예제 #1
0
void ElemCutter::cut_2D (const Elem & elem,
                         const std::vector<Real> & vertex_distance_func)
{
#ifndef LIBMESH_HAVE_TRIANGLE

  // current implementation requires triangle!
  libMesh::err << "ERROR: current libMesh ElemCutter 2D implementation requires\n"
               << "       the \"triangle\" library!\n"
               << std::endl;
  libmesh_not_implemented();

#else // OK, LIBMESH_HAVE_TRIANGLE

  std::cout << "Inside cut face element!\n";

  libmesh_assert (_inside_mesh_2D.get()  != nullptr);
  libmesh_assert (_outside_mesh_2D.get() != nullptr);

  _inside_mesh_2D->clear();
  _outside_mesh_2D->clear();

  for (unsigned int v=0; v<elem.n_vertices(); v++)
    {
      if (vertex_distance_func[v] >= 0.)
        _outside_mesh_2D->add_point (elem.point(v));

      if (vertex_distance_func[v] <= 0.)
        _inside_mesh_2D->add_point (elem.point(v));
    }

  for (const auto & pt : _intersection_pts)
    {
      _inside_mesh_2D->add_point(pt);
      _outside_mesh_2D->add_point(pt);
    }


  // Customize the variables for the triangulation
  // we will be cutting reference cell, and want as few triangles
  // as possible, so jack this up larger than the area we will be
  // triangulating so we are governed only by accurately defining
  // the boundaries.
  _triangle_inside->desired_area()  = 100.;
  _triangle_outside->desired_area() = 100.;

  // allow for small angles
  _triangle_inside->minimum_angle()  = 5.;
  _triangle_outside->minimum_angle() = 5.;

  // Turn off Laplacian mesh smoothing after generation.
  _triangle_inside->smooth_after_generating()  = false;
  _triangle_outside->smooth_after_generating() = false;

  // Triangulate!
  _triangle_inside->triangulate();
  _triangle_outside->triangulate();

  // std::ostringstream name;

  // name << "cut_face_"
  //  << cut_cntr++
  //  << ".dat";
  // _inside_mesh_2D->write  ("in_"  + name.str());
  // _outside_mesh_2D->write ("out_" + name.str());

  // finally, add the elements to our lists.
  _inside_elem.clear();
  _outside_elem.clear();

  for (const auto & elem : _inside_mesh_2D->element_ptr_range())
    _inside_elem.push_back (elem);

  for (const auto & elem : _outside_mesh_2D->element_ptr_range())
    _outside_elem.push_back (elem);

#endif
}
예제 #2
0
void ElemCutter::cut_3D (const Elem & elem,
                         const std::vector<Real> & vertex_distance_func)
{
#ifndef LIBMESH_HAVE_TETGEN

  // current implementation requires tetgen!
  libMesh::err << "ERROR: current libMesh ElemCutter 3D implementation requires\n"
               << "       the \"tetgen\" library!\n"
               << std::endl;
  libmesh_not_implemented();

#else // OK, LIBMESH_HAVE_TETGEN

  std::cout << "Inside cut cell element!\n";

  libmesh_assert (_inside_mesh_3D.get()  != nullptr);
  libmesh_assert (_outside_mesh_3D.get() != nullptr);

  _inside_mesh_3D->clear();
  _outside_mesh_3D->clear();

  for (unsigned int v=0; v<elem.n_vertices(); v++)
    {
      if (vertex_distance_func[v] >= 0.)
        _outside_mesh_3D->add_point (elem.point(v));

      if (vertex_distance_func[v] <= 0.)
        _inside_mesh_3D->add_point (elem.point(v));
    }

  for (const auto & pt : _intersection_pts)
    {
      _inside_mesh_3D->add_point(pt);
      _outside_mesh_3D->add_point(pt);
    }


  // Triangulate!
  _tetgen_inside->triangulate_pointset();
  //_inside_mesh_3D->print_info();
  _tetgen_outside->triangulate_pointset();
  //_outside_mesh_3D->print_info();


  // (below generates some horribly expensive meshes,
  //  but seems immune to the 0 volume problem).
  // _tetgen_inside->pointset_convexhull();
  // _inside_mesh_3D->find_neighbors();
  // _inside_mesh_3D->print_info();
  // _tetgen_inside->triangulate_conformingDelaunayMesh (1.e3, 100.);
  // _inside_mesh_3D->print_info();

  // _tetgen_outside->pointset_convexhull();
  // _outside_mesh_3D->find_neighbors();
  // _outside_mesh_3D->print_info();
  // _tetgen_outside->triangulate_conformingDelaunayMesh (1.e3, 100.);
  // _outside_mesh_3D->print_info();

  std::ostringstream name;

  name << "cut_cell_"
       << cut_cntr++
       << ".dat";
  _inside_mesh_3D->write  ("in_"  + name.str());
  _outside_mesh_3D->write ("out_" + name.str());

