_tree(active_family); for (unsigned int i = 0; i != active_family.size(); ++i) parent_pid = std::min (parent_pid, active_family[i]->processor_id()); const dof_id_type packed_idx = parent_idx - first_elem_id; libmesh_assert_less (packed_idx, parent_processor_ids.size()); parent_processor_ids[packed_idx] = parent_pid; } } // then find the global minimum mesh.comm().min (parent_processor_ids); // and assign the ids, if we have a parent in this block. if (have_parent_in_block) for (not_it = mesh.ancestor_elements_begin(); not_it != not_end; ++not_it) { Elem * parent = *not_it; const dof_id_type parent_idx = parent->id(); if ((parent_idx >= first_elem_id) && (parent_idx < last_elem_id)) { const dof_id_type packed_idx = parent_idx - first_elem_id; libmesh_assert_less (packed_idx, parent_processor_ids.size()); const processor_id_type parent_pid = parent_processor_ids[packed_idx]; libmesh_assert_not_equal_to (parent_pid, DofObject::invalid_processor_id); parent->processor_id() = parent_pid; } } } } #endif // LIBMESH_ENABLE_AMR }
bool MeshRefinement::flag_elements_by_nelem_target (const ErrorVector& error_per_cell) { parallel_only(); // Check for valid fractions.. // The fraction values must be in [0,1] libmesh_assert_greater_equal (_refine_fraction, 0); libmesh_assert_less_equal (_refine_fraction, 1); libmesh_assert_greater_equal (_coarsen_fraction, 0); libmesh_assert_less_equal (_coarsen_fraction, 1); // This function is currently only coded to work when coarsening by // parents - it's too hard to guess how many coarsenings will be // performed otherwise. libmesh_assert (_coarsen_by_parents); // The number of active elements in the mesh - hopefully less than // 2 billion on 32 bit machines const unsigned int n_active_elem = _mesh.n_active_elem(); // The maximum number of active elements to flag for coarsening const unsigned int max_elem_coarsen = static_cast<unsigned int>(_coarsen_fraction * n_active_elem) + 1; // The maximum number of elements to flag for refinement const unsigned int max_elem_refine = static_cast<unsigned int>(_refine_fraction * n_active_elem) + 1; // Clean up the refinement flags. These could be left // over from previous refinement steps. this->clean_refinement_flags(); // The target number of elements to add or remove const int n_elem_new = _nelem_target - n_active_elem; // Create an vector with active element errors and ids, // sorted by highest errors first const unsigned int max_elem_id = _mesh.max_elem_id(); std::vector<std::pair<float, unsigned int> > sorted_error; sorted_error.reserve (n_active_elem); // On a ParallelMesh, we need to communicate to know which remote ids // correspond to active elements. { std::vector<bool> is_active(max_elem_id, false); MeshBase::element_iterator elem_it = _mesh.active_local_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_local_elements_end(); for (; elem_it != elem_end; ++elem_it) { const unsigned int eid = (*elem_it)->id(); is_active[eid] = true; libmesh_assert_less (eid, error_per_cell.size()); sorted_error.push_back (std::make_pair(error_per_cell[eid], eid)); } CommWorld.max(is_active); CommWorld.allgather(sorted_error); } // Default sort works since pairs are sorted lexicographically std::sort (sorted_error.begin(), sorted_error.end()); std::reverse (sorted_error.begin(), sorted_error.end()); // Create a sorted error vector with coarsenable parent elements // only, sorted by lowest errors first ErrorVector error_per_parent; std::vector<std::pair<float, unsigned int> > sorted_parent_error; Real parent_error_min, parent_error_max; create_parent_error_vector(error_per_cell, error_per_parent, parent_error_min, parent_error_max); // create_parent_error_vector sets values for non-parents and // non-coarsenable parents to -1. Get rid of them. for (unsigned int i=0; i != error_per_parent.size(); ++i) if (error_per_parent[i] != -1) sorted_parent_error.push_back(std::make_pair(error_per_parent[i], i)); std::sort (sorted_parent_error.begin(), sorted_parent_error.end()); // Keep track of how many elements we plan to coarsen & refine unsigned int coarsen_count = 0; unsigned int refine_count = 0; const unsigned int dim = _mesh.mesh_dimension(); unsigned int twotodim = 1; for (unsigned int i=0; i!=dim; ++i) twotodim *= 2; // First, let's try to get our element count to target_nelem if (n_elem_new >= 0) { // Every element refinement creates at least // 2^dim-1 new elements refine_count = std::min(static_cast<unsigned int>(n_elem_new / (twotodim-1)), max_elem_refine); } else { // Every successful element coarsening is likely to destroy // 2^dim-1 net elements. coarsen_count = std::min(static_cast<unsigned int>(-n_elem_new / (twotodim-1)), max_elem_coarsen); } // Next, let's see if we can trade any refinement for coarsening while (coarsen_count < max_elem_coarsen && refine_count < max_elem_refine && coarsen_count < sorted_parent_error.size() && refine_count < sorted_error.size() && sorted_error[refine_count].first > sorted_parent_error[coarsen_count].first * _coarsen_threshold) { coarsen_count++; refine_count++; } // On a ParallelMesh, we need to communicate to know which remote ids // correspond to refinable elements unsigned int successful_refine_count = 0; { std::vector<bool> is_refinable(max_elem_id, false); for (unsigned int i=0; i != sorted_error.size(); ++i) { unsigned int eid = sorted_error[i].second; Elem *elem = _mesh.query_elem(eid); if (elem && elem->level() < _max_h_level) is_refinable[eid] = true; } CommWorld.max(is_refinable); if (refine_count > max_elem_refine) refine_count = max_elem_refine; for (unsigned int i=0; i != sorted_error.size(); ++i) { if (successful_refine_count >= refine_count) break; unsigned int eid = sorted_error[i].second; Elem *elem = _mesh.query_elem(eid); if (is_refinable[eid]) { if (elem) elem->set_refinement_flag(Elem::REFINE); successful_refine_count++; } } } // If we couldn't refine enough elements, don't coarsen too many // either if (coarsen_count < (refine_count - successful_refine_count)) coarsen_count = 0; else coarsen_count -= (refine_count - successful_refine_count); if (coarsen_count > max_elem_coarsen) coarsen_count = max_elem_coarsen; unsigned int successful_coarsen_count = 0; if (coarsen_count) { for (unsigned int i=0; i != sorted_parent_error.size(); ++i) { if (successful_coarsen_count >= coarsen_count * twotodim) break; unsigned int parent_id = sorted_parent_error[i].second; Elem *parent = _mesh.query_elem(parent_id); // On a ParallelMesh we skip remote elements if (!parent) continue; libmesh_assert(parent->has_children()); for (unsigned int c=0; c != parent->n_children(); ++c) { Elem *elem = parent->child(c); if (elem && elem != remote_elem) { libmesh_assert(elem->active()); elem->set_refinement_flag(Elem::COARSEN); successful_coarsen_count++; } } } } // Return true if we've done all the AMR/C we can if (!successful_coarsen_count && !successful_refine_count) return true; // And false if there may still be more to do. return false; }