  // finally, add the elements to our lists.
  _inside_elem.clear();
  _outside_elem.clear();

  for (const auto & elem : _inside_mesh_3D->element_ptr_range())
    if (elem->volume() > std::numeric_limits<Real>::epsilon())
      _inside_elem.push_back (elem);

  for (const auto & elem : _outside_mesh_3D->element_ptr_range())
    if (elem->volume() > std::numeric_limits<Real>::epsilon())
      _outside_elem.push_back (elem);

#endif
}
예제 #3
0
// Begin the main program.
int main (int argc, char ** argv)
{
  // Initialize libMesh and any dependent libaries, like in example 2.
  LibMeshInit init (argc, argv);

  // Only our PETSc interface currently supports solves restricted to
  // subdomains
  libmesh_example_requires(libMesh::default_solver_package() == PETSC_SOLVERS, "--enable-petsc");

  // Skip adaptive examples on a non-adaptive libMesh build
#ifndef LIBMESH_ENABLE_AMR
  libmesh_example_requires(false, "--enable-amr");
#else

  // Declare a performance log for the main program
  // PerfLog perf_main("Main Program");

  // Create a GetPot object to parse the command line
  GetPot command_line (argc, argv);

  // Check for proper calling arguments.
  if (argc < 3)
    {
      // This handy function will print the file name, line number,
      // specified message, and then throw an exception.
      libmesh_error_msg("Usage:\n" << "\t " << argv[0] << " -d 2(3)" << " -n 15");
    }

  // Brief message to the user regarding the program name
  // and command line arguments.
  else
    {
      libMesh::out << "Running " << argv[0];

      for (int i=1; i<argc; i++)
        libMesh::out << " " << argv[i];

      libMesh::out << std::endl << std::endl;
    }


  // Read problem dimension from command line.  Use int
  // instead of unsigned since the GetPot overload is ambiguous
  // otherwise.
  int dim = 2;
  if (command_line.search(1, "-d"))
    dim = command_line.next(dim);

  // Skip higher-dimensional examples on a lower-dimensional libMesh build
  libmesh_example_requires(dim <= LIBMESH_DIM, "2D/3D support");

  // Create a mesh with user-defined dimension.
  // Read number of elements from command line
  int ps = 15;
  if (command_line.search(1, "-n"))
    ps = command_line.next(ps);

  // Read FE order from command line
  std::string order = "FIRST";
  if (command_line.search(2, "-Order", "-o"))
    order = command_line.next(order);

  // Read FE Family from command line
  std::string family = "LAGRANGE";
  if (command_line.search(2, "-FEFamily", "-f"))
    family = command_line.next(family);

  // Cannot use discontinuous basis.
  if ((family == "MONOMIAL") || (family == "XYZ"))
    libmesh_error_msg("This example requires a C^0 (or higher) FE basis.");

  // Create a mesh, with dimension to be overridden later, on the
  // default MPI communicator.
  Mesh mesh(init.comm());

  // Use the MeshTools::Generation mesh generator to create a uniform
  // grid on the square [-1,1]^D.  We instruct the mesh generator
  // to build a mesh of 8x8 Quad9 elements in 2D, or Hex27
  // elements in 3D.  Building these higher-order elements allows
  // us to use higher-order approximation, as in example 3.

  Real halfwidth = dim > 1 ? 1. : 0.;
  Real halfheight = dim > 2 ? 1. : 0.;

  if ((family == "LAGRANGE") && (order == "FIRST"))
    {
      // No reason to use high-order geometric elements if we are
      // solving with low-order finite elements.
      MeshTools::Generation::build_cube (mesh,
                                         ps,
                                         (dim>1) ? ps : 0,
                                         (dim>2) ? ps : 0,
                                         -1., 1.,
                                         -halfwidth, halfwidth,
                                         -halfheight, halfheight,
                                         (dim==1)    ? EDGE2 :
                                         ((dim == 2) ? QUAD4 : HEX8));
    }

  else
    {
      MeshTools::Generation::build_cube (mesh,
                                         ps,
                                         (dim>1) ? ps : 0,
                                         (dim>2) ? ps : 0,
                                         -1., 1.,
                                         -halfwidth, halfwidth,
                                         -halfheight, halfheight,
                                         (dim==1)    ? EDGE3 :
                                         ((dim == 2) ? QUAD9 : HEX27));
    }


  // To demonstate solving on a subdomain, we will solve only on the
  // interior of a circle (ball in 3d) with radius 0.8.  So show that
  // this also works well on locally refined meshes, we refine once
  // all elements that are located on the boundary of this circle (or
  // ball).
  {
    // A MeshRefinement object is needed to refine meshes.
    MeshRefinement meshRefinement(mesh);

    // Loop over all elements.
    MeshBase::element_iterator       elem_it  = mesh.elements_begin();
    const MeshBase::element_iterator elem_end = mesh.elements_end();
    for (; elem_it != elem_end; ++elem_it)
      {
        Elem * elem = *elem_it;
        if (elem->active())
          {
            // Just check whether the current element has at least one
            // node inside and one node outside the circle.
            bool node_in = false;
            bool node_out = false;
            for (unsigned int i=0; i<elem->n_nodes(); i++)
              {
                double d = elem->point(i).norm();
                if (d<0.8)
                  {
                    node_in = true;
                  }
                else
                  {
                    node_out = true;
                  }
              }
            if (node_in && node_out)
              {
                elem->set_refinement_flag(Elem::REFINE);
              }
            else
              {
                elem->set_refinement_flag(Elem::DO_NOTHING);
              }
          }
        else
          {
            elem->set_refinement_flag(Elem::INACTIVE);
          }
      }