void UnstructuredMesh::find_neighbors (const bool reset_remote_elements, const bool reset_current_list) { // We might actually want to run this on an empty mesh // (e.g. the boundary mesh for a nonexistant bcid!) // libmesh_assert_not_equal_to (this->n_nodes(), 0); // libmesh_assert_not_equal_to (this->n_elem(), 0); // This function must be run on all processors at once parallel_object_only(); LOG_SCOPE("find_neighbors()", "Mesh"); const element_iterator el_end = this->elements_end(); //TODO:[BSK] This should be removed later?! if (reset_current_list) for (element_iterator el = this->elements_begin(); el != el_end; ++el) { Elem * e = *el; for (unsigned int s=0; s<e->n_neighbors(); s++) if (e->neighbor_ptr(s) != remote_elem || reset_remote_elements) e->set_neighbor(s, libmesh_nullptr); } // Find neighboring elements by first finding elements // with identical side keys and then check to see if they // are neighbors { // data structures -- Use the hash_multimap if available typedef unsigned int key_type; typedef std::pair<Elem *, unsigned char> val_type; typedef std::pair<key_type, val_type> key_val_pair; typedef LIBMESH_BEST_UNORDERED_MULTIMAP<key_type, val_type> map_type; // A map from side keys to corresponding elements & side numbers map_type side_to_elem_map; for (element_iterator el = this->elements_begin(); el != el_end; ++el) { Elem * element = *el; for (unsigned char ms=0; ms<element->n_neighbors(); ms++) { next_side: // If we haven't yet found a neighbor on this side, try. // Even if we think our neighbor is remote, that // information may be out of date. if (element->neighbor_ptr(ms) == libmesh_nullptr || element->neighbor_ptr(ms) == remote_elem) { // Get the key for the side of this element const unsigned int key = element->key(ms); // Look for elements that have an identical side key std::pair <map_type::iterator, map_type::iterator> bounds = side_to_elem_map.equal_range(key); // May be multiple keys, check all the possible // elements which _might_ be neighbors. if (bounds.first != bounds.second) { // Get the side for this element const UniquePtr<Elem> my_side(element->side_ptr(ms)); // Look at all the entries with an equivalent key while (bounds.first != bounds.second) { // Get the potential element Elem * neighbor = bounds.first->second.first; // Get the side for the neighboring element const unsigned int ns = bounds.first->second.second; const UniquePtr<Elem> their_side(neighbor->side_ptr(ns)); //libmesh_assert(my_side.get()); //libmesh_assert(their_side.get()); // If found a match with my side // // We need special tests here for 1D: // since parents and children have an equal // side (i.e. a node), we need to check // ns != ms, and we also check level() to // avoid setting our neighbor pointer to // any of our neighbor's descendants if( (*my_side == *their_side) && (element->level() == neighbor->level()) && ((element->dim() != 1) || (ns != ms)) ) { // So share a side. Is this a mixed pair // of subactive and active/ancestor // elements? // If not, then we're neighbors. // If so, then the subactive's neighbor is if (element->subactive() == neighbor->subactive()) { // an element is only subactive if it has // been coarsened but not deleted element->set_neighbor (ms,neighbor); neighbor->set_neighbor(ns,element); } else if (element->subactive()) { element->set_neighbor(ms,neighbor); } else if (neighbor->subactive()) { neighbor->set_neighbor(ns,element); } side_to_elem_map.erase (bounds.first); // get out of this nested crap goto next_side; } ++bounds.first; } } // didn't find a match... // Build the map entry for this element key_val_pair kvp; kvp.first = key; kvp.second.first = element; kvp.second.second = ms; // use the lower bound as a hint for // where to put it. #if defined(LIBMESH_HAVE_UNORDERED_MAP) || defined(LIBMESH_HAVE_TR1_UNORDERED_MAP) || defined(LIBMESH_HAVE_HASH_MAP) || defined(LIBMESH_HAVE_EXT_HASH_MAP) side_to_elem_map.insert (kvp); #else side_to_elem_map.insert (bounds.first,kvp); #endif } } } } #ifdef LIBMESH_ENABLE_AMR /** * Here we look at all of the child elements which * don't already have valid neighbors. * * If a child element has a NULL neighbor it is * either because it is on the boundary or because * its neighbor is at a different level. In the * latter case we must get the neighbor from the * parent. * * If a child element has a remote_elem neighbor * on a boundary it shares with its parent, that * info may have become out-dated through coarsening * of the neighbor's parent. In this case, if the * parent's neighbor is active then the child should * share it. * * Furthermore, that neighbor better be active, * otherwise we missed a child somewhere. * * * We also need to look through children ordered by increasing * refinement level in order to add new interior_parent() links in * boundary elements which have just been generated by refinement, * and fix links in boundary elements whose previous * interior_parent() has just been coarsened away. */ const unsigned int n_levels = MeshTools::n_levels(*this); for (unsigned int level = 1; level < n_levels; ++level) { element_iterator end = this->level_elements_end(level); for (element_iterator el = this->level_elements_begin(level); el != end; ++el) { Elem * current_elem = *el; libmesh_assert(current_elem); Elem * parent = current_elem->parent(); libmesh_assert(parent); const unsigned int my_child_num = parent->which_child_am_i(current_elem); for (unsigned int s=0; s < current_elem->n_neighbors(); s++) { if (current_elem->neighbor_ptr(s) == libmesh_nullptr || (current_elem->neighbor_ptr(s) == remote_elem && parent->is_child_on_side(my_child_num, s))) { Elem * neigh = parent->neighbor_ptr(s); // If neigh was refined and had non-subactive children // made remote earlier, then a non-subactive elem should // actually have one of those remote children as a // neighbor if (neigh && (neigh->ancestor()) && (!current_elem->subactive())) { #ifdef DEBUG // Let's make sure that "had children made remote" // situation is actually the case libmesh_assert(neigh->has_children()); bool neigh_has_remote_children = false; for (unsigned int c = 0; c != neigh->n_children(); ++c) { if (neigh->child_ptr(c) == remote_elem) neigh_has_remote_children = true; } libmesh_assert(neigh_has_remote_children); // And let's double-check that we don't have // a remote_elem neighboring a local element libmesh_assert_not_equal_to (current_elem->processor_id(), this->processor_id()); #endif // DEBUG neigh = const_cast<RemoteElem *>(remote_elem); } if (!current_elem->subactive()) current_elem->set_neighbor(s, neigh); #ifdef DEBUG if (neigh != libmesh_nullptr && neigh != remote_elem) // We ignore subactive elements here because // we don't care about neighbors of subactive element. if ((!neigh->active()) && (!current_elem->subactive())) { libMesh::err << "On processor " << this->processor_id() << std::endl; libMesh::err << "Bad element ID = " << current_elem->id() << ", Side " << s << ", Bad neighbor ID = " << neigh->id() << std::endl; libMesh::err << "Bad element proc_ID = " << current_elem->processor_id() << ", Bad neighbor proc_ID = " << neigh->processor_id() << std::endl; libMesh::err << "Bad element size = " << current_elem->hmin() << ", Bad neighbor size = " << neigh->hmin() << std::endl; libMesh::err << "Bad element center = " << current_elem->centroid() << ", Bad neighbor center = " << neigh->centroid() << std::endl; libMesh::err << "ERROR: " << (current_elem->active()?"Active":"Ancestor") << " Element