    // Now actually refine.
    meshRefinement.refine_elements();
  }

  // Print information about the mesh to the screen.
  mesh.print_info();

  // Now set the subdomain_id of all elements whose centroid is inside
  // the circle to 1.
  {
    // Loop over all elements.
    MeshBase::element_iterator       elem_it  = mesh.elements_begin();
    const MeshBase::element_iterator elem_end = mesh.elements_end();
    for (; elem_it != elem_end; ++elem_it)
      {
        Elem * elem = *elem_it;
        double d = elem->centroid().norm();
        if (d<0.8)
          {
            elem->subdomain_id() = 1;
          }
      }
  }

  // Create an equation systems object.
  EquationSystems equation_systems (mesh);

  // Declare the system and its variables.
  // Create a system named "Poisson"
  LinearImplicitSystem & system =
    equation_systems.add_system<LinearImplicitSystem> ("Poisson");


  // Add the variable "u" to "Poisson".  "u"
  // will be approximated using second-order approximation.
  system.add_variable("u",
                      Utility::string_to_enum<Order>   (order),
                      Utility::string_to_enum<FEFamily>(family));

  // Give the system a pointer to the matrix assembly
  // function.
  system.attach_assemble_function (assemble_poisson);

  // Initialize the data structures for the equation system.
  equation_systems.init();

  // Print information about the system to the screen.
  equation_systems.print_info();
  mesh.print_info();

  // Restrict solves to those elements that have subdomain_id set to 1.
  std::set<subdomain_id_type> id_list;
  id_list.insert(1);
  SystemSubsetBySubdomain::SubdomainSelectionByList selection(id_list);
  SystemSubsetBySubdomain subset(system, selection);
  system.restrict_solve_to(&subset, SUBSET_ZERO);

  // Note that using SUBSET_ZERO will cause all dofs outside the
  // subdomain to be cleared.  This will, however, cause some hanging
  // nodes outside the subdomain to have inconsistent values.

  // Solve the system "Poisson", just like example 2.
  equation_systems.get_system("Poisson").solve();

  // After solving the system write the solution
  // to a GMV-formatted plot file.
  if (dim == 1)
    {
      GnuPlotIO plot(mesh, "Subdomains Example 1, 1D", GnuPlotIO::GRID_ON);
      plot.write_equation_systems("gnuplot_script", equation_systems);
    }
  else
    {
      GMVIO (mesh).write_equation_systems ((dim == 3) ?
                                           "out_3.gmv" : "out_2.gmv", equation_systems);
#ifdef LIBMESH_HAVE_EXODUS_API
      ExodusII_IO (mesh).write_equation_systems ((dim == 3) ?
                                                 "out_3.e" : "out_2.e", equation_systems);
#endif // #ifdef LIBMESH_HAVE_EXODUS_API
    }

#endif // #ifndef LIBMESH_ENABLE_AMR

  // All done.
  return 0;
}
예제 #4
0
void MeshTools::Subdivision::add_boundary_ghosts(MeshBase & mesh)
{
  static const Real tol = 1e-5;

  // add the mirrored ghost elements (without using iterators, because the mesh is modified in the course)
  std::vector<Tri3Subdivision *> ghost_elems;
  std::vector<Node *> ghost_nodes;
  const unsigned int n_elem = mesh.n_elem();
  for (unsigned int eid = 0; eid < n_elem; ++eid)
    {
      Elem * elem = mesh.elem(eid);
      libmesh_assert_equal_to(elem->type(), TRI3SUBDIVISION);

      // If the triangle happens to be in a corner (two boundary
      // edges), we perform a counter-clockwise loop by mirroring the
      // previous triangle until we come back to the original
      // triangle.  This prevents degenerated triangles in the mesh
      // corners and guarantees that the node in the middle of the
      // loop is of valence=6.
      for (unsigned int i = 0; i < elem->n_sides(); ++i)
        {
          libmesh_assert_not_equal_to(elem->neighbor(i), elem);

          if (elem->neighbor(i) == libmesh_nullptr &&
              elem->neighbor(next[i]) == libmesh_nullptr)
            {
              Elem * nelem = elem;
              unsigned int k = i;
              for (unsigned int l=0;l<4;l++)
                {
                  // this is the vertex to be mirrored
                  Point point = nelem->point(k) + nelem->point(next[k]) - nelem->point(prev[k]);

                  // Check if the proposed vertex doesn't coincide
                  // with one of the existing vertices.  This is
                  // necessary because for some triangulations, it can
                  // happen that two mirrored ghost vertices coincide,
                  // which would then lead to a zero size ghost
                  // element below.
                  Node * node = libmesh_nullptr;
                  for (unsigned int j = 0; j < ghost_nodes.size(); ++j)
                    {
                      if ((*ghost_nodes[j] - point).size() < tol * (elem->point(k) - point).size())
                        {
                          node = ghost_nodes[j];
                          break;
                        }
                    }

                  // add the new vertex only if no other is nearby
                  if (node == libmesh_nullptr)
                    {
                      node = mesh.add_point(point);
                      ghost_nodes.push_back(node);
                    }

                  Tri3Subdivision * newelem = new Tri3Subdivision();

                  // add the first new ghost element to the list just as in the non-corner case
                  if (l == 0)
                    ghost_elems.push_back(newelem);

                  newelem->set_node(0) = nelem->get_node(next[k]);
                  newelem->set_node(1) = nelem->get_node(k);
                  newelem->set_node(2) = node;
                  newelem->set_neighbor(0, nelem);
                  newelem->set_ghost(true);
                  if (l>0)
                    newelem->set_neighbor(2, libmesh_nullptr);
                  nelem->set_neighbor(k, newelem);

                  mesh.add_elem(newelem);
                  mesh.get_boundary_info().add_node(nelem->get_node(k), 1);
                  mesh.get_boundary_info().add_node(nelem->get_node(next[k]), 1);
                  mesh.get_boundary_info().add_node(nelem->get_node(prev[k]), 1);
                  mesh.get_boundary_info().add_node(node, 1);

                  nelem = newelem;
                  k = 2 ;
                }

              Tri3Subdivision * newelem = new Tri3Subdivision();

              newelem->set_node(0) = elem->get_node(next[i]);
              newelem->set_node(1) = nelem->get_node(2);
              newelem->set_node(2) = elem->get_node(prev[i]);
              newelem->set_neighbor(0, nelem);
              nelem->set_neighbor(2, newelem);
              newelem->set_ghost(true);
              newelem->set_neighbor(2, elem);
              elem->set_neighbor(next[i],newelem);

              mesh.add_elem(newelem);

              break;
            }
        }

      for (unsigned int i = 0; i < elem->n_sides(); ++i)
        {
          libmesh_assert_not_equal_to(elem->neighbor(i), elem);
          if (elem->neighbor(i) == libmesh_nullptr)
            {
              // this is the vertex to be mirrored
              Point point = elem->point(i) + elem->point(next[i]) - elem->point(prev[i]);

              // Check if the proposed vertex doesn't coincide with
              // one of the existing vertices.  This is necessary
              // because for some triangulations, it can happen that
              // two mirrored ghost vertices coincide, which would
              // then lead to a zero size ghost element below.
              Node * node = libmesh_nullptr;
              for (unsigned int j = 0; j < ghost_nodes.size(); ++j)
                {
                  if ((*ghost_nodes[j] - point).size() < tol * (elem->point(i) - point).size())
                    {
                      node = ghost_nodes[j];
                      break;
                    }
                }

              // add the new vertex only if no other is nearby
              if (node == libmesh_nullptr)
                {
                  node = mesh.add_point(point);
                  ghost_nodes.push_back(node);
                }

              Tri3Subdivision * newelem = new Tri3Subdivision();
              ghost_elems.push_back(newelem);

              newelem->set_node(0) = elem->get_node(next[i]);
              newelem->set_node(1) = elem->get_node(i);
              newelem->set_node(2) = node;
              newelem->set_neighbor(0, elem);
              newelem->set_ghost(true);
              elem->set_neighbor(i, newelem);

              mesh.add_elem(newelem);
              mesh.get_boundary_info().add_node(elem->get_node(i), 1);
              mesh.get_boundary_info().add_node(elem->get_node(next[i]), 1);
              mesh.get_boundary_info().add_node(elem->get_node(prev[i]), 1);
              mesh.get_boundary_info().add_node(node, 1);
            }
        }
    }

  // add the missing ghost elements (connecting new ghost nodes)
  std::vector<Tri3Subdivision *> missing_ghost_elems;
  std::vector<Tri3Subdivision *>::iterator       ghost_el     = ghost_elems.begin();
  const std::vector<Tri3Subdivision *>::iterator end_ghost_el = ghost_elems.end();
  for (; ghost_el != end_ghost_el; ++ghost_el)
    {
      Tri3Subdivision * elem = *ghost_el;
      libmesh_assert(elem->is_ghost());

      for (unsigned int i = 0; i < elem->n_sides(); ++i)
        {
          if (elem->neighbor(i) == libmesh_nullptr &&
              elem->neighbor(prev[i]) != libmesh_nullptr)
            {
              // go around counter-clockwise
              Tri3Subdivision * nb1 = static_cast<Tri3Subdivision *>(elem->neighbor(prev[i]));
              Tri3Subdivision * nb2 = nb1;
              unsigned int j = i;
              unsigned int n_nb = 0;
              while (nb1 != libmesh_nullptr && nb1->id() != elem->id())
                {
                  j = nb1->local_node_number(elem->node(i));
                  nb2 = nb1;
                  nb1 = static_cast<Tri3Subdivision *>(nb1->neighbor(prev[j]));
                  libmesh_assert(nb1 == libmesh_nullptr || nb1->id() != nb2->id());
                  n_nb++;
                }

              libmesh_assert_not_equal_to(nb2->id(), elem->id());