at level " << current_elem->level() << std::endl; libMesh::err << "with " << (parent->active()?"active": (parent->subactive()?"subactive":"ancestor")) << " parent share " << (neigh->subactive()?"subactive":"ancestor") << " neighbor at level " << neigh->level() << std::endl; NameBasedIO(*this).write ("bad_mesh.gmv"); libmesh_error_msg("Problematic mesh written to bad_mesh.gmv."); } #endif // DEBUG } } // We can skip to the next element if we're full-dimension // and therefore don't have any interior parents if (current_elem->dim() >= LIBMESH_DIM) continue; // We have no interior parents unless we can find one later current_elem->set_interior_parent(libmesh_nullptr); Elem * pip = parent->interior_parent(); if (!pip) continue; // If there's no interior_parent children, whether due to a // remote element or a non-conformity, then there's no // children to search. if (pip == remote_elem || pip->active()) { current_elem->set_interior_parent(pip); continue; } // For node comparisons we'll need a sensible tolerance Real node_tolerance = current_elem->hmin() * TOLERANCE; // Otherwise our interior_parent should be a child of our // parent's interior_parent. for (unsigned int c=0; c != pip->n_children(); ++c) { Elem * child = pip->child_ptr(c); // If we have a remote_elem, that might be our // interior_parent. We'll set it provisionally now and // keep trying to find something better. if (child == remote_elem) { current_elem->set_interior_parent (const_cast<RemoteElem *>(remote_elem)); continue; } bool child_contains_our_nodes = true; for (unsigned int n=0; n != current_elem->n_nodes(); ++n) { bool child_contains_this_node = false; for (unsigned int cn=0; cn != child->n_nodes(); ++cn) if (child->point(cn).absolute_fuzzy_equals (current_elem->point(n), node_tolerance)) { child_contains_this_node = true; break; } if (!child_contains_this_node) { child_contains_our_nodes = false; break; } } if (child_contains_our_nodes) { current_elem->set_interior_parent(child); break; } } // We should have found *some* interior_parent at this // point, whether semilocal or remote. libmesh_assert(current_elem->interior_parent()); } } #endif // AMR #ifdef DEBUG MeshTools::libmesh_assert_valid_neighbors(*this, !reset_remote_elements); MeshTools::libmesh_assert_valid_amr_interior_parents(*this); #endif }
void unpack(std::vector<largest_id_type>::const_iterator in, Elem** out, MeshBase* mesh) { #ifndef NDEBUG const std::vector<largest_id_type>::const_iterator original_in = in; const largest_id_type incoming_header = *in++; libmesh_assert_equal_to (incoming_header, elem_magic_header); #endif // int 0: level const unsigned int level = static_cast<unsigned int>(*in++); #ifdef LIBMESH_ENABLE_AMR // int 1: p level const unsigned int p_level = static_cast<unsigned int>(*in++); // int 2: refinement flag const int rflag = *in++; libmesh_assert_greater_equal (rflag, 0); libmesh_assert_less (rflag, Elem::INVALID_REFINEMENTSTATE); const Elem::RefinementState refinement_flag = static_cast<Elem::RefinementState>(rflag); // int 3: p refinement flag const int pflag = *in++; libmesh_assert_greater_equal (pflag, 0); libmesh_assert_less (pflag, Elem::INVALID_REFINEMENTSTATE); const Elem::RefinementState p_refinement_flag = static_cast<Elem::RefinementState>(pflag); #else in += 3; #endif // LIBMESH_ENABLE_AMR // int 4: element type const int typeint = *in++; libmesh_assert_greater_equal (typeint, 0); libmesh_assert_less (typeint, INVALID_ELEM); const ElemType type = static_cast<ElemType>(typeint); const unsigned int n_nodes = Elem::type_to_n_nodes_map[type]; // int 5: processor id const processor_id_type processor_id = static_cast<processor_id_type>(*in++); libmesh_assert (processor_id < mesh->n_processors() || processor_id == DofObject::invalid_processor_id); // int 6: subdomain id const subdomain_id_type subdomain_id = static_cast<subdomain_id_type>(*in++); // int 7: dof object id const dof_id_type id = static_cast<dof_id_type>(*in++); libmesh_assert_not_equal_to (id, DofObject::invalid_id); #ifdef LIBMESH_ENABLE_UNIQUE_ID // int 8: dof object unique id const unique_id_type unique_id = static_cast<unique_id_type>(*in++); #endif #ifdef LIBMESH_ENABLE_AMR // int 9: parent dof object id const dof_id_type parent_id = static_cast<dof_id_type>(*in++); libmesh_assert (level == 0 || parent_id != DofObject::invalid_id); libmesh_assert (level != 0 || parent_id == DofObject::invalid_id); // int 10: local child id const unsigned int which_child_am_i = static_cast<unsigned int>(*in++); #else in += 2; #endif // LIBMESH_ENABLE_AMR // Make sure we don't miscount above when adding the "magic" header // plus the real data header libmesh_assert_equal_to (in - original_in, header_size + 1); Elem *elem = mesh->query_elem(id); // if we already have this element, make sure its // properties match, and update any missing neighbor // links, but then go on if (elem) { libmesh_assert_equal_to (elem->level(), level); libmesh_assert_equal_to (elem->id(), id); //#ifdef LIBMESH_ENABLE_UNIQUE_ID // No check for unqiue id sanity //#endif libmesh_assert_equal_to (elem->processor_id(), processor_id); libmesh_assert_equal_to (elem->subdomain_id(), subdomain_id); libmesh_assert_equal_to (elem->type(), type); libmesh_assert_equal_to (elem->n_nodes(), n_nodes); #ifndef NDEBUG // All our nodes should be correct for (unsigned int i=0; i != n_nodes; ++i) libmesh_assert(elem->node(i) == static_cast<dof_id_type>(*in++)); #else in += n_nodes; #endif #ifdef LIBMESH_ENABLE_AMR libmesh_assert_equal_to (elem->p_level(), p_level); libmesh_assert_equal_to (elem->refinement_flag(), refinement_flag); libmesh_assert_equal_to (elem->p_refinement_flag(), p_refinement_flag); libmesh_assert (!level || elem->parent() != NULL); libmesh_assert (!level || elem->parent()->id() == parent_id); libmesh_assert (!level || elem->parent()->child(which_child_am_i) == elem); #endif // Our neighbor links should be "close to" correct - we may have // to update them, but we can check for some inconsistencies. for (unsigned int n=0; n != elem->n_neighbors(); ++n) { const dof_id_type neighbor_id = static_cast<dof_id_type>(*in++); // If the sending processor sees a domain boundary here, // we'd better agree. if (neighbor_id == DofObject::invalid_id) { libmesh_assert (!