              // Above, we merged coinciding ghost vertices. Therefore, we need
              // to exclude the case where there is no ghost element to add between
              // these two (identical) ghost nodes.
              if (elem->get_node(next[i])->id() == nb2->get_node(prev[j])->id())
                break;

              // If the number of already present neighbors is less than 4, we add another extra element
              // so that the node in the middle of the loop ends up being of valence=6.
              // This case usually happens when the middle node corresponds to a corner of the original mesh,
              // and the extra element below prevents degenerated triangles in the mesh corners.
              if (n_nb < 4)
                {
                  // this is the vertex to be mirrored
                  Point point = nb2->point(j) + nb2->point(prev[j]) - nb2->point(next[j]);

                  // Check if the proposed vertex doesn't coincide with one of the existing vertices.
                  // This is necessary because for some triangulations, it can happen that two mirrored
                  // ghost vertices coincide, which would then lead to a zero size ghost element below.
                  Node * node = libmesh_nullptr;
                  for (unsigned int k = 0; k < ghost_nodes.size(); ++k)
                    {
                      if ((*ghost_nodes[k] - point).size() < tol * (nb2->point(j) - point).size())
                        {
                          node = ghost_nodes[k];
                          break;
                        }
                    }

                  // add the new vertex only if no other is nearby
                  if (node == libmesh_nullptr)
                    {
                      node = mesh.add_point(point);
                      ghost_nodes.push_back(node);
                    }

                  Tri3Subdivision * newelem = new Tri3Subdivision();

                  newelem->set_node(0) = nb2->get_node(j);
                  newelem->set_node(1) = nb2->get_node(prev[j]);
                  newelem->set_node(2) = node;
                  newelem->set_neighbor(0, nb2);
                  newelem->set_neighbor(1, libmesh_nullptr);
                  newelem->set_ghost(true);
                  nb2->set_neighbor(prev[j], newelem);

                  mesh.add_elem(newelem);
                  mesh.get_boundary_info().add_node(nb2->get_node(j), 1);
                  mesh.get_boundary_info().add_node(nb2->get_node(prev[j]), 1);
                  mesh.get_boundary_info().add_node(node, 1);

                  nb2 = newelem;
                  j = nb2->local_node_number(elem->node(i));
                }

              Tri3Subdivision * newelem = new Tri3Subdivision();
              newelem->set_node(0) = elem->get_node(next[i]);
              newelem->set_node(1) = elem->get_node(i);
              newelem->set_node(2) = nb2->get_node(prev[j]);
              newelem->set_neighbor(0, elem);
              newelem->set_neighbor(1, nb2);
              newelem->set_neighbor(2, libmesh_nullptr);
              newelem->set_ghost(true);

              elem->set_neighbor(i, newelem);
              nb2->set_neighbor(prev[j], newelem);

              missing_ghost_elems.push_back(newelem);
              break;
            }
        } // end side loop
    } // end ghost element loop

  // add the missing ghost elements to the mesh
  std::vector<Tri3Subdivision *>::iterator       missing_el     = missing_ghost_elems.begin();
  const std::vector<Tri3Subdivision *>::iterator end_missing_el = missing_ghost_elems.end();
  for (; missing_el != end_missing_el; ++missing_el)
    mesh.add_elem(*missing_el);
}
예제 #5
0
void UnstructuredMesh::find_neighbors (const bool reset_remote_elements,
                                       const bool reset_current_list)
{
  // We might actually want to run this on an empty mesh
  // (e.g. the boundary mesh for a nonexistant bcid!)
  // libmesh_assert_not_equal_to (this->n_nodes(), 0);
  // libmesh_assert_not_equal_to (this->n_elem(), 0);

  // This function must be run on all processors at once
  parallel_object_only();

  LOG_SCOPE("find_neighbors()", "Mesh");

  const element_iterator el_end = this->elements_end();

  //TODO:[BSK] This should be removed later?!
  if (reset_current_list)
    for (element_iterator el = this->elements_begin(); el != el_end; ++el)
      {
        Elem * e = *el;
        for (unsigned int s=0; s<e->n_neighbors(); s++)
          if (e->neighbor_ptr(s) != remote_elem ||
              reset_remote_elements)
            e->set_neighbor(s, libmesh_nullptr);
      }

  // Find neighboring elements by first finding elements
  // with identical side keys and then check to see if they
  // are neighbors
  {
    // data structures -- Use the hash_multimap if available
    typedef unsigned int                    key_type;
    typedef std::pair<Elem *, unsigned char> val_type;
    typedef std::pair<key_type, val_type>   key_val_pair;

    typedef LIBMESH_BEST_UNORDERED_MULTIMAP<key_type, val_type> map_type;

    // A map from side keys to corresponding elements & side numbers
    map_type side_to_elem_map;



    for (element_iterator el = this->elements_begin(); el != el_end; ++el)
      {
        Elem * element = *el;

        for (unsigned char ms=0; ms<element->n_neighbors(); ms++)
          {
          next_side:
            // If we haven't yet found a neighbor on this side, try.
            // Even if we think our neighbor is remote, that
            // information may be out of date.
            if (element->neighbor_ptr(ms) == libmesh_nullptr ||
                element->neighbor_ptr(ms) == remote_elem)
              {
                // Get the key for the side of this element
                const unsigned int key = element->key(ms);

                // Look for elements that have an identical side key
                std::pair <map_type::iterator, map_type::iterator>
                  bounds = side_to_elem_map.equal_range(key);

                // May be multiple keys, check all the possible
                // elements which _might_ be neighbors.
                if (bounds.first != bounds.second)
                  {
                    // Get the side for this element
                    const UniquePtr<Elem> my_side(element->side_ptr(ms));

                    // Look at all the entries with an equivalent key
                    while (bounds.first != bounds.second)
                      {
                        // Get the potential element
                        Elem * neighbor = bounds.first->second.first;

                        // Get the side for the neighboring element
                        const unsigned int ns = bounds.first->second.second;
                        const UniquePtr<Elem> their_side(neighbor->side_ptr(ns));
                        //libmesh_assert(my_side.get());
                        //libmesh_assert(their_side.get());

                        // If found a match with my side
                        //
                        // We need special tests here for 1D:
                        // since parents and children have an equal
                        // side (i.e. a node), we need to check
                        // ns != ms, and we also check level() to
                        // avoid setting our neighbor pointer to
                        // any of our neighbor's descendants
                        if( (*my_side == *their_side) &&
                            (element->level() == neighbor->level()) &&
                            ((element->dim() != 1) || (ns != ms)) )
                          {
                            // So share a side.  Is this a mixed pair
                            // of subactive and active/ancestor
                            // elements?
                            // If not, then we're neighbors.
                            // If so, then the subactive's neighbor is

                            if (element->subactive() ==
                                neighbor->subactive())
                              {
                                // an element is only subactive if it has
                                // been coarsened but not deleted
                                element->set_neighbor (ms,neighbor);
                                neighbor->set_neighbor(ns,element);
                              }
                            else if (element->subactive())
                              {
                                element->set_neighbor(ms,neighbor);
                              }
                            else if (neighbor->subactive())
                              {
                                neighbor->set_neighbor(ns,element);
                              }
                            side_to_elem_map.erase (bounds.first);

                            // get out of this nested crap
                            goto next_side;
                          }

                        ++bounds.first;
                      }
                  }

                // didn't find a match...
                // Build the map entry for this element
                key_val_pair kvp;

                kvp.first         = key;
                kvp.second.first  = element;
                kvp.second.second = ms;

                // use the lower bound as a hint for
                // where to put it.
#if defined(LIBMESH_HAVE_UNORDERED_MAP) || defined(LIBMESH_HAVE_TR1_UNORDERED_MAP) || defined(LIBMESH_HAVE_HASH_MAP) || defined(LIBMESH_HAVE_EXT_HASH_MAP)
                side_to_elem_map.insert (kvp);
#else
                side_to_elem_map.insert (bounds.first,kvp);
#endif
              }
          }
      }
  }

#ifdef LIBMESH_ENABLE_AMR

  /**
   * Here we look at all of the child elements which
   * don't already have valid neighbors.
   *
   * If a child element has a NULL neighbor it is
   * either because it is on the boundary or because
   * its neighbor is at a different level.  In the
   * latter case we must get the neighbor from the
   * parent.
   *
   * If a child element has a remote_elem neighbor
   * on a boundary it shares with its parent, that
   * info may have become out-dated through coarsening
   * of the neighbor's parent.  In this case, if the
   * parent's neighbor is active then the child should
   * share it.
   *
   * Furthermore, that neighbor better be active,
   * otherwise we missed a child somewhere.
   *
   *
   * We also need to look through children ordered by increasing
   * refinement level in order to add new interior_parent() links in
   * boundary elements which have just been generated by refinement,
   * and fix links in boundary elements whose previous
   * interior_parent() has just been coarsened away.
   */
  const unsigned int n_levels = MeshTools::n_levels(*this);
  for (unsigned int level = 1; level < n_levels; ++level)
    {
      element_iterator end = this->level_elements_end(level);
      for (element_iterator el = this->level_elements_begin(level);
           el != end; ++el)
        {
          Elem * current_elem = *el;
          libmesh_assert(current_elem);
          Elem * parent = current_elem->parent();
          libmesh_assert(parent);
          const unsigned int my_child_num = parent->which_child_am_i(current_elem);

          for (unsigned int s=0; s < current_elem->n_neighbors(); s++)
            {
              if (current_elem->neighbor_ptr(s) == libmesh_nullptr ||
                  (current_elem->neighbor_ptr(s) == remote_elem &&
                   parent->is_child_on_side(my_child_num, s)))
                {
                  Elem * neigh = parent->neighbor_ptr(s);