(elem->neighbor(n))); continue; } // If the sending processor has a remote_elem neighbor here, // then all we know is that we'd better *not* have a domain // boundary. if (neighbor_id == remote_elem->id()) { libmesh_assert(elem->neighbor(n)); continue; } Elem *neigh = mesh->query_elem(neighbor_id); // The sending processor sees a neighbor here, so if we // don't have that neighboring element, then we'd better // have a remote_elem signifying that fact. if (!neigh) { libmesh_assert_equal_to (elem->neighbor(n), remote_elem); continue; } // The sending processor has a neighbor here, and we have // that element, but that does *NOT* mean we're already // linking to it. Perhaps we initially received both elem // and neigh from processors on which their mutual link was // remote? libmesh_assert(elem->neighbor(n) == neigh || elem->neighbor(n) == remote_elem); // If the link was originally remote, we should update it, // and make sure the appropriate parts of its family link // back to us. if (elem->neighbor(n) == remote_elem) { elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } } // FIXME: We should add some debug mode tests to ensure that the // encoded indexing and boundary conditions are consistent. } else { // We don't already have the element, so we need to create it. // Find the parent if necessary Elem *parent = NULL; #ifdef LIBMESH_ENABLE_AMR // Find a child element's parent if (level > 0) { // Note that we must be very careful to construct the send // connectivity so that parents are encountered before // children. If we get here and can't find the parent that // is a fatal error. parent = mesh->elem(parent_id); } // Or assert that the sending processor sees no parent else libmesh_assert_equal_to (parent_id, static_cast<dof_id_type>(-1)); #else // No non-level-0 elements without AMR libmesh_assert_equal_to (level, 0); #endif elem = Elem::build(type,parent).release(); libmesh_assert (elem); #ifdef LIBMESH_ENABLE_AMR if (level != 0) { // Since this is a newly created element, the parent must // have previously thought of this child as a remote element. libmesh_assert_equal_to (parent->child(which_child_am_i), remote_elem); parent->add_child(elem, which_child_am_i); } // Assign the refinement flags and levels elem->set_p_level(p_level); elem->set_refinement_flag(refinement_flag); elem->set_p_refinement_flag(p_refinement_flag); libmesh_assert_equal_to (elem->level(), level); // If this element definitely should have children, assign // remote_elem to all of them for now, for consistency. Later // unpacked elements may overwrite that. if (!elem->active()) for (unsigned int c=0; c != elem->n_children(); ++c) elem->add_child(const_cast<RemoteElem*>(remote_elem), c); #endif // LIBMESH_ENABLE_AMR // Assign the IDs elem->subdomain_id() = subdomain_id; elem->processor_id() = processor_id; elem->set_id() = id; #ifdef LIBMESH_ENABLE_UNIQUE_ID elem->set_unique_id() = unique_id; #endif // Assign the connectivity libmesh_assert_equal_to (elem->n_nodes(), n_nodes); for (unsigned int n=0; n != n_nodes; n++) elem->set_node(n) = mesh->node_ptr (static_cast<dof_id_type>(*in++)); for (unsigned int n=0; n<elem->n_neighbors(); n++) { const dof_id_type neighbor_id = static_cast<dof_id_type>(*in++); if (neighbor_id == DofObject::invalid_id) continue; // We may be unpacking an element that was a ghost element on the // sender, in which case the element's neighbors may not all be // known by the packed element. We'll have to set such // neighbors to remote_elem ourselves and wait for a later // packed element to give us better information. if (neighbor_id == remote_elem->id()) { elem->set_neighbor(n, const_cast<RemoteElem*>(remote_elem)); continue; } // If we don't have the neighbor element, then it's a // remote_elem until we get it. Elem *neigh = mesh->query_elem(neighbor_id); if (!neigh) { elem->set_neighbor(n, const_cast<RemoteElem*>(remote_elem)); continue; } // If we have the neighbor element, then link to it, and // make sure the appropriate parts of its family link back // to us. elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } elem->unpack_indexing(in); } in += elem->packed_indexing_size(); // If this is a coarse element, // add any element side boundary condition ids if (level == 0) for (unsigned int s = 0; s != elem->n_sides(); ++s) { const int num_bcs = *in++; libmesh_assert_greater_equal (num_bcs, 0); for(int bc_it=0; bc_it < num_bcs; bc_it++) mesh->boundary_info->add_side (elem, s, *in++); } // Return the new element *out = elem; }
void MaterialPropertyStorage::prolongStatefulProps(const std::vector<std::vector<QpMap> > & refinement_map, QBase & qrule, QBase & qrule_face, MaterialPropertyStorage & parent_material_props, MaterialData & child_material_data, const Elem & elem, const int input_parent_side, const int input_child, const int input_child_side) { mooseAssert(input_child != -1 || input_parent_side == input_child_side, "Invalid inputs!"); unsigned int n_qpoints = 0; // If we passed in -1 for these then we really need to store properties at 0 unsigned int parent_side = input_parent_side == -1 ? 0 : input_parent_side; unsigned int child_side = input_child_side == -1 ? 0 : input_child_side; if (input_child_side == -1) // Not doing side projection (ie, doing volume projection) n_qpoints = qrule.n_points(); else n_qpoints = qrule_face.n_points(); child_material_data.size(n_qpoints); unsigned int n_children = elem.n_children(); std::vector<unsigned int> children; if (input_child != -1) // Passed in a child explicitly children.push_back(input_child); else { children.resize(n_children); for (unsigned int child=0; child < n_children; child++) children[child] = child; } for (const auto & child : children) { // If we're not projecting an internal child side, but we are projecting sides, see if this child is on that side if (input_child == -1 && input_child_side != -1 && !elem.is_child_on_side(child, parent_side)) continue; const Elem * child_elem = elem.child(child); mooseAssert(child < refinement_map.size(), "Refinement_map vector not initialized"); const std::vector<QpMap> & child_map = refinement_map[child]; if (props()[child_elem][child_side].size() == 0) props()[child_elem][child_side].resize(_stateful_prop_id_to_prop_id.size()); if (propsOld()[child_elem][child_side].size() == 0) propsOld()[child_elem][child_side].resize(_stateful_prop_id_to_prop_id.size()); if (propsOlder()[child_elem][child_side].size() == 0) propsOlder()[child_elem][child_side].resize(_stateful_prop_id_to_prop_id.size()); // init properties (allocate memory. etc) for (unsigned int i=0; i < _stateful_prop_id_to_prop_id.size(); ++i) { // duplicate the stateful property in property storage (all three states - we will reuse the allocated memory there) // also allocating the right amount of memory, so we do not have to resize, etc. if (props()[child_elem][child_side][i] == NULL) props()[child_elem][child_side][i] = child_material_data.props()[ _stateful_prop_id_to_prop_id[i] ]->init(n_qpoints); if (propsOld()[child_elem][child_side][i] == NULL) propsOld()[child_elem][child_side][i] = child_material_data.propsOld()[ _stateful_prop_id_to_prop_id[i] ]->init(n_qpoints); if (hasOlderProperties()) if (propsOlder()[child_elem][child_side][i] == NULL) propsOlder()[child_elem][child_side][i] = child_material_data.propsOlder()[ _stateful_prop_id_to_prop_id[i] ]->init(n_qpoints); // Copy from the parent stateful properties for (unsigned int qp=0; qp<refinement_map[child].size(); qp++) { PropertyValue * child_property = props()[child_elem][child_side][i]; mooseAssert(props().contains(&elem), "Parent pointer is not in the MaterialProps data structure"); PropertyValue * parent_property = parent_material_props.props()[&elem][parent_side][i]; child_property->qpCopy(qp, parent_property, child_map[qp]._to); propsOld()[child_elem][child_side][i]->qpCopy(qp, parent_material_props.propsOld()[&elem][parent_side][i], child_map[qp]._to); if (hasOlderProperties()) propsOlder()[child_elem][child_side][i]->qpCopy(qp, parent_material_props.propsOlder()[&elem][parent_side][i], child_map[qp]._to); } } } }