                  // If neigh was refined and had non-subactive children
                  // made remote earlier, then a non-subactive elem should
                  // actually have one of those remote children as a
                  // neighbor
                  if (neigh && (neigh->ancestor()) && (!current_elem->subactive()))
                    {
#ifdef DEBUG
                      // Let's make sure that "had children made remote"
                      // situation is actually the case
                      libmesh_assert(neigh->has_children());
                      bool neigh_has_remote_children = false;
                      for (unsigned int c = 0; c != neigh->n_children(); ++c)
                        {
                          if (neigh->child_ptr(c) == remote_elem)
                            neigh_has_remote_children = true;
                        }
                      libmesh_assert(neigh_has_remote_children);

                      // And let's double-check that we don't have
                      // a remote_elem neighboring a local element
                      libmesh_assert_not_equal_to (current_elem->processor_id(),
                                                   this->processor_id());
#endif // DEBUG
                      neigh = const_cast<RemoteElem *>(remote_elem);
                    }

                  if (!current_elem->subactive())
                    current_elem->set_neighbor(s, neigh);
#ifdef DEBUG
                  if (neigh != libmesh_nullptr && neigh != remote_elem)
                    // We ignore subactive elements here because
                    // we don't care about neighbors of subactive element.
                    if ((!neigh->active()) && (!current_elem->subactive()))
                      {
                        libMesh::err << "On processor " << this->processor_id()
                                     << std::endl;
                        libMesh::err << "Bad element ID = " << current_elem->id()
                                     << ", Side " << s << ", Bad neighbor ID = " << neigh->id() << std::endl;
                        libMesh::err << "Bad element proc_ID = " << current_elem->processor_id()
                                     << ", Bad neighbor proc_ID = " << neigh->processor_id() << std::endl;
                        libMesh::err << "Bad element size = " << current_elem->hmin()
                                     << ", Bad neighbor size = " << neigh->hmin() << std::endl;
                        libMesh::err << "Bad element center = " << current_elem->centroid()
                                     << ", Bad neighbor center = " << neigh->centroid() << std::endl;
                        libMesh::err << "ERROR: "
                                     << (current_elem->active()?"Active":"Ancestor")
                                     << " Element at level "
                                     << current_elem->level() << std::endl;
                        libMesh::err << "with "
                                     << (parent->active()?"active":
                                         (parent->subactive()?"subactive":"ancestor"))
                                     << " parent share "
                                     << (neigh->subactive()?"subactive":"ancestor")
                                     << " neighbor at level " << neigh->level()
                                     << std::endl;
                        NameBasedIO(*this).write ("bad_mesh.gmv");
                        libmesh_error_msg("Problematic mesh written to bad_mesh.gmv.");
                      }
#endif // DEBUG
                }
            }

          // We can skip to the next element if we're full-dimension
          // and therefore don't have any interior parents
          if (current_elem->dim() >= LIBMESH_DIM)
            continue;

          // We have no interior parents unless we can find one later
          current_elem->set_interior_parent(libmesh_nullptr);

          Elem * pip = parent->interior_parent();

          if (!pip)
            continue;

          // If there's no interior_parent children, whether due to a
          // remote element or a non-conformity, then there's no
          // children to search.
          if (pip == remote_elem || pip->active())
            {
              current_elem->set_interior_parent(pip);
              continue;
            }

          // For node comparisons we'll need a sensible tolerance
          Real node_tolerance = current_elem->hmin() * TOLERANCE;

          // Otherwise our interior_parent should be a child of our
          // parent's interior_parent.
          for (unsigned int c=0; c != pip->n_children(); ++c)
            {
              Elem * child = pip->child_ptr(c);

              // If we have a remote_elem, that might be our
              // interior_parent.  We'll set it provisionally now and
              // keep trying to find something better.
              if (child == remote_elem)
                {
                  current_elem->set_interior_parent
                    (const_cast<RemoteElem *>(remote_elem));
                  continue;
                }

              bool child_contains_our_nodes = true;
              for (unsigned int n=0; n != current_elem->n_nodes();
                   ++n)
                {
                  bool child_contains_this_node = false;
                  for (unsigned int cn=0; cn != child->n_nodes();
                       ++cn)
                    if (child->point(cn).absolute_fuzzy_equals
                        (current_elem->point(n), node_tolerance))
                      {
                        child_contains_this_node = true;
                        break;
                      }
                  if (!child_contains_this_node)
                    {
                      child_contains_our_nodes = false;
                      break;
                    }
                }
              if (child_contains_our_nodes)
                {
                  current_elem->set_interior_parent(child);
                  break;
                }
            }

          // We should have found *some* interior_parent at this
          // point, whether semilocal or remote.
          libmesh_assert(current_elem->interior_parent());
        }
    }

#endif // AMR


#ifdef DEBUG
  MeshTools::libmesh_assert_valid_neighbors(*this,
                                            !reset_remote_elements);
  MeshTools::libmesh_assert_valid_amr_interior_parents(*this);
#endif
}
예제 #6
0
int main(int argc, char** argv){   
	
	// Initilize libMesh
    LibMeshInit init (argc, argv);

	// Create the mesh, single element
	Mesh mesh;
    MeshTools::Generation::build_square(mesh, 1, 1, -1, 1, -1, 1, QUAD4); 

	// Create an equation system
	EquationSystems eq_sys(mesh);

	// Create the equation systems via shared_ptr pointers
	boost::shared_ptr<ThermoEq> thermo(new ThermoEq(eq_sys));
	boost::shared_ptr<MomentumEq> momentum(new MomentumEq(eq_sys, FIRST)); 
	boost::shared_ptr<ConcentrationEq> concentration(new ConcentrationEq(eq_sys, FIRST));
	boost::shared_ptr<EnergyEq> energy(new EnergyEq(eq_sys, FIRST));

	// Link the initialization functions
	momentum->add_initial_function(initial_velocity);
	concentration->add_initial_function(initial_concentration);
	energy->add_initial_function(initial_temperature);

	// Add the necessary cross-linking between the systems via their pointers
	thermo->momentum = momentum;
	thermo->energy = energy;
	thermo->concentration = concentration;
	energy->thermo = thermo;
	energy->momentum = momentum;

	// Initialize the various systems
	momentum->init();
	concentration->init();
	energy->init();
	thermo->init();

	// Get a pointer to the first (and only) element
	Elem* elem = mesh.elem(0);
	
	// Display the values for initial enthalpy; computed from temp.
	printf("\n\nTEMP. TO ENTHALPY CONVERSION:\n");
	for (unsigned int i = 0; i < elem->n_nodes(); i++){
		Point& p = elem->point(i);
		Number h = energy->point_value(0,p);
		printf("\th = %g (%g, %g)\n", h, p(0), p(1));
	}		
	
	
	
	
//	thermo->test(elem);
//	DenseVector<Number> output(1);
	
	//energy.enthalpy(output, p, 0.0);
	
	//energy.init();
	
	// Thermodynamics links

	//data.init();

	//printf("initilized = %s\n", (data.velocity_ptr->initialized())?"true":"false");

/*
	// Print some basic element information
	printf("\n\nELEMENT INFORMATION:\n");	
		
	// Test that values are correct, use first (only) element
	VectorValue<Number> v;
	Elem* elem = mesh.elem(0);
	for (unsigned int i = 0; i < elem->n_nodes(); i++){
		Point& p = elem->point(i);
		v = data.velocity_ptr->point_value(p);
		printf("\tPoint %g, %g\tv = %g, %g\n", p(0),p(1),v(0),v(1));
	}	
 	// Test the element length
	printf("\nTESTING: element data\n");
	Number h = data.element_length(elem);
	printf("\tElement length (%f): %f\n", 1.065004, h);

	// Test the tau_1 value
	printf("\nTESTING: Tau_1\n"); 
	printf("\tTau_1: %g\n", data.tau_1(elem->point(0), data.element_length(elem)));
	printf("\tTau_1: %g\n", data.tau_1(elem->point(1), data.element_length(elem)));
	printf("\tTau_1: %g\n", data.tau_1(elem->point(2), data.element_length(elem)));
	printf("\tTau_1: %g\n", data.tau_1(elem->point(3), data.element_length(elem)));
 
 */
 
 
 
 
	// Test the EnergyEq assembly
 	printf("\nTESTING: energy eq. assembly\n");
	energy->assemble();
}
예제 #7
0
void Elem::coarsen()
{
  libmesh_assert_equal_to (this->refinement_flag(), Elem::COARSEN_INACTIVE);
  libmesh_assert (!this->active());

  // We no longer delete children until MeshRefinement::contract()
  // delete [] _children;
  // _children = nullptr;

  unsigned int parent_p_level = 0;

  // re-compute hanging node nodal locations
  for (unsigned int c = 0, nc = this->n_children(); c != nc; ++c)
    {
      Elem * mychild = this->child_ptr(c);
      if (mychild == remote_elem)
        continue;
      for (unsigned int cnode=0; cnode != mychild->n_nodes(); ++cnode)
        {
          Point new_pos;
          bool calculated_new_pos = false;

          for (unsigned int n=0; n<this->n_nodes(); n++)
            {
              // The value from the embedding matrix
              const float em_val = this->embedding_matrix(c,cnode,n);

              // The node location is somewhere between existing vertices
              if ((em_val != 0.) && (em_val != 1.))
                {
                  new_pos.add_scaled (this->point(n), em_val);
                  calculated_new_pos = true;
                }
            }

          if (calculated_new_pos)
            {
              //Move the existing node back into it's original location
              for (unsigned int i=0; i<LIBMESH_DIM; i++)
                {
                  Point & child_node = mychild->point(cnode);
                  child_node(i)=new_pos(i);
                }
            }
        }
    }

  for (auto & mychild : this->child_ref_range())
    {
      if (&mychild == remote_elem)
        continue;
      libmesh_assert_equal_to (mychild.refinement_flag(), Elem::COARSEN);
      mychild.set_refinement_flag(Elem::INACTIVE);
      if (mychild.p_level() > parent_p_level)
        parent_p_level = mychild.p_level();
    }

  this->set_refinement_flag(Elem::JUST_COARSENED);
  this->set_p_level(parent_p_level);

  libmesh_assert (this->active());
}