bool MeshRefinement::eliminate_unrefined_patches () { // This function must be run on all processors at once parallel_only(); bool flags_changed = false; MeshBase::element_iterator elem_it = _mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_elements_end(); for (; elem_it != elem_end; ++elem_it) { Elem* elem = *elem_it; // First assume that we'll have to flag this element for both h // and p refinement, then change our minds if we see any // neighbors that are as coarse or coarser than us. bool h_flag_me = true, p_flag_me = true; // Skip the element if it is already fully flagged for refinement if (elem->p_refinement_flag() == Elem::REFINE) p_flag_me = false; if (elem->refinement_flag() == Elem::REFINE) { h_flag_me = false; if (!p_flag_me) continue; } // Test the parent if that is already flagged for coarsening else if (elem->refinement_flag() == Elem::COARSEN) { libmesh_assert(elem->parent()); elem = elem->parent(); // FIXME - this doesn't seem right - RHS if (elem->refinement_flag() != Elem::COARSEN_INACTIVE) continue; p_flag_me = false; } const unsigned int my_level = elem->level(); int my_p_adjustment = 0; if (elem->p_refinement_flag() == Elem::REFINE) my_p_adjustment = 1; else if (elem->p_refinement_flag() == Elem::COARSEN) { libmesh_assert_greater (elem->p_level(), 0); my_p_adjustment = -1; } const unsigned int my_new_p_level = elem->p_level() + my_p_adjustment; // Check all the element neighbors for (unsigned int n=0; n<elem->n_neighbors(); n++) { const Elem *neighbor = elem->neighbor(n); // Quit if the element is on a local boundary if (neighbor == NULL || neighbor == remote_elem) { h_flag_me = false; p_flag_me = false; break; } // if the neighbor will be equally or less refined than // we are, then we will not become an unrefined island. // So if we are still considering h refinement: if (h_flag_me && // If our neighbor is already at a lower level, // it can't end up at a higher level even if it // is flagged for refinement once ((neighbor->level() < my_level) || // If our neighbor is at the same level but isn't // flagged for refinement, it won't end up at a // higher level ((neighbor->active()) && (neighbor->refinement_flag() != Elem::REFINE)) || // If our neighbor is currently more refined but is // a parent flagged for coarsening, it will end up // at the same level. (neighbor->refinement_flag() == Elem::COARSEN_INACTIVE))) { // We've proven we won't become an unrefined island, // so don't h refine to avoid that. h_flag_me = false; // If we've also proven we don't need to p refine, // we don't need to check more neighbors if (!p_flag_me) break; } if (p_flag_me) { // if active neighbors will have a p level // equal to or lower than ours, then we do not need to p // refine ourselves. if (neighbor->active()) { int p_adjustment = 0; if (neighbor->p_refinement_flag() == Elem::REFINE) p_adjustment = 1; else if (neighbor->p_refinement_flag() == Elem::COARSEN) { libmesh_assert_greater (neighbor->p_level(), 0); p_adjustment = -1; } if (my_new_p_level >= neighbor->p_level() + p_adjustment) { p_flag_me = false; if (!h_flag_me) break; } } // If we have inactive neighbors, we need to // test all their active descendants which neighbor us else if (neighbor->ancestor()) { if (neighbor->min_new_p_level_by_neighbor(elem, my_new_p_level + 2) <= my_new_p_level) { p_flag_me = false; if (!h_flag_me) break; } } } } if (h_flag_me) { // Parents that would create islands should no longer // coarsen if (elem->refinement_flag() == Elem::COARSEN_INACTIVE) { for (unsigned int c=0; c<elem->n_children(); c++) { libmesh_assert_equal_to (elem->child(c)->refinement_flag(), Elem::COARSEN); elem->child(c)->set_refinement_flag(Elem::DO_NOTHING); } elem->set_refinement_flag(Elem::INACTIVE); } else elem->set_refinement_flag(Elem::REFINE); flags_changed = true; } if (p_flag_me) { if (elem->p_refinement_flag() == Elem::COARSEN) elem->set_p_refinement_flag(Elem::DO_NOTHING); else elem->set_p_refinement_flag(Elem::REFINE); flags_changed = true; } } // If flags changed on any processor then they changed globally CommWorld.max(flags_changed); return flags_changed; }
Elem * Packing<Elem *>::unpack (std::vector<largest_id_type>::const_iterator in, MeshBase * mesh) { #ifndef NDEBUG const std::vector<largest_id_type>::const_iterator original_in = in; const largest_id_type incoming_header = *in++; libmesh_assert_equal_to (incoming_header, elem_magic_header); #endif // int 0: level const unsigned int level = cast_int<unsigned int>(*in++); #ifdef LIBMESH_ENABLE_AMR // int 1: p level const unsigned int p_level = cast_int<unsigned int>(*in++); // int 2: refinement flag and encoded has_children const int rflag = cast_int<int>(*in++); const int invalid_rflag = cast_int<int>(Elem::INVALID_REFINEMENTSTATE); libmesh_assert_greater_equal (rflag, 0); libmesh_assert_less (rflag, invalid_rflag*2+1); const bool has_children = (rflag > invalid_rflag); const Elem::RefinementState refinement_flag = has_children ? cast_int<Elem::RefinementState>(rflag - invalid_rflag - 1) : cast_int<Elem::RefinementState>(rflag); // int 3: p refinement flag const int pflag = cast_int<int>(*in++); libmesh_assert_greater_equal (pflag, 0); libmesh_assert_less (pflag, Elem::INVALID_REFINEMENTSTATE); const Elem::RefinementState p_refinement_flag = cast_int<Elem::RefinementState>(pflag); #else in += 3; #endif // LIBMESH_ENABLE_AMR // int 4: element type const int typeint = cast_int<int>(*in++); libmesh_assert_greater_equal (typeint, 0); libmesh_assert_less (typeint, INVALID_ELEM); const ElemType type = cast_int<ElemType>(typeint); const unsigned int n_nodes = Elem::type_to_n_nodes_map[type]; // int 5: processor id const processor_id_type processor_id = cast_int<processor_id_type>(*in++); libmesh_assert (processor_id < mesh->n_processors() || processor_id == DofObject::invalid_processor_id); // int 6: subdomain id const subdomain_id_type subdomain_id = cast_int<subdomain_id_type>(*in++); // int 7: dof object id const dof_id_type id = cast_int<dof_id_type>(*in++); libmesh_assert_not_equal_to (id, DofObject::invalid_id); #ifdef LIBMESH_ENABLE_UNIQUE_ID // int 8: dof object unique id const unique_id_type unique_id = cast_int<unique_id_type>(*in++); #endif #ifdef LIBMESH_ENABLE_AMR // int 9: parent dof object id. // Note: If level==0, then (*in) == invalid_id. In // this case, the equality check in cast_int<unsigned>(*in) will // never succeed. Therefore, we should only attempt the more // rigorous cast verification in cases where level != 0. const dof_id_type parent_id = (level == 0) ? static_cast<dof_id_type>(*in++) : cast_int<dof_id_type>(*in++); libmesh_assert (level == 0 || parent_id != DofObject::invalid_id); libmesh_assert (level != 0 || parent_id == DofObject::invalid_id); // int 10: local child id // Note: If level==0, then which_child_am_i is not valid, so don't // do the more rigorous cast verification. const unsigned int which_child_am_i = (level == 0) ? static_cast<unsigned int>(*in++) : cast_int<unsigned int>(*in++); #else in += 2; #endif // LIBMESH_ENABLE_AMR const dof_id_type interior_parent_id = static_cast<dof_id_type>(*in++); // Make sure we don't miscount above when adding the "magic" header // plus the real data header libmesh_assert_equal_to (in - original_in, header_size + 1); Elem * elem = mesh->query_elem_ptr(id); // if we already have this element, make sure its // properties match, and update any missing neighbor // links, but then go on if (elem) { libmesh_assert_equal_to (elem->level(), level); libmesh_assert_equal_to (elem->id(), id); //#ifdef LIBMESH_ENABLE_UNIQUE_ID // No check for unique id sanity //#endif libmesh_assert_equal_to (elem->processor_id(), processor_id); libmesh_assert_equal_to (elem->subdomain_id(), subdomain_id); libmesh_assert_equal_to (elem->type(), type); libmesh_assert_equal_to (elem->n_nodes(), n_nodes); #ifndef NDEBUG // All our nodes should be correct for (unsigned int i=0; i != n_nodes; ++i) libmesh_assert(elem->node_id(i) == cast_int<dof_id_type>(*in++)); #else in += n_nodes; #endif #ifdef LIBMESH_ENABLE_AMR libmesh_assert_equal_to (elem->refinement_flag(), refinement_flag); libmesh_assert_equal_to (elem->has_children(), has_children); #ifdef DEBUG if (elem->active()) { libmesh_assert_equal_to (elem->p_level(), p_level); libmesh_assert_equal_to (elem->p_refinement_flag(), p_refinement_flag); } #endif libmesh_assert (!level || elem->parent() != libmesh_nullptr); libmesh_assert (!level || elem->parent()->id() == parent_id); libmesh_assert (!level || elem->parent()->child_ptr(which_child_am_i) == elem); #endif // Our interior_parent link should be "close to" correct - we // may have to update it, but we can check for some // inconsistencies. { // If the sending processor sees no interior_parent here, we'd // better agree. if (interior_parent_id == DofObject::invalid_id) { if (elem->dim() < LIBMESH_DIM) libmesh_assert (!(elem->interior_parent())); } // If the sending processor has a remote_elem interior_parent, // then all we know is that we'd better have *some* // interior_parent else if (interior_parent_id == remote_elem->id()) { libmesh_assert(elem->interior_parent()); } else { Elem * ip = mesh->query_elem_ptr(interior_parent_id); // The sending processor sees an interior parent here, so // if we don't have that interior element, then we'd // better have a remote_elem signifying that fact. if (!ip) libmesh_assert_equal_to (elem->interior_parent(), remote_elem); else { // The sending processor has an interior_parent here, // and we have that element, but that does *NOT* mean // we're already linking to it. Perhaps we initially // received elem from a processor on which the // interior_parent link was remote? libmesh_assert(elem->interior_parent() == ip || elem->interior_parent() == remote_elem); // If the link was originally remote, update it if (elem->interior_parent() == remote_elem) { elem->set_interior_parent(ip); } } } } // Our neighbor links should be "close to" correct - we may have // to update a remote_elem link, and we can check for possible // inconsistencies along the way. // // For subactive elements, we don't bother keeping neighbor // links in good shape, so there's nothing we need to set or can // safely assert here. if (!elem->subactive()) for (auto n : elem->side_index_range()) { const dof_id_type neighbor_id = cast_int<dof_id_type>(*in++); // If the sending processor sees a domain boundary here, // we'd better agree. if (neighbor_id == DofObject::invalid_id) { libmesh_assert (!(elem->neighbor_ptr(n))); continue; } // If the sending processor has a remote_elem neighbor here, // then all we know is that we'd better *not* have a domain // boundary. if (neighbor_id == remote_elem->id()) { libmesh_assert(elem->neighbor_ptr(n)); continue; } Elem * neigh = mesh->query_elem_ptr(neighbor_id); // The sending processor sees a neighbor here, so if we // don't have that neighboring element, then we'd better // have a remote_elem signifying that fact. if (!neigh) { libmesh_assert_equal_to (elem->neighbor_ptr(n), remote_elem); continue; } // The sending processor has a neighbor here, and we have // that element, but that does *NOT* mean we're already // linking to it. Perhaps we initially received both elem // and neigh from processors on which their mutual link was // remote? libmesh_assert(elem->neighbor_ptr(n) == neigh || elem->neighbor_ptr(n) == remote_elem); // If the link was originally remote, we should update it, // and make sure the appropriate parts of its family link // back to us. if (elem->neighbor_ptr(n) == remote_elem) { elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } } // Our p level and refinement flags should be "close to" correct // if we're not an active element - we might have a p level // increased or decreased by changes in remote_elem children. // // But if we have remote_elem children, then we shouldn't be // doing a projection on this inactive element on this // processor, so we won't need correct p settings. Couldn't // hurt to update, though. #ifdef LIBMESH_ENABLE_AMR if (elem->processor_id() != mesh->processor_id()) { elem->hack_p_level(p_level); elem->set_p_refinement_flag(p_refinement_flag); } #endif // LIBMESH_ENABLE_AMR // FIXME: We should add some debug mode tests to ensure that the // encoded indexing and boundary conditions are consistent. } else { // We don't already have the element, so we need to create it. // Find the parent if necessary Elem * parent = libmesh_nullptr; #ifdef LIBMESH_ENABLE_AMR // Find a child element's parent if (level > 0) { // Note that we must be very careful to construct the send // connectivity so that parents are encountered before // children. If we get here and can't find the parent that // is a fatal error. parent = mesh->elem_ptr(parent_id); } // Or assert that the sending processor sees no parent else libmesh_assert_equal_to (parent_id, DofObject::invalid_id); #else // No non-level-0 elements without AMR libmesh_assert_equal_to (level, 0); #endif elem = Elem::build(type,parent).release(); libmesh_assert (elem); #ifdef LIBMESH_ENABLE_AMR if (level != 0) { // Since this is a newly created element, the parent must // have previously thought of this child as a remote element. libmesh_assert_equal_to (parent->child_ptr(which_child_am_i), remote_elem); parent->add_child(elem, which_child_am_i); } // Assign the refinement flags and levels elem->set_p_level(p_level); elem->set_refinement_flag(refinement_flag); elem->set_p_refinement_flag(p_refinement_flag); libmesh_assert_equal_to (elem->level(), level); // If this element should have children, assign remote_elem to // all of them for now, for consistency. Later unpacked // elements may overwrite that. if (has_children) { const unsigned int nc = elem->n_children(); for (unsigned int c=0; c != nc; ++c) elem->add_child(const_cast<RemoteElem *>(remote_elem), c); } #endif // LIBMESH_ENABLE_AMR // Assign the IDs elem->subdomain_id() = subdomain_id; elem->processor_id() = processor_id; elem->set_id() = id; #ifdef LIBMESH_ENABLE_UNIQUE_ID elem->set_unique_id() = unique_id; #endif // Assign the connectivity libmesh_assert_equal_to (elem->n_nodes(), n_nodes); for (unsigned int n=0; n != n_nodes; n++) elem->set_node(n) = mesh->node_ptr (cast_int<dof_id_type>(*in++)); // Set interior_parent if found { // We may be unpacking an element that was a ghost element on the // sender, in which case the element's interior_parent may not be // known by the packed element. We'll have to set such // interior_parents to remote_elem ourselves and wait for a // later packed element to give us better information. if (interior_parent_id == remote_elem->id()) { elem->set_interior_parent (const_cast<RemoteElem *>(remote_elem)); } else if (interior_parent_id != DofObject::invalid_id) { // If we don't have the interior parent element, then it's // a remote_elem until we get it. Elem * ip = mesh->query_elem_ptr(interior_parent_id); if (!ip ) elem->set_interior_parent (const_cast<RemoteElem *>(remote_elem)); else elem->set_interior_parent(ip); } } for (auto n : elem->side_index_range()) { const dof_id_type neighbor_id = cast_int<dof_id_type>(*in++); if (neighbor_id == DofObject::invalid_id) continue; // We may be unpacking an element that was a ghost element on the // sender, in which case the element's neighbors may not all be // known by the packed element. We'll have to set such // neighbors to remote_elem ourselves and wait for a later // packed element to give us better information. if (neighbor_id == remote_elem->id()) { elem->set_neighbor(n, const_cast<RemoteElem *>(remote_elem)); continue; } // If we don't have the neighbor element, then it's a // remote_elem until we get it. Elem * neigh = mesh->query_elem_ptr(neighbor_id); if (!neigh) { elem->set_neighbor(n, const_cast<RemoteElem *>(remote_elem)); continue; } // If we have the neighbor element, then link to it, and // make sure the appropriate parts of its family link back // to us. elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } elem->unpack_indexing(in); } in += elem->packed_indexing_size(); // If this is a coarse element, // add any element side or edge boundary condition ids if (level == 0) { for (auto s : elem->side_index_range()) { const boundary_id_type num_bcs = cast_int<boundary_id_type>(*in++); for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++) mesh->get_boundary_info().add_side (elem, s, cast_int<boundary_id_type>(*in++)); } for (auto e : elem->edge_index_range()) { const boundary_id_type num_bcs = cast_int<boundary_id_type>(*in++); for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++) mesh->get_boundary_info().add_edge (elem, e, cast_int<boundary_id_type>(*in++)); } for (unsigned short sf=0; sf != 2; ++sf) { const boundary_id_type num_bcs = cast_int<boundary_id_type>(*in++); for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++) mesh->get_boundary_info().add_shellface (elem, sf, cast_int<boundary_id_type>(*in++)); } } // Return the new element return elem; }
void HPCoarsenTest::select_refinement (System & system) { START_LOG("select_refinement()", "HPCoarsenTest"); // The current mesh MeshBase & mesh = system.get_mesh(); // The dimensionality of the mesh const unsigned int dim = mesh.mesh_dimension(); // The number of variables in the system const unsigned int n_vars = system.n_vars(); // The DofMap for this system const DofMap & dof_map = system.get_dof_map(); // The system number (for doing bad hackery) const unsigned int sys_num = system.number(); // Check for a valid component_scale if (!component_scale.empty()) { if (component_scale.size() != n_vars) libmesh_error_msg("ERROR: component_scale is the wrong size:\n" \ << " component_scale.size()=" \ << component_scale.size() \ << "\n n_vars=" \ << n_vars); } else { // No specified scaling. Scale all variables by one. component_scale.resize (n_vars, 1.0); } // Resize the error_per_cell vectors to handle // the number of elements, initialize them to 0. std::vector<ErrorVectorReal> h_error_per_cell(mesh.max_elem_id(), 0.); std::vector<ErrorVectorReal> p_error_per_cell(mesh.max_elem_id(), 0.); // Loop over all the variables in the system for (unsigned int var=0; var<n_vars; var++) { // Possibly skip this variable if (!component_scale.empty()) if (component_scale[var] == 0.0) continue; // The type of finite element to use for this variable const FEType & fe_type = dof_map.variable_type (var); // Finite element objects for a fine (and probably a coarse) // element will be needed fe = FEBase::build (dim, fe_type); fe_coarse = FEBase::build (dim, fe_type); // Any cached coarse element results have expired coarse = libmesh_nullptr; unsigned int cached_coarse_p_level = 0; const FEContinuity cont = fe->get_continuity(); libmesh_assert (cont == DISCONTINUOUS || cont == C_ZERO || cont == C_ONE); // Build an appropriate quadrature rule qrule = fe_type.default_quadrature_rule(dim); // Tell the refined finite element about the quadrature // rule. The coarse finite element need not know about it fe->attach_quadrature_rule (qrule.get()); // We will always do the integration // on the fine elements. Get their Jacobian values, etc.. JxW = &(fe->get_JxW()); xyz_values = &(fe->get_xyz()); // The shape functions phi = &(fe->get_phi()); phi_coarse = &(fe_coarse->get_phi()); // The shape function derivatives if (cont == C_ZERO || cont == C_ONE) { dphi = &(fe->get_dphi()); dphi_coarse = &(fe_coarse->get_dphi()); } #ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES // The shape function second derivatives if (cont == C_ONE) { d2phi = &(fe->get_d2phi()); d2phi_coarse = &(fe_coarse->get_d2phi()); } #endif // defined (LIBMESH_ENABLE_SECOND_DERIVATIVES) // Iterate over all the active elements in the mesh // that live on this processor. MeshBase::const_element_iterator elem_it = mesh.active_local_elements_begin(); const MeshBase::const_element_iterator elem_end = mesh.active_local_elements_end(); for (; elem_it != elem_end; ++elem_it) { const Elem * elem = *elem_it; // We're only checking elements that are already flagged for h // refinement if (elem->refinement_flag() != Elem::REFINE) continue; const dof_id_type e_id = elem->id(); // Find the projection onto the parent element, // if necessary if (elem->parent() && (coarse != elem->parent() || cached_coarse_p_level != elem->p_level())) { Uc.resize(0); coarse = elem->parent(); cached_coarse_p_level = elem->p_level(); unsigned int old_parent_level = coarse->p_level(); (const_cast<Elem *>(coarse))->hack_p_level(elem->p_level()); this->add_projection(system, coarse, var); (const_cast<Elem *>(coarse))->hack_p_level(old_parent_level); // Solve the h-coarsening projection problem Ke.cholesky_solve(Fe, Uc); } fe->reinit(elem); // Get the DOF indices for the fine element dof_map.dof_indices (elem, dof_indices, var); // The number of quadrature points const unsigned int n_qp = qrule->n_points(); // The number of DOFS on the fine element const unsigned int n_dofs = cast_int<unsigned int>(dof_indices.size()); // The number of nodes on the fine element const unsigned int n_nodes = elem->n_nodes(); // The average element value (used as an ugly hack // when we have nothing p-coarsened to compare to) // Real average_val = 0.; Number average_val = 0.; // Calculate this variable's contribution to the p // refinement error if (elem->p_level() == 0) { unsigned int n_vertices = 0; for (unsigned int n = 0; n != n_nodes; ++n) if (elem->is_vertex(n)) { n_vertices++; const Node * const node = elem->get_node(n); average_val += system.current_solution (node->dof_number(sys_num,var,0)); } average_val /= n_vertices; } else { unsigned int old_elem_level = elem->p_level(); (const_cast<Elem *>(elem))->hack_p_level(old_elem_level - 1); fe_coarse->reinit(elem, &(qrule->get_points())); const unsigned int n_coarse_dofs = cast_int<unsigned int>(phi_coarse->size()); (const_cast<Elem *>(elem))->hack_p_level(old_elem_level); Ke.resize(n_coarse_dofs, n_coarse_dofs); Ke.zero(); Fe.resize(n_coarse_dofs); Fe.zero(); // Loop over the quadrature points for (unsigned int qp=0; qp<qrule->n_points(); qp++) { // The solution value at the quadrature point Number val = libMesh::zero; Gradient grad; Tensor hess; for (unsigned int i=0; i != n_dofs; i++) { dof_id_type dof_num = dof_indices[i]; val += (*phi)[i][qp] * system.current_solution(dof_num); if (cont == C_ZERO || cont == C_ONE) grad.add_scaled((*dphi)[i][qp], system.current_solution(dof_num)); // grad += (*dphi)[i][qp] * // system.current_solution(dof_num); if (cont == C_ONE) hess.add_scaled((*d2phi)[i][qp], system.current_solution(dof_num)); // hess += (*d2phi)[i][qp] * // system.current_solution(dof_num); } // The projection matrix and vector for (unsigned int i=0; i != Fe.size(); ++i) { Fe(i) += (*JxW)[qp] * (*phi_coarse)[i][qp]*val; if (cont == C_ZERO || cont == C_ONE) Fe(i) += (*JxW)[qp] * grad * (*dphi_coarse)[i][qp]; if (cont == C_ONE) Fe(i) += (*JxW)[qp] * hess.contract((*d2phi_coarse)[i][qp]); for (unsigned int j=0; j != Fe.size(); ++j) { Ke(i,j) += (*JxW)[qp] * (*phi_coarse)[i][qp]*(*phi_coarse)[j][qp]; if (cont == C_ZERO || cont == C_ONE) Ke(i,j) += (*JxW)[qp] * (*dphi_coarse)[i][qp]*(*dphi_coarse)[j][qp]; if (cont == C_ONE) Ke(i,j) += (*JxW)[qp] * ((*d2phi_coarse)[i][qp].contract((*d2phi_coarse)[j][qp])); } } } // Solve the p-coarsening projection problem Ke.cholesky_solve(Fe, Up); } // loop over the integration points on the fine element for (unsigned int qp=0; qp<n_qp; qp++) { Number value_error = 0.; Gradient grad_error; Tensor hessian_error; for (unsigned int i=0; i<n_dofs; i++) { const dof_id_type dof_num = dof_indices[i]; value_error += (*phi)[i][qp] * system.current_solution(dof_num); if (cont == C_ZERO || cont == C_ONE) grad_error.add_scaled((*dphi)[i][qp], system.current_solution(dof_num)); // grad_error += (*dphi)[i][qp] * // system.current_solution(dof_num); if (cont == C_ONE) hessian_error.add_scaled((*d2phi)[i][qp], system.current_solution(dof_num)); // hessian_error += (*d2phi)[i][qp] * // system.current_solution(dof_num); } if (elem->p_level() == 0) { value_error -= average_val; } else { for (unsigned int i=0; i<Up.size(); i++) { value_error -= (*phi_coarse)[i][qp] * Up(i); if (cont == C_ZERO || cont == C_ONE) grad_error.subtract_scaled((*dphi_coarse)[i][qp], Up(i)); // grad_error -= (*dphi_coarse)[i][qp] * Up(i); if (cont == C_ONE) hessian_error.subtract_scaled((*d2phi_coarse)[i][qp], Up(i)); // hessian_error -= (*d2phi_coarse)[i][qp] * Up(i); } } p_error_per_cell[e_id] += static_cast<ErrorVectorReal> (component_scale[var] * (*JxW)[qp] * TensorTools::norm_sq(value_error)); if (cont == C_ZERO || cont == C_ONE) p_error_per_cell[e_id] += static_cast<ErrorVectorReal> (component_scale[var] * (*JxW)[qp] * grad_error.norm_sq()); if (cont == C_ONE) p_error_per_cell[e_id] += static_cast<ErrorVectorReal> (component_scale[var] * (*JxW)[qp] * hessian_error.norm_sq()); } // Calculate this variable's contribution to the h // refinement error if (!elem->parent()) { // For now, we'll always start with an h refinement h_error_per_cell[e_id] = std::numeric_limits<ErrorVectorReal>::max() / 2; } else { FEInterface::inverse_map (dim, fe_type, coarse, *xyz_values, coarse_qpoints); unsigned int old_parent_level = coarse->p_level(); (const_cast<Elem *>(coarse))->hack_p_level(elem->p_level()); fe_coarse->reinit(coarse, &coarse_qpoints); (const_cast<Elem *>(coarse))->hack_p_level(old_parent_level); // The number of DOFS on the coarse element unsigned int n_coarse_dofs = cast_int<unsigned int>(phi_coarse->size()); // Loop over the quadrature points for (unsigned int qp=0; qp<n_qp; qp++) { // The solution difference at the quadrature point Number value_error = libMesh::zero; Gradient grad_error; Tensor hessian_error; for (unsigned int i=0; i != n_dofs; ++i) { const dof_id_type dof_num = dof_indices[i]; value_error += (*phi)[i][qp] * system.current_solution(dof_num); if (cont == C_ZERO || cont == C_ONE) grad_error.add_scaled((*dphi)[i][qp], system.current_solution(dof_num)); // grad_error += (*dphi)[i][qp] * // system.current_solution(dof_num); if (cont == C_ONE) hessian_error.add_scaled((*d2phi)[i][qp], system.current_solution(dof_num)); // hessian_error += (*d2phi)[i][qp] * // system.current_solution(dof_num); } for (unsigned int i=0; i != n_coarse_dofs; ++i) { value_error -= (*phi_coarse)[i][qp] * Uc(i); if (cont == C_ZERO || cont == C_ONE) // grad_error -= (*dphi_coarse)[i][qp] * Uc(i); grad_error.subtract_scaled((*dphi_coarse)[i][qp], Uc(i)); if (cont == C_ONE) hessian_error.subtract_scaled((*d2phi_coarse)[i][qp], Uc(i)); // hessian_error -= (*d2phi_coarse)[i][qp] * Uc(i); } h_error_per_cell[e_id] += static_cast<ErrorVectorReal> (component_scale[var] * (*JxW)[qp] * TensorTools::norm_sq(value_error)); if (cont == C_ZERO || cont == C_ONE) h_error_per_cell[e_id] += static_cast<ErrorVectorReal> (component_scale[var] * (*JxW)[qp] * grad_error.norm_sq()); if (cont == C_ONE) h_error_per_cell[e_id] += static_cast<ErrorVectorReal> (component_scale[var] * (*JxW)[qp] * hessian_error.norm_sq()); } } } } // Now that we've got our approximations for p_error and h_error, let's see // if we want to switch any h refinement flags to p refinement // Iterate over all the active elements in the mesh // that live on this processor. MeshBase::element_iterator elem_it = mesh.active_local_elements_begin(); const MeshBase::element_iterator elem_end = mesh.active_local_elements_end(); for (; elem_it != elem_end; ++elem_it) { Elem * elem = *elem_it; // We're only checking elements that are already flagged for h // refinement if (elem->refinement_flag() != Elem::REFINE) continue; const dof_id_type e_id = elem->id(); unsigned int dofs_per_elem = 0, dofs_per_p_elem = 0; // Loop over all the variables in the system for (unsigned int var=0; var<n_vars; var++) { // The type of finite element to use for this variable const FEType & fe_type = dof_map.variable_type (var); // FIXME: we're overestimating the number of DOFs added by h // refinement FEType elem_fe_type = fe_type; elem_fe_type.order = static_cast<Order>(fe_type.order + elem->p_level()); dofs_per_elem += FEInterface::n_dofs(dim, elem_fe_type, elem->type()); elem_fe_type.order = static_cast<Order>(fe_type.order + elem->p_level() + 1); dofs_per_p_elem += FEInterface::n_dofs(dim, elem_fe_type, elem->type()); } const unsigned int new_h_dofs = dofs_per_elem * (elem->n_children() - 1); const unsigned int new_p_dofs = dofs_per_p_elem - dofs_per_elem; /* libMesh::err << "Cell " << e_id << ": h = " << elem->hmax() << ", p = " << elem->p_level() + 1 << "," << std::endl << " h_error = " << h_error_per_cell[e_id] << ", p_error = " << p_error_per_cell[e_id] << std::endl << " new_h_dofs = " << new_h_dofs << ", new_p_dofs = " << new_p_dofs << std::endl; */ const Real p_value = std::sqrt(p_error_per_cell[e_id]) * p_weight / new_p_dofs; const Real h_value = std::sqrt(h_error_per_cell[e_id]) / static_cast<Real>(new_h_dofs); if (p_value > h_value) { elem->set_p_refinement_flag(Elem::REFINE); elem->set_refinement_flag(Elem::DO_NOTHING); } } STOP_LOG("select_refinement()", "HPCoarsenTest